i965/msaa: Move {rt,tex}_interleaved into blorp program key.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25
26 #include "glsl/ralloc.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_eu.h"
33 #include "brw_state.h"
34
35
36 /**
37 * Helper function for handling mirror image blits.
38 *
39 * If coord0 > coord1, swap them and invert the "mirror" boolean.
40 */
41 static inline void
42 fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
43 {
44 if (coord0 > coord1) {
45 mirror = !mirror;
46 GLint tmp = coord0;
47 coord0 = coord1;
48 coord1 = tmp;
49 }
50 }
51
52
53 /**
54 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
55 * destination coordinates.
56 *
57 * Return true if there is still blitting to do, false if all pixels got
58 * rejected by the clip and/or scissor.
59 *
60 * For clarity, the nomenclature of this function assumes we are clipping and
61 * scissoring the X coordinate; the exact same logic applies for Y
62 * coordinates.
63 *
64 * Note: this function may also be used to account for clipping of source
65 * coordinates, by swapping the roles of src and dst.
66 */
67 static inline bool
68 clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
69 GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
70 {
71 /* If we are going to scissor everything away, stop. */
72 if (!(fb_xmin < fb_xmax &&
73 dst_x0 < fb_xmax &&
74 fb_xmin < dst_x1 &&
75 dst_x0 < dst_x1)) {
76 return false;
77 }
78
79 /* Clip the destination rectangle, and keep track of how many pixels we
80 * clipped off of the left and right sides of it.
81 */
82 GLint pixels_clipped_left = 0;
83 GLint pixels_clipped_right = 0;
84 if (dst_x0 < fb_xmin) {
85 pixels_clipped_left = fb_xmin - dst_x0;
86 dst_x0 = fb_xmin;
87 }
88 if (fb_xmax < dst_x1) {
89 pixels_clipped_right = dst_x1 - fb_xmax;
90 dst_x1 = fb_xmax;
91 }
92
93 /* If we are mirrored, then before applying pixels_clipped_{left,right} to
94 * the source coordinates, we need to flip them to account for the
95 * mirroring.
96 */
97 if (mirror) {
98 GLint tmp = pixels_clipped_left;
99 pixels_clipped_left = pixels_clipped_right;
100 pixels_clipped_right = tmp;
101 }
102
103 /* Adjust the source rectangle to remove the pixels corresponding to those
104 * that were clipped/scissored out of the destination rectangle.
105 */
106 src_x0 += pixels_clipped_left;
107 src_x1 -= pixels_clipped_right;
108
109 return true;
110 }
111
112
113 static bool
114 try_blorp_blit(struct intel_context *intel,
115 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
116 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
117 GLenum filter, GLbitfield buffer_bit)
118 {
119 struct gl_context *ctx = &intel->ctx;
120
121 /* Sync up the state of window system buffers. We need to do this before
122 * we go looking for the buffers.
123 */
124 intel_prepare_render(intel);
125
126 /* Find buffers */
127 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
128 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
129 struct gl_renderbuffer *src_rb;
130 struct gl_renderbuffer *dst_rb;
131 switch (buffer_bit) {
132 case GL_COLOR_BUFFER_BIT:
133 src_rb = read_fb->_ColorReadBuffer;
134 dst_rb =
135 draw_fb->Attachment[
136 draw_fb->_ColorDrawBufferIndexes[0]].Renderbuffer;
137 break;
138 case GL_DEPTH_BUFFER_BIT:
139 src_rb = read_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
140 dst_rb = draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
141 break;
142 case GL_STENCIL_BUFFER_BIT:
143 src_rb = read_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
144 dst_rb = draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
145 break;
146 default:
147 assert(false);
148 }
149
150 /* Validate source */
151 if (!src_rb) return false;
152 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
153 struct intel_mipmap_tree *src_mt = src_irb->mt;
154 if (!src_mt) return false;
155 if (buffer_bit == GL_STENCIL_BUFFER_BIT && src_mt->stencil_mt)
156 src_mt = src_mt->stencil_mt;
157
158 /* Validate destination */
159 if (!dst_rb) return false;
160 struct intel_renderbuffer *dst_irb = intel_renderbuffer(dst_rb);
161 struct intel_mipmap_tree *dst_mt = dst_irb->mt;
162 if (!dst_mt) return false;
163 if (buffer_bit == GL_STENCIL_BUFFER_BIT && dst_mt->stencil_mt)
164 dst_mt = dst_mt->stencil_mt;
165
166 /* Blorp blits can't translate from one format to another. For that we'll
167 * have to fall back to the meta-op blit. Note: the meta-op blit doesn't
168 * support multisampled blits, but fortunately this is ok because
169 * multisampled blits require identical source and destination formats.
170 */
171 if (src_mt->format != dst_mt->format)
172 return false;
173
174 /* Account for the fact that in the system framebuffer, the origin is at
175 * the lower left.
176 */
177 if (read_fb->Name == 0) {
178 srcY0 = read_fb->Height - srcY0;
179 srcY1 = read_fb->Height - srcY1;
180 }
181 if (draw_fb->Name == 0) {
182 dstY0 = draw_fb->Height - dstY0;
183 dstY1 = draw_fb->Height - dstY1;
184 }
185
186 /* Detect if the blit needs to be mirrored */
187 bool mirror_x = false, mirror_y = false;
188 fixup_mirroring(mirror_x, srcX0, srcX1);
189 fixup_mirroring(mirror_x, dstX0, dstX1);
190 fixup_mirroring(mirror_y, srcY0, srcY1);
191 fixup_mirroring(mirror_y, dstY0, dstY1);
192
193 /* Make sure width and height match */
194 GLsizei width = srcX1 - srcX0;
195 GLsizei height = srcY1 - srcY0;
196 if (width != dstX1 - dstX0) return false;
197 if (height != dstY1 - dstY0) return false;
198
199 /* If the destination rectangle needs to be clipped or scissored, do so.
200 */
201 if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
202 draw_fb->_Xmin, draw_fb->_Xmax) &&
203 clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
204 draw_fb->_Ymin, draw_fb->_Ymax))) {
205 /* Everything got clipped/scissored away, so the blit was successful. */
206 return true;
207 }
208
209 /* If the source rectangle needs to be clipped or scissored, do so. */
210 if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
211 0, read_fb->Width) &&
212 clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
213 0, read_fb->Height))) {
214 /* Everything got clipped/scissored away, so the blit was successful. */
215 return true;
216 }
217
218 /* Get ready to blit. This includes depth resolving the src and dst
219 * buffers if necessary.
220 */
221 intel_renderbuffer_resolve_depth(intel, src_irb);
222 intel_renderbuffer_resolve_depth(intel, dst_irb);
223
224 /* Do the blit */
225 brw_blorp_blit_params params(brw_context(ctx), src_mt, dst_mt,
226 srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
227 mirror_x, mirror_y);
228 brw_blorp_exec(intel, &params);
229
230 /* Mark the dst buffer as needing a HiZ resolve if necessary. */
231 intel_renderbuffer_set_needs_hiz_resolve(dst_irb);
232
233 return true;
234 }
235
236 GLbitfield
237 brw_blorp_framebuffer(struct intel_context *intel,
238 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
239 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
240 GLbitfield mask, GLenum filter)
241 {
242 /* BLORP is not supported before Gen6. */
243 if (intel->gen < 6)
244 return mask;
245
246 static GLbitfield buffer_bits[] = {
247 GL_COLOR_BUFFER_BIT,
248 GL_DEPTH_BUFFER_BIT,
249 GL_STENCIL_BUFFER_BIT,
250 };
251
252 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
253 if ((mask & buffer_bits[i]) &&
254 try_blorp_blit(intel,
255 srcX0, srcY0, srcX1, srcY1,
256 dstX0, dstY0, dstX1, dstY1,
257 filter, buffer_bits[i])) {
258 mask &= ~buffer_bits[i];
259 }
260 }
261
262 return mask;
263 }
264
265
266 /**
267 * Enum to specify the order of arguments in a sampler message
268 */
269 enum sampler_message_arg
270 {
271 SAMPLER_MESSAGE_ARG_U_FLOAT,
272 SAMPLER_MESSAGE_ARG_V_FLOAT,
273 SAMPLER_MESSAGE_ARG_U_INT,
274 SAMPLER_MESSAGE_ARG_V_INT,
275 SAMPLER_MESSAGE_ARG_SI_INT,
276 SAMPLER_MESSAGE_ARG_ZERO_INT,
277 };
278
279 /**
280 * Generator for WM programs used in BLORP blits.
281 *
282 * The bulk of the work done by the WM program is to wrap and unwrap the
283 * coordinate transformations used by the hardware to store surfaces in
284 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
285 * sample index for a multisampled surface) to a memory offset by the
286 * following formulas:
287 *
288 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
289 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
290 *
291 * For a single-sampled surface, or for a multisampled surface that stores
292 * each sample in a different array slice, encode_msaa() and decode_msaa are
293 * the identity function:
294 *
295 * encode_msaa(1, N/A, X, Y, 0) = (X, Y, 0)
296 * decode_msaa(1, N/A, X, Y, 0) = (X, Y, 0)
297 * encode_msaa(n, sliced, X, Y, S) = (X, Y, S)
298 * decode_msaa(n, sliced, X, Y, S) = (X, Y, S)
299 *
300 * For a 4x interleaved multisampled surface, encode_msaa() embeds the sample
301 * number into bit 1 of the X and Y coordinates:
302 *
303 * encode_msaa(4, interleaved, X, Y, S) = (X', Y', 0)
304 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
305 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
306 * decode_msaa(4, interleaved, X, Y, 0) = (X', Y', S)
307 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
308 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
309 * S = (Y & 0b10) | (X & 0b10) >> 1
310 *
311 * For X tiling, tile() combines together the low-order bits of the X and Y
312 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
313 * bytes wide and 8 rows high:
314 *
315 * tile(x_tiled, X, Y, S) = A
316 * where A = tile_num << 12 | offset
317 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
318 * offset = (Y' & 0b111) << 9
319 * | (X & 0b111111111)
320 * X' = X * cpp
321 * Y' = Y + S * qpitch
322 * detile(x_tiled, A) = (X, Y, S)
323 * where X = X' / cpp
324 * Y = Y' % qpitch
325 * S = Y' / qpitch
326 * Y' = (tile_num / tile_pitch) << 3
327 * | (A & 0b111000000000) >> 9
328 * X' = (tile_num % tile_pitch) << 9
329 * | (A & 0b111111111)
330 *
331 * (In all tiling formulas, cpp is the number of bytes occupied by a single
332 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
333 * to fill the width of the surface, and qpitch is the spacing (in rows)
334 * between array slices).
335 *
336 * For Y tiling, tile() combines together the low-order bits of the X and Y
337 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
338 * bytes wide and 32 rows high:
339 *
340 * tile(y_tiled, X, Y, S) = A
341 * where A = tile_num << 12 | offset
342 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
343 * offset = (X' & 0b1110000) << 5
344 * | (Y' & 0b11111) << 4
345 * | (X' & 0b1111)
346 * X' = X * cpp
347 * Y' = Y + S * qpitch
348 * detile(y_tiled, A) = (X, Y, S)
349 * where X = X' / cpp
350 * Y = Y' % qpitch
351 * S = Y' / qpitch
352 * Y' = (tile_num / tile_pitch) << 5
353 * | (A & 0b111110000) >> 4
354 * X' = (tile_num % tile_pitch) << 7
355 * | (A & 0b111000000000) >> 5
356 * | (A & 0b1111)
357 *
358 * For W tiling, tile() combines together the low-order bits of the X and Y
359 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
360 * bytes wide and 64 rows high (note that W tiling is only used for stencil
361 * buffers, which always have cpp = 1 and S=0):
362 *
363 * tile(w_tiled, X, Y, S) = A
364 * where A = tile_num << 12 | offset
365 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
366 * offset = (X' & 0b111000) << 6
367 * | (Y' & 0b111100) << 3
368 * | (X' & 0b100) << 2
369 * | (Y' & 0b10) << 2
370 * | (X' & 0b10) << 1
371 * | (Y' & 0b1) << 1
372 * | (X' & 0b1)
373 * X' = X * cpp = X
374 * Y' = Y + S * qpitch
375 * detile(w_tiled, A) = (X, Y, S)
376 * where X = X' / cpp = X'
377 * Y = Y' % qpitch = Y'
378 * S = Y / qpitch = 0
379 * Y' = (tile_num / tile_pitch) << 6
380 * | (A & 0b111100000) >> 3
381 * | (A & 0b1000) >> 2
382 * | (A & 0b10) >> 1
383 * X' = (tile_num % tile_pitch) << 6
384 * | (A & 0b111000000000) >> 6
385 * | (A & 0b10000) >> 2
386 * | (A & 0b100) >> 1
387 * | (A & 0b1)
388 *
389 * Finally, for a non-tiled surface, tile() simply combines together the X and
390 * Y coordinates in the natural way:
391 *
392 * tile(untiled, X, Y, S) = A
393 * where A = Y * pitch + X'
394 * X' = X * cpp
395 * Y' = Y + S * qpitch
396 * detile(untiled, A) = (X, Y, S)
397 * where X = X' / cpp
398 * Y = Y' % qpitch
399 * S = Y' / qpitch
400 * X' = A % pitch
401 * Y' = A / pitch
402 *
403 * (In these formulas, pitch is the number of bytes occupied by a single row
404 * of samples).
405 */
406 class brw_blorp_blit_program
407 {
408 public:
409 brw_blorp_blit_program(struct brw_context *brw,
410 const brw_blorp_blit_prog_key *key);
411 ~brw_blorp_blit_program();
412
413 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
414
415 brw_blorp_prog_data prog_data;
416
417 private:
418 void alloc_regs();
419 void alloc_push_const_regs(int base_reg);
420 void compute_frag_coords();
421 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
422 void encode_msaa(unsigned num_samples, bool interleaved);
423 void decode_msaa(unsigned num_samples, bool interleaved);
424 void kill_if_outside_dst_rect();
425 void translate_dst_to_src();
426 void single_to_blend();
427 void manual_blend();
428 void sample(struct brw_reg dst);
429 void texel_fetch(struct brw_reg dst);
430 void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
431 void texture_lookup(struct brw_reg dst, GLuint msg_type,
432 const sampler_message_arg *args, int num_args);
433 void render_target_write();
434
435 void *mem_ctx;
436 struct brw_context *brw;
437 const brw_blorp_blit_prog_key *key;
438 struct brw_compile func;
439
440 /* Thread dispatch header */
441 struct brw_reg R0;
442
443 /* Pixel X/Y coordinates (always in R1). */
444 struct brw_reg R1;
445
446 /* Push constants */
447 struct brw_reg dst_x0;
448 struct brw_reg dst_x1;
449 struct brw_reg dst_y0;
450 struct brw_reg dst_y1;
451 struct {
452 struct brw_reg multiplier;
453 struct brw_reg offset;
454 } x_transform, y_transform;
455
456 /* Data to be written to render target (4 vec16's) */
457 struct brw_reg result;
458
459 /* Auxiliary storage for data returned by a sampling operation when
460 * blending (4 vec16's)
461 */
462 struct brw_reg texture_data;
463
464 /* X coordinates. We have two of them so that we can perform coordinate
465 * transformations easily.
466 */
467 struct brw_reg x_coords[2];
468
469 /* Y coordinates. We have two of them so that we can perform coordinate
470 * transformations easily.
471 */
472 struct brw_reg y_coords[2];
473
474 /* Which element of x_coords and y_coords is currently in use.
475 */
476 int xy_coord_index;
477
478 /* True if, at the point in the program currently being compiled, the
479 * sample index is known to be zero.
480 */
481 bool s_is_zero;
482
483 /* Register storing the sample index when s_is_zero is false. */
484 struct brw_reg sample_index;
485
486 /* Temporaries */
487 struct brw_reg t1;
488 struct brw_reg t2;
489
490 /* MRF used for sampling and render target writes */
491 GLuint base_mrf;
492 };
493
494 brw_blorp_blit_program::brw_blorp_blit_program(
495 struct brw_context *brw,
496 const brw_blorp_blit_prog_key *key)
497 : mem_ctx(ralloc_context(NULL)),
498 brw(brw),
499 key(key)
500 {
501 brw_init_compile(brw, &func, mem_ctx);
502 }
503
504 brw_blorp_blit_program::~brw_blorp_blit_program()
505 {
506 ralloc_free(mem_ctx);
507 }
508
509 const GLuint *
510 brw_blorp_blit_program::compile(struct brw_context *brw,
511 GLuint *program_size)
512 {
513 /* Sanity checks */
514 if (key->dst_tiled_w && key->rt_samples > 0) {
515 /* If the destination image is W tiled and multisampled, then the thread
516 * must be dispatched once per sample, not once per pixel. This is
517 * necessary because after conversion between W and Y tiling, there's no
518 * guarantee that all samples corresponding to a single pixel will still
519 * be together.
520 */
521 assert(key->persample_msaa_dispatch);
522 }
523
524 if (key->blend) {
525 /* We are blending, which means we won't have an opportunity to
526 * translate the tiling and sample count for the texture surface. So
527 * the surface state for the texture must be configured with the correct
528 * tiling and sample count.
529 */
530 assert(!key->src_tiled_w);
531 assert(key->tex_samples == key->src_samples);
532 assert(key->tex_interleaved == key->src_interleaved);
533 assert(key->tex_samples > 0);
534 }
535
536 if (key->persample_msaa_dispatch) {
537 /* It only makes sense to do persample dispatch if the render target is
538 * configured as multisampled.
539 */
540 assert(key->rt_samples > 0);
541 }
542
543 /* Interleaved only makes sense on MSAA surfaces */
544 if (key->tex_interleaved) assert(key->tex_samples > 0);
545 if (key->src_interleaved) assert(key->src_samples > 0);
546 if (key->dst_interleaved) assert(key->dst_samples > 0);
547
548 /* Set up prog_data */
549 memset(&prog_data, 0, sizeof(prog_data));
550 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
551
552 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
553
554 alloc_regs();
555 compute_frag_coords();
556
557 /* Render target and texture hardware don't support W tiling. */
558 const bool rt_tiled_w = false;
559 const bool tex_tiled_w = false;
560
561 /* The address that data will be written to is determined by the
562 * coordinates supplied to the WM thread and the tiling and sample count of
563 * the render target, according to the formula:
564 *
565 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
566 *
567 * If the actual tiling and sample count of the destination surface are not
568 * the same as the configuration of the render target, then these
569 * coordinates are wrong and we have to adjust them to compensate for the
570 * difference.
571 */
572 if (rt_tiled_w != key->dst_tiled_w ||
573 key->rt_samples != key->dst_samples ||
574 key->rt_interleaved != key->dst_interleaved) {
575 encode_msaa(key->rt_samples, key->rt_interleaved);
576 /* Now (X, Y, S) = detile(rt_tiling, offset) */
577 translate_tiling(rt_tiled_w, key->dst_tiled_w);
578 /* Now (X, Y, S) = detile(dst_tiling, offset) */
579 decode_msaa(key->dst_samples, key->dst_interleaved);
580 }
581
582 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
583 *
584 * That is: X, Y and S now contain the true coordinates and sample index of
585 * the data that the WM thread should output.
586 *
587 * If we need to kill pixels that are outside the destination rectangle,
588 * now is the time to do it.
589 */
590
591 if (key->use_kill)
592 kill_if_outside_dst_rect();
593
594 /* Next, apply a translation to obtain coordinates in the source image. */
595 translate_dst_to_src();
596
597 /* If the source image is not multisampled, then we want to fetch sample
598 * number 0, because that's the only sample there is.
599 */
600 if (key->src_samples == 0)
601 s_is_zero = true;
602
603 /* X, Y, and S are now the coordinates of the pixel in the source image
604 * that we want to texture from. Exception: if we are blending, then S is
605 * irrelevant, because we are going to fetch all samples.
606 */
607 if (key->blend) {
608 if (brw->intel.gen == 6) {
609 /* Gen6 hardware an automatically blend using the SAMPLE message */
610 single_to_blend();
611 sample(result);
612 } else {
613 /* Gen7+ hardware doesn't automaticaly blend. */
614 manual_blend();
615 }
616 } else {
617 /* We aren't blending, which means we just want to fetch a single sample
618 * from the source surface. The address that we want to fetch from is
619 * related to the X, Y and S values according to the formula:
620 *
621 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
622 *
623 * If the actual tiling and sample count of the source surface are not
624 * the same as the configuration of the texture, then we need to adjust
625 * the coordinates to compensate for the difference.
626 */
627 if (tex_tiled_w != key->src_tiled_w ||
628 key->tex_samples != key->src_samples ||
629 key->tex_interleaved != key->src_interleaved) {
630 encode_msaa(key->src_samples, key->src_interleaved);
631 /* Now (X, Y, S) = detile(src_tiling, offset) */
632 translate_tiling(key->src_tiled_w, tex_tiled_w);
633 /* Now (X, Y, S) = detile(tex_tiling, offset) */
634 decode_msaa(key->tex_samples, key->tex_interleaved);
635 }
636
637 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
638 *
639 * In other words: X, Y, and S now contain values which, when passed to
640 * the texturing unit, will cause data to be read from the correct
641 * memory location. So we can fetch the texel now.
642 */
643 texel_fetch(result);
644 }
645
646 /* Finally, write the fetched (or blended) value to the render target and
647 * terminate the thread.
648 */
649 render_target_write();
650 return brw_get_program(&func, program_size);
651 }
652
653 void
654 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
655 {
656 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
657 #define ALLOC_REG(name) \
658 this->name = \
659 brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
660
661 ALLOC_REG(dst_x0);
662 ALLOC_REG(dst_x1);
663 ALLOC_REG(dst_y0);
664 ALLOC_REG(dst_y1);
665 ALLOC_REG(x_transform.multiplier);
666 ALLOC_REG(x_transform.offset);
667 ALLOC_REG(y_transform.multiplier);
668 ALLOC_REG(y_transform.offset);
669 #undef CONST_LOC
670 #undef ALLOC_REG
671 }
672
673 void
674 brw_blorp_blit_program::alloc_regs()
675 {
676 int reg = 0;
677 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
678 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
679 prog_data.first_curbe_grf = reg;
680 alloc_push_const_regs(reg);
681 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
682 this->result = vec16(brw_vec8_grf(reg, 0)); reg += 8;
683 this->texture_data = vec16(brw_vec8_grf(reg, 0)); reg += 8;
684 for (int i = 0; i < 2; ++i) {
685 this->x_coords[i]
686 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
687 this->y_coords[i]
688 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
689 }
690 this->xy_coord_index = 0;
691 this->sample_index
692 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
693 this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
694 this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
695
696 int mrf = 2;
697 this->base_mrf = mrf;
698 }
699
700 /* In the code that follows, X and Y can be used to quickly refer to the
701 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
702 * prime") to the inactive elements.
703 *
704 * S can be used to quickly refer to sample_index.
705 */
706 #define X x_coords[xy_coord_index]
707 #define Y y_coords[xy_coord_index]
708 #define Xp x_coords[!xy_coord_index]
709 #define Yp y_coords[!xy_coord_index]
710 #define S sample_index
711
712 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
713 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
714 */
715 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
716
717 /**
718 * Emit code to compute the X and Y coordinates of the pixels being rendered
719 * by this WM invocation.
720 *
721 * Assuming the render target is set up for Y tiling, these (X, Y) values are
722 * related to the address offset where outputs will be written by the formula:
723 *
724 * (X, Y, S) = decode_msaa(detile(offset)).
725 *
726 * (See brw_blorp_blit_program).
727 */
728 void
729 brw_blorp_blit_program::compute_frag_coords()
730 {
731 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
732 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
733 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
734 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
735 *
736 * Pixels within a subspan are laid out in this arrangement:
737 * 0 1
738 * 2 3
739 *
740 * So, to compute the coordinates of each pixel, we need to read every 2nd
741 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
742 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
743 * In other words, the data we want to access is R1.4<2;4,0>UW.
744 *
745 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
746 * result, since pixels n+1 and n+3 are in the right half of the subspan.
747 */
748 brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
749
750 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
751 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
752 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
753 * R1.4<2;4,0>UW).
754 *
755 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
756 * pixels n+2 and n+3 are in the bottom half of the subspan.
757 */
758 brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
759
760 if (key->persample_msaa_dispatch) {
761 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples > 0.
762 * Therefore, subspan 0 will represent sample 0, subspan 1 will
763 * represent sample 1, and so on.
764 *
765 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1, 1,
766 * 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to populate a
767 * temporary variable with the sequence (0, 1, 2, 3), and then copy from
768 * it using vstride=1, width=4, hstride=0.
769 *
770 * TODO: implement the necessary calculation for 8x multisampling.
771 */
772 brw_MOV(&func, t1, brw_imm_v(0x3210));
773 brw_MOV(&func, S, stride(t1, 1, 4, 0));
774 s_is_zero = false;
775 } else {
776 /* Either the destination surface is single-sampled, or the WM will be
777 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
778 * per pixel). In either case, it's not meaningful to compute a sample
779 * value. Just set it to 0.
780 */
781 s_is_zero = true;
782 }
783 }
784
785 /**
786 * Emit code to compensate for the difference between Y and W tiling.
787 *
788 * This code modifies the X and Y coordinates according to the formula:
789 *
790 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
791 *
792 * (See brw_blorp_blit_program).
793 *
794 * It can only translate between W and Y tiling, so new_tiling and old_tiling
795 * are booleans where true represents W tiling and false represents Y tiling.
796 */
797 void
798 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
799 {
800 if (old_tiled_w == new_tiled_w)
801 return;
802
803 /* In the code that follows, we can safely assume that S = 0, because W
804 * tiling formats always use interleaved encoding.
805 */
806 assert(s_is_zero);
807
808 if (new_tiled_w) {
809 /* Given X and Y coordinates that describe an address using Y tiling,
810 * translate to the X and Y coordinates that describe the same address
811 * using W tiling.
812 *
813 * If we break down the low order bits of X and Y, using a
814 * single letter to represent each low-order bit:
815 *
816 * X = A << 7 | 0bBCDEFGH
817 * Y = J << 5 | 0bKLMNP (1)
818 *
819 * Then we can apply the Y tiling formula to see the memory offset being
820 * addressed:
821 *
822 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
823 *
824 * If we apply the W detiling formula to this memory location, that the
825 * corresponding X' and Y' coordinates are:
826 *
827 * X' = A << 6 | 0bBCDPFH (3)
828 * Y' = J << 6 | 0bKLMNEG
829 *
830 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
831 * we need to make the following computation:
832 *
833 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
834 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
835 */
836 brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
837 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
838 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
839 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
840 brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
841 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
842 brw_OR(&func, Xp, t1, t2);
843 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
844 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
845 brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
846 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
847 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
848 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
849 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
850 brw_OR(&func, Yp, t1, t2);
851 SWAP_XY_AND_XPYP();
852 } else {
853 /* Applying the same logic as above, but in reverse, we obtain the
854 * formulas:
855 *
856 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
857 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
858 */
859 brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
860 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
861 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
862 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
863 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
864 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
865 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
866 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
867 | (Y & 0b1) << 1 */
868 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
869 brw_OR(&func, Xp, t1, t2);
870 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
871 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
872 brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
873 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
874 brw_OR(&func, Yp, t1, t2);
875 SWAP_XY_AND_XPYP();
876 }
877 }
878
879 /**
880 * Emit code to compensate for the difference between MSAA and non-MSAA
881 * surfaces.
882 *
883 * This code modifies the X and Y coordinates according to the formula:
884 *
885 * (X', Y', S') = encode_msaa_4x(X, Y, S)
886 *
887 * (See brw_blorp_blit_program).
888 */
889 void
890 brw_blorp_blit_program::encode_msaa(unsigned num_samples, bool interleaved)
891 {
892 if (num_samples == 0) {
893 /* No translation necessary, and S should already be zero. */
894 assert(s_is_zero);
895 } else if (!interleaved) {
896 /* No translation necessary. */
897 } else {
898 /* encode_msaa(4, interleaved, X, Y, S) = (X', Y', 0)
899 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
900 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
901 */
902 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
903 if (!s_is_zero) {
904 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
905 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
906 }
907 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
908 | (S & 0b1) << 1 */
909 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
910 brw_OR(&func, Xp, t1, t2);
911 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
912 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
913 if (!s_is_zero) {
914 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
915 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
916 }
917 brw_AND(&func, t2, Y, brw_imm_uw(1));
918 brw_OR(&func, Yp, t1, t2);
919 SWAP_XY_AND_XPYP();
920 s_is_zero = true;
921 }
922 }
923
924 /**
925 * Emit code to compensate for the difference between MSAA and non-MSAA
926 * surfaces.
927 *
928 * This code modifies the X and Y coordinates according to the formula:
929 *
930 * (X', Y', S) = decode_msaa(num_samples, X, Y, S)
931 *
932 * (See brw_blorp_blit_program).
933 */
934 void
935 brw_blorp_blit_program::decode_msaa(unsigned num_samples, bool interleaved)
936 {
937 if (num_samples == 0) {
938 /* No translation necessary, and S should already be zero. */
939 assert(s_is_zero);
940 } else if (!interleaved) {
941 /* No translation necessary. */
942 } else {
943 /* decode_msaa(4, interleaved, X, Y, 0) = (X', Y', S)
944 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
945 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
946 * S = (Y & 0b10) | (X & 0b10) >> 1
947 */
948 assert(s_is_zero);
949 brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
950 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
951 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
952 brw_OR(&func, Xp, t1, t2);
953 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
954 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
955 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
956 brw_OR(&func, Yp, t1, t2);
957 brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
958 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
959 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
960 brw_OR(&func, S, t1, t2);
961 s_is_zero = false;
962 SWAP_XY_AND_XPYP();
963 }
964 }
965
966 /**
967 * Emit code that kills pixels whose X and Y coordinates are outside the
968 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
969 * dst_x1, dst_y1).
970 */
971 void
972 brw_blorp_blit_program::kill_if_outside_dst_rect()
973 {
974 struct brw_reg f0 = brw_flag_reg();
975 struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
976 struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
977
978 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
979 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
980 brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
981 brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
982
983 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
984 brw_push_insn_state(&func);
985 brw_set_mask_control(&func, BRW_MASK_DISABLE);
986 brw_AND(&func, g1, f0, g1);
987 brw_pop_insn_state(&func);
988 }
989
990 /**
991 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
992 * coordinates.
993 */
994 void
995 brw_blorp_blit_program::translate_dst_to_src()
996 {
997 brw_MUL(&func, Xp, X, x_transform.multiplier);
998 brw_MUL(&func, Yp, Y, y_transform.multiplier);
999 brw_ADD(&func, Xp, Xp, x_transform.offset);
1000 brw_ADD(&func, Yp, Yp, y_transform.offset);
1001 SWAP_XY_AND_XPYP();
1002 }
1003
1004 /**
1005 * Emit code to transform the X and Y coordinates as needed for blending
1006 * together the different samples in an MSAA texture.
1007 */
1008 void
1009 brw_blorp_blit_program::single_to_blend()
1010 {
1011 /* When looking up samples in an MSAA texture using the SAMPLE message,
1012 * Gen6 requires the texture coordinates to be odd integers (so that they
1013 * correspond to the center of a 2x2 block representing the four samples
1014 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1015 * each by 2 and then add 1.
1016 */
1017 brw_SHL(&func, t1, X, brw_imm_w(1));
1018 brw_SHL(&func, t2, Y, brw_imm_w(1));
1019 brw_ADD(&func, Xp, t1, brw_imm_w(1));
1020 brw_ADD(&func, Yp, t2, brw_imm_w(1));
1021 SWAP_XY_AND_XPYP();
1022 }
1023
1024 void
1025 brw_blorp_blit_program::manual_blend()
1026 {
1027 /* TODO: support num_samples != 4 */
1028 const int num_samples = 4;
1029
1030 /* Gather sample 0 data first */
1031 s_is_zero = true;
1032 texel_fetch(result);
1033
1034 /* Gather data for remaining samples and accumulate it into result. */
1035 s_is_zero = false;
1036 for (int i = 1; i < num_samples; ++i) {
1037 brw_MOV(&func, S, brw_imm_uw(i));
1038 texel_fetch(texture_data);
1039
1040 /* TODO: should use a smaller loop bound for non-RGBA formats */
1041 for (int j = 0; j < 4; ++j) {
1042 brw_ADD(&func, offset(result, 2*j), offset(vec8(result), 2*j),
1043 offset(vec8(texture_data), 2*j));
1044 }
1045 }
1046
1047 /* Scale the result down by a factor of num_samples */
1048 /* TODO: should use a smaller loop bound for non-RGBA formats */
1049 for (int j = 0; j < 4; ++j) {
1050 brw_MUL(&func, offset(result, 2*j), offset(vec8(result), 2*j),
1051 brw_imm_f(1.0/num_samples));
1052 }
1053 }
1054
1055 /**
1056 * Emit code to look up a value in the texture using the SAMPLE message (which
1057 * does blending of MSAA surfaces).
1058 */
1059 void
1060 brw_blorp_blit_program::sample(struct brw_reg dst)
1061 {
1062 static const sampler_message_arg args[2] = {
1063 SAMPLER_MESSAGE_ARG_U_FLOAT,
1064 SAMPLER_MESSAGE_ARG_V_FLOAT
1065 };
1066
1067 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
1068 }
1069
1070 /**
1071 * Emit code to look up a value in the texture using the SAMPLE_LD message
1072 * (which does a simple texel fetch).
1073 */
1074 void
1075 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1076 {
1077 static const sampler_message_arg gen6_args[5] = {
1078 SAMPLER_MESSAGE_ARG_U_INT,
1079 SAMPLER_MESSAGE_ARG_V_INT,
1080 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1081 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1082 SAMPLER_MESSAGE_ARG_SI_INT
1083 };
1084 static const sampler_message_arg gen7_ld_args[3] = {
1085 SAMPLER_MESSAGE_ARG_U_INT,
1086 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1087 SAMPLER_MESSAGE_ARG_V_INT
1088 };
1089 static const sampler_message_arg gen7_ld2dss_args[3] = {
1090 SAMPLER_MESSAGE_ARG_SI_INT,
1091 SAMPLER_MESSAGE_ARG_U_INT,
1092 SAMPLER_MESSAGE_ARG_V_INT
1093 };
1094
1095 switch (brw->intel.gen) {
1096 case 6:
1097 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1098 s_is_zero ? 2 : 5);
1099 break;
1100 case 7:
1101 if (key->tex_samples > 0) {
1102 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1103 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1104 } else {
1105 assert(s_is_zero);
1106 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1107 ARRAY_SIZE(gen7_ld_args));
1108 }
1109 break;
1110 default:
1111 assert(!"Should not get here.");
1112 break;
1113 };
1114 }
1115
1116 void
1117 brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
1118 struct brw_reg dst)
1119 {
1120 brw_MOV(&func, vec8(dst), vec8(src));
1121 brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
1122 brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
1123 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1124 }
1125
1126 void
1127 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1128 GLuint msg_type,
1129 const sampler_message_arg *args,
1130 int num_args)
1131 {
1132 struct brw_reg mrf =
1133 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1134 for (int arg = 0; arg < num_args; ++arg) {
1135 switch (args[arg]) {
1136 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1137 expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
1138 break;
1139 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1140 expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
1141 break;
1142 case SAMPLER_MESSAGE_ARG_U_INT:
1143 expand_to_32_bits(X, mrf);
1144 break;
1145 case SAMPLER_MESSAGE_ARG_V_INT:
1146 expand_to_32_bits(Y, mrf);
1147 break;
1148 case SAMPLER_MESSAGE_ARG_SI_INT:
1149 /* Note: on Gen7, this code may be reached with s_is_zero==true
1150 * because in Gen7's ld2dss message, the sample index is the first
1151 * argument. When this happens, we need to move a 0 into the
1152 * appropriate message register.
1153 */
1154 if (s_is_zero)
1155 brw_MOV(&func, mrf, brw_imm_ud(0));
1156 else
1157 expand_to_32_bits(S, mrf);
1158 break;
1159 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1160 brw_MOV(&func, mrf, brw_imm_ud(0));
1161 break;
1162 }
1163 mrf.nr += 2;
1164 }
1165
1166 brw_SAMPLE(&func,
1167 retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1168 base_mrf /* msg_reg_nr */,
1169 brw_message_reg(base_mrf) /* src0 */,
1170 BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1171 0 /* sampler */,
1172 WRITEMASK_XYZW,
1173 msg_type,
1174 8 /* response_length. TODO: should be smaller for non-RGBA formats? */,
1175 mrf.nr - base_mrf /* msg_length */,
1176 0 /* header_present */,
1177 BRW_SAMPLER_SIMD_MODE_SIMD16,
1178 BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1179 }
1180
1181 #undef X
1182 #undef Y
1183 #undef U
1184 #undef V
1185 #undef S
1186 #undef SWAP_XY_AND_XPYP
1187
1188 void
1189 brw_blorp_blit_program::render_target_write()
1190 {
1191 struct brw_reg mrf_rt_write = vec16(brw_message_reg(base_mrf));
1192 int mrf_offset = 0;
1193
1194 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1195 * so that the render target knows which pixels we killed.
1196 */
1197 bool use_header = key->use_kill;
1198 if (use_header) {
1199 /* Copy R0/1 to MRF */
1200 brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1201 retype(R0, BRW_REGISTER_TYPE_UD));
1202 mrf_offset += 2;
1203 }
1204
1205 /* Copy texture data to MRFs */
1206 for (int i = 0; i < 4; ++i) {
1207 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1208 brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1209 offset(vec8(result), 2*i));
1210 mrf_offset += 2;
1211 }
1212
1213 /* Now write to the render target and terminate the thread */
1214 brw_fb_WRITE(&func,
1215 16 /* dispatch_width */,
1216 base_mrf /* msg_reg_nr */,
1217 mrf_rt_write /* src0 */,
1218 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
1219 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
1220 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1221 0 /* response_length */,
1222 true /* eot */,
1223 use_header);
1224 }
1225
1226
1227 void
1228 brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
1229 bool mirror)
1230 {
1231 if (!mirror) {
1232 /* When not mirroring a coordinate (say, X), we need:
1233 * x' - src_x0 = x - dst_x0
1234 * Therefore:
1235 * x' = 1*x + (src_x0 - dst_x0)
1236 */
1237 multiplier = 1;
1238 offset = src0 - dst0;
1239 } else {
1240 /* When mirroring X we need:
1241 * x' - src_x0 = dst_x1 - x - 1
1242 * Therefore:
1243 * x' = -1*x + (src_x0 + dst_x1 - 1)
1244 */
1245 multiplier = -1;
1246 offset = src0 + dst1 - 1;
1247 }
1248 }
1249
1250
1251 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1252 struct intel_mipmap_tree *src_mt,
1253 struct intel_mipmap_tree *dst_mt,
1254 GLuint src_x0, GLuint src_y0,
1255 GLuint dst_x0, GLuint dst_y0,
1256 GLuint dst_x1, GLuint dst_y1,
1257 bool mirror_x, bool mirror_y)
1258 {
1259 src.set(brw, src_mt, 0, 0);
1260 dst.set(brw, dst_mt, 0, 0);
1261
1262 use_wm_prog = true;
1263 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1264
1265 if (brw->intel.gen > 6) {
1266 /* Gen7 only supports interleaved MSAA surfaces for texturing with the
1267 * ld2dms instruction (which blorp doesn't use). So if the source is
1268 * interleaved MSAA, we'll have to map it as a single-sampled texture
1269 * and de-interleave the samples ourselves.
1270 */
1271 if (src.num_samples > 0 && src_mt->msaa_is_interleaved)
1272 src.num_samples = 0;
1273
1274 /* Similarly, Gen7 only supports interleaved MSAA surfaces for depth and
1275 * stencil render targets. Blorp always maps its destination surface as
1276 * a color render target (even if it's actually a depth or stencil
1277 * buffer). So if the destination is interleaved MSAA, we'll have to
1278 * map it as a single-sampled texture and interleave the samples
1279 * ourselves.
1280 */
1281 if (dst.num_samples > 0 && dst_mt->msaa_is_interleaved)
1282 dst.num_samples = 0;
1283 }
1284
1285 if (dst.map_stencil_as_y_tiled && dst.num_samples > 0) {
1286 /* If the destination surface is a W-tiled multisampled stencil buffer
1287 * that we're mapping as Y tiled, then we need to arrange for the WM
1288 * program to run once per sample rather than once per pixel, because
1289 * the memory layout of related samples doesn't match between W and Y
1290 * tiling.
1291 */
1292 wm_prog_key.persample_msaa_dispatch = true;
1293 }
1294
1295 if (src.num_samples > 0 && dst.num_samples > 0) {
1296 /* We are blitting from a multisample buffer to a multisample buffer, so
1297 * we must preserve samples within a pixel. This means we have to
1298 * arrange for the WM program to run once per sample rather than once
1299 * per pixel.
1300 */
1301 wm_prog_key.persample_msaa_dispatch = true;
1302 }
1303
1304 /* The render path must be configured to use the same number of samples as
1305 * the destination buffer.
1306 */
1307 num_samples = dst.num_samples;
1308
1309 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1310 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1311 base_format != GL_STENCIL_INDEX &&
1312 src_mt->num_samples > 0 && dst_mt->num_samples == 0) {
1313 /* We are downsampling a color buffer, so blend. */
1314 wm_prog_key.blend = true;
1315 }
1316
1317 /* src_samples and dst_samples are the true sample counts */
1318 wm_prog_key.src_samples = src_mt->num_samples;
1319 wm_prog_key.dst_samples = dst_mt->num_samples;
1320
1321 /* tex_samples and rt_samples are the sample counts that are set up in
1322 * SURFACE_STATE.
1323 */
1324 wm_prog_key.tex_samples = src.num_samples;
1325 wm_prog_key.rt_samples = dst.num_samples;
1326
1327 /* tex_interleaved and rt_interleaved indicate whether or not the GPU
1328 * pipeline will access the source and destination surfaces as though they
1329 * use an interleaved layout. Since blorp uses color textures and render
1330 * targets to do all its work (even when blitting stencil and depth data),
1331 * it will always use sliced layout on Gen7. On Gen6, the MSAA layout is
1332 * always interleaved.
1333 */
1334 wm_prog_key.tex_interleaved = src.num_samples > 0 && brw->intel.gen == 6;
1335 wm_prog_key.rt_interleaved = dst.num_samples > 0 && brw->intel.gen == 6;
1336
1337 /* src_interleaved and dst_interleaved indicate whether src and dst are
1338 * truly interleaved.
1339 */
1340 wm_prog_key.src_interleaved = src_mt->msaa_is_interleaved;
1341 wm_prog_key.dst_interleaved = dst_mt->msaa_is_interleaved;
1342
1343 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1344 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1345 x0 = wm_push_consts.dst_x0 = dst_x0;
1346 y0 = wm_push_consts.dst_y0 = dst_y0;
1347 x1 = wm_push_consts.dst_x1 = dst_x1;
1348 y1 = wm_push_consts.dst_y1 = dst_y1;
1349 wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
1350 wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
1351
1352 if (dst.num_samples == 0 && dst_mt->num_samples > 0) {
1353 /* We must expand the rectangle we send through the rendering pipeline,
1354 * to account for the fact that we are mapping the destination region as
1355 * single-sampled when it is in fact multisampled. We must also align
1356 * it to a multiple of the multisampling pattern, because the
1357 * differences between multisampled and single-sampled surface formats
1358 * will mean that pixels are scrambled within the multisampling pattern.
1359 * TODO: what if this makes the coordinates too large?
1360 *
1361 * Note: this only works if the destination surface's MSAA layout is
1362 * interleaved. If it's sliced, then we have no choice but to set up
1363 * the rendering pipeline as multisampled.
1364 */
1365 assert(dst_mt->msaa_is_interleaved);
1366 x0 = (x0 * 2) & ~3;
1367 y0 = (y0 * 2) & ~3;
1368 x1 = ALIGN(x1 * 2, 4);
1369 y1 = ALIGN(y1 * 2, 4);
1370 wm_prog_key.use_kill = true;
1371 }
1372
1373 if (dst.map_stencil_as_y_tiled) {
1374 /* We must modify the rectangle we send through the rendering pipeline,
1375 * to account for the fact that we are mapping it as Y-tiled when it is
1376 * in fact W-tiled. Y tiles have dimensions 128x32 whereas W tiles have
1377 * dimensions 64x64. We must also align it to a multiple of the tile
1378 * size, because the differences between W and Y tiling formats will
1379 * mean that pixels are scrambled within the tile.
1380 *
1381 * Note: if the destination surface configured as an interleaved MSAA
1382 * surface, then the effective tile size we need to align it to is
1383 * smaller, because each pixel covers a 2x2 or a 4x2 block of samples.
1384 *
1385 * TODO: what if this makes the coordinates too large?
1386 */
1387 unsigned x_align = 64, y_align = 64;
1388 if (dst_mt->num_samples > 0 && dst_mt->msaa_is_interleaved) {
1389 x_align /= (dst_mt->num_samples == 4 ? 2 : 4);
1390 y_align /= 2;
1391 }
1392 x0 = (x0 & ~(x_align - 1)) * 2;
1393 y0 = (y0 & ~(y_align - 1)) / 2;
1394 x1 = ALIGN(x1, x_align) * 2;
1395 y1 = ALIGN(y1, y_align) / 2;
1396 wm_prog_key.use_kill = true;
1397 }
1398 }
1399
1400 uint32_t
1401 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
1402 brw_blorp_prog_data **prog_data) const
1403 {
1404 uint32_t prog_offset;
1405 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1406 &this->wm_prog_key, sizeof(this->wm_prog_key),
1407 &prog_offset, prog_data)) {
1408 brw_blorp_blit_program prog(brw, &this->wm_prog_key);
1409 GLuint program_size;
1410 const GLuint *program = prog.compile(brw, &program_size);
1411 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1412 &this->wm_prog_key, sizeof(this->wm_prog_key),
1413 program, program_size,
1414 &prog.prog_data, sizeof(prog.prog_data),
1415 &prog_offset, prog_data);
1416 }
1417 return prog_offset;
1418 }