i965: Put '_default_' in the name of functions that set default state.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26 #include "main/renderbuffer.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_blorp_blit_eu.h"
33 #include "brw_state.h"
34 #include "brw_meta_util.h"
35
36 #define FILE_DEBUG_FLAG DEBUG_BLORP
37
38 static struct intel_mipmap_tree *
39 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
40 {
41 struct intel_mipmap_tree *mt = irb->mt;
42 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
43 mt = mt->stencil_mt;
44 return mt;
45 }
46
47
48 /**
49 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
50 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
51 * the physical layer holding sample 0. So, for example, if
52 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
53 * 4*n.
54 */
55 void
56 brw_blorp_blit_miptrees(struct brw_context *brw,
57 struct intel_mipmap_tree *src_mt,
58 unsigned src_level, unsigned src_layer,
59 struct intel_mipmap_tree *dst_mt,
60 unsigned dst_level, unsigned dst_layer,
61 float src_x0, float src_y0,
62 float src_x1, float src_y1,
63 float dst_x0, float dst_y0,
64 float dst_x1, float dst_y1,
65 GLenum filter, bool mirror_x, bool mirror_y)
66 {
67 /* Get ready to blit. This includes depth resolving the src and dst
68 * buffers if necessary. Note: it's not necessary to do a color resolve on
69 * the destination buffer because we use the standard render path to render
70 * to destination color buffers, and the standard render path is
71 * fast-color-aware.
72 */
73 intel_miptree_resolve_color(brw, src_mt);
74 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
75 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
76
77 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
78 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
79 __FUNCTION__,
80 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
81 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
82 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
83 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
84 mirror_x, mirror_y);
85
86 brw_blorp_blit_params params(brw,
87 src_mt, src_level, src_layer,
88 dst_mt, dst_level, dst_layer,
89 src_x0, src_y0,
90 src_x1, src_y1,
91 dst_x0, dst_y0,
92 dst_x1, dst_y1,
93 filter, mirror_x, mirror_y);
94 brw_blorp_exec(brw, &params);
95
96 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
97 }
98
99 static void
100 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
101 struct intel_renderbuffer *src_irb,
102 struct intel_renderbuffer *dst_irb,
103 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
104 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
105 GLenum filter, bool mirror_x, bool mirror_y)
106 {
107 /* Find source/dst miptrees */
108 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
109 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
110
111 /* Do the blit */
112 brw_blorp_blit_miptrees(brw,
113 src_mt, src_irb->mt_level, src_irb->mt_layer,
114 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
115 srcX0, srcY0, srcX1, srcY1,
116 dstX0, dstY0, dstX1, dstY1,
117 filter, mirror_x, mirror_y);
118
119 dst_irb->need_downsample = true;
120 }
121
122 static bool
123 color_formats_match(mesa_format src_format, mesa_format dst_format)
124 {
125 mesa_format linear_src_format = _mesa_get_srgb_format_linear(src_format);
126 mesa_format linear_dst_format = _mesa_get_srgb_format_linear(dst_format);
127
128 /* Normally, we require the formats to be equal. However, we also support
129 * blitting from ARGB to XRGB (discarding alpha), and from XRGB to ARGB
130 * (overriding alpha to 1.0 via blending).
131 */
132 return linear_src_format == linear_dst_format ||
133 (linear_src_format == MESA_FORMAT_B8G8R8X8_UNORM &&
134 linear_dst_format == MESA_FORMAT_B8G8R8A8_UNORM) ||
135 (linear_src_format == MESA_FORMAT_B8G8R8A8_UNORM &&
136 linear_dst_format == MESA_FORMAT_B8G8R8X8_UNORM);
137 }
138
139 static bool
140 formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
141 struct intel_renderbuffer *dst_irb)
142 {
143 /* Note: don't just check gl_renderbuffer::Format, because in some cases
144 * multiple gl_formats resolve to the same native type in the miptree (for
145 * example MESA_FORMAT_Z24_UNORM_X8_UINT and MESA_FORMAT_Z24_UNORM_S8_UINT), and we can blit
146 * between those formats.
147 */
148 mesa_format src_format = find_miptree(buffer_bit, src_irb)->format;
149 mesa_format dst_format = find_miptree(buffer_bit, dst_irb)->format;
150
151 return color_formats_match(src_format, dst_format);
152 }
153
154 static bool
155 try_blorp_blit(struct brw_context *brw,
156 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
157 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
158 GLenum filter, GLbitfield buffer_bit)
159 {
160 struct gl_context *ctx = &brw->ctx;
161
162 /* Sync up the state of window system buffers. We need to do this before
163 * we go looking for the buffers.
164 */
165 intel_prepare_render(brw);
166
167 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
168 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
169
170 bool mirror_x, mirror_y;
171 if (brw_meta_mirror_clip_and_scissor(ctx,
172 &srcX0, &srcY0, &srcX1, &srcY1,
173 &dstX0, &dstY0, &dstX1, &dstY1,
174 &mirror_x, &mirror_y))
175 return true;
176
177 /* Find buffers */
178 struct intel_renderbuffer *src_irb;
179 struct intel_renderbuffer *dst_irb;
180 switch (buffer_bit) {
181 case GL_COLOR_BUFFER_BIT:
182 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
183 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
184 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
185 if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
186 return false;
187 }
188 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
189 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
190 if (dst_irb)
191 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
192 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
193 filter, mirror_x, mirror_y);
194 }
195 break;
196 case GL_DEPTH_BUFFER_BIT:
197 src_irb =
198 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
199 dst_irb =
200 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
201 if (!formats_match(buffer_bit, src_irb, dst_irb))
202 return false;
203 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
204 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
205 filter, mirror_x, mirror_y);
206 break;
207 case GL_STENCIL_BUFFER_BIT:
208 src_irb =
209 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
210 dst_irb =
211 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
212 if (!formats_match(buffer_bit, src_irb, dst_irb))
213 return false;
214 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
215 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
216 filter, mirror_x, mirror_y);
217 break;
218 default:
219 assert(false);
220 }
221
222 return true;
223 }
224
225 bool
226 brw_blorp_copytexsubimage(struct brw_context *brw,
227 struct gl_renderbuffer *src_rb,
228 struct gl_texture_image *dst_image,
229 int slice,
230 int srcX0, int srcY0,
231 int dstX0, int dstY0,
232 int width, int height)
233 {
234 struct gl_context *ctx = &brw->ctx;
235 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
236 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
237
238 /* Sync up the state of window system buffers. We need to do this before
239 * we go looking at the src renderbuffer's miptree.
240 */
241 intel_prepare_render(brw);
242
243 struct intel_mipmap_tree *src_mt = src_irb->mt;
244 struct intel_mipmap_tree *dst_mt = intel_image->mt;
245
246 /* BLORP is not supported before Gen6. */
247 if (brw->gen < 6 || brw->gen >= 8)
248 return false;
249
250 if (_mesa_get_format_base_format(src_mt->format) !=
251 _mesa_get_format_base_format(dst_mt->format)) {
252 return false;
253 }
254
255 /* We can't handle format conversions between Z24 and other formats since
256 * we have to lie about the surface format. See the comments in
257 * brw_blorp_surface_info::set().
258 */
259 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
260 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
261 return false;
262 }
263
264 if (!brw->format_supported_as_render_target[dst_mt->format])
265 return false;
266
267 /* Source clipping shouldn't be necessary, since copytexsubimage (in
268 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
269 * takes care of it.
270 *
271 * Destination clipping shouldn't be necessary since the restrictions on
272 * glCopyTexSubImage prevent the user from specifying a destination rectangle
273 * that falls outside the bounds of the destination texture.
274 * See error_check_subtexture_dimensions().
275 */
276
277 int srcY1 = srcY0 + height;
278 int srcX1 = srcX0 + width;
279 int dstX1 = dstX0 + width;
280 int dstY1 = dstY0 + height;
281
282 /* Account for the fact that in the system framebuffer, the origin is at
283 * the lower left.
284 */
285 bool mirror_y = false;
286 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
287 GLint tmp = src_rb->Height - srcY0;
288 srcY0 = src_rb->Height - srcY1;
289 srcY1 = tmp;
290 mirror_y = true;
291 }
292
293 /* Account for face selection and texture view MinLayer */
294 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
295 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
296
297 brw_blorp_blit_miptrees(brw,
298 src_mt, src_irb->mt_level, src_irb->mt_layer,
299 dst_mt, dst_level, dst_slice,
300 srcX0, srcY0, srcX1, srcY1,
301 dstX0, dstY0, dstX1, dstY1,
302 GL_NEAREST, false, mirror_y);
303
304 /* If we're copying to a packed depth stencil texture and the source
305 * framebuffer has separate stencil, we need to also copy the stencil data
306 * over.
307 */
308 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
309 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
310 src_rb != NULL) {
311 src_irb = intel_renderbuffer(src_rb);
312 src_mt = src_irb->mt;
313
314 if (src_mt->stencil_mt)
315 src_mt = src_mt->stencil_mt;
316 if (dst_mt->stencil_mt)
317 dst_mt = dst_mt->stencil_mt;
318
319 if (src_mt != dst_mt) {
320 brw_blorp_blit_miptrees(brw,
321 src_mt, src_irb->mt_level, src_irb->mt_layer,
322 dst_mt, dst_level, dst_slice,
323 srcX0, srcY0, srcX1, srcY1,
324 dstX0, dstY0, dstX1, dstY1,
325 GL_NEAREST, false, mirror_y);
326 }
327 }
328
329 return true;
330 }
331
332
333 GLbitfield
334 brw_blorp_framebuffer(struct brw_context *brw,
335 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
336 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
337 GLbitfield mask, GLenum filter)
338 {
339 /* BLORP is not supported before Gen6. */
340 if (brw->gen < 6 || brw->gen >= 8)
341 return mask;
342
343 static GLbitfield buffer_bits[] = {
344 GL_COLOR_BUFFER_BIT,
345 GL_DEPTH_BUFFER_BIT,
346 GL_STENCIL_BUFFER_BIT,
347 };
348
349 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
350 if ((mask & buffer_bits[i]) &&
351 try_blorp_blit(brw,
352 srcX0, srcY0, srcX1, srcY1,
353 dstX0, dstY0, dstX1, dstY1,
354 filter, buffer_bits[i])) {
355 mask &= ~buffer_bits[i];
356 }
357 }
358
359 return mask;
360 }
361
362
363 /**
364 * Enum to specify the order of arguments in a sampler message
365 */
366 enum sampler_message_arg
367 {
368 SAMPLER_MESSAGE_ARG_U_FLOAT,
369 SAMPLER_MESSAGE_ARG_V_FLOAT,
370 SAMPLER_MESSAGE_ARG_U_INT,
371 SAMPLER_MESSAGE_ARG_V_INT,
372 SAMPLER_MESSAGE_ARG_SI_INT,
373 SAMPLER_MESSAGE_ARG_MCS_INT,
374 SAMPLER_MESSAGE_ARG_ZERO_INT,
375 };
376
377 /**
378 * Generator for WM programs used in BLORP blits.
379 *
380 * The bulk of the work done by the WM program is to wrap and unwrap the
381 * coordinate transformations used by the hardware to store surfaces in
382 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
383 * sample index for a multisampled surface) to a memory offset by the
384 * following formulas:
385 *
386 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
387 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
388 *
389 * For a single-sampled surface, or for a multisampled surface using
390 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
391 * function:
392 *
393 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
394 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
395 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
396 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
397 *
398 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
399 * embeds the sample number into bit 1 of the X and Y coordinates:
400 *
401 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
402 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
403 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
404 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
405 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
406 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
407 * S = (Y & 0b10) | (X & 0b10) >> 1
408 *
409 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
410 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
411 * the Y coordinate:
412 *
413 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
414 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
415 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
416 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
417 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
418 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
419 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
420 *
421 * For X tiling, tile() combines together the low-order bits of the X and Y
422 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
423 * bytes wide and 8 rows high:
424 *
425 * tile(x_tiled, X, Y, S) = A
426 * where A = tile_num << 12 | offset
427 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
428 * offset = (Y' & 0b111) << 9
429 * | (X & 0b111111111)
430 * X' = X * cpp
431 * Y' = Y + S * qpitch
432 * detile(x_tiled, A) = (X, Y, S)
433 * where X = X' / cpp
434 * Y = Y' % qpitch
435 * S = Y' / qpitch
436 * Y' = (tile_num / tile_pitch) << 3
437 * | (A & 0b111000000000) >> 9
438 * X' = (tile_num % tile_pitch) << 9
439 * | (A & 0b111111111)
440 *
441 * (In all tiling formulas, cpp is the number of bytes occupied by a single
442 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
443 * to fill the width of the surface, and qpitch is the spacing (in rows)
444 * between array slices).
445 *
446 * For Y tiling, tile() combines together the low-order bits of the X and Y
447 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
448 * bytes wide and 32 rows high:
449 *
450 * tile(y_tiled, X, Y, S) = A
451 * where A = tile_num << 12 | offset
452 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
453 * offset = (X' & 0b1110000) << 5
454 * | (Y' & 0b11111) << 4
455 * | (X' & 0b1111)
456 * X' = X * cpp
457 * Y' = Y + S * qpitch
458 * detile(y_tiled, A) = (X, Y, S)
459 * where X = X' / cpp
460 * Y = Y' % qpitch
461 * S = Y' / qpitch
462 * Y' = (tile_num / tile_pitch) << 5
463 * | (A & 0b111110000) >> 4
464 * X' = (tile_num % tile_pitch) << 7
465 * | (A & 0b111000000000) >> 5
466 * | (A & 0b1111)
467 *
468 * For W tiling, tile() combines together the low-order bits of the X and Y
469 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
470 * bytes wide and 64 rows high (note that W tiling is only used for stencil
471 * buffers, which always have cpp = 1 and S=0):
472 *
473 * tile(w_tiled, X, Y, S) = A
474 * where A = tile_num << 12 | offset
475 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
476 * offset = (X' & 0b111000) << 6
477 * | (Y' & 0b111100) << 3
478 * | (X' & 0b100) << 2
479 * | (Y' & 0b10) << 2
480 * | (X' & 0b10) << 1
481 * | (Y' & 0b1) << 1
482 * | (X' & 0b1)
483 * X' = X * cpp = X
484 * Y' = Y + S * qpitch
485 * detile(w_tiled, A) = (X, Y, S)
486 * where X = X' / cpp = X'
487 * Y = Y' % qpitch = Y'
488 * S = Y / qpitch = 0
489 * Y' = (tile_num / tile_pitch) << 6
490 * | (A & 0b111100000) >> 3
491 * | (A & 0b1000) >> 2
492 * | (A & 0b10) >> 1
493 * X' = (tile_num % tile_pitch) << 6
494 * | (A & 0b111000000000) >> 6
495 * | (A & 0b10000) >> 2
496 * | (A & 0b100) >> 1
497 * | (A & 0b1)
498 *
499 * Finally, for a non-tiled surface, tile() simply combines together the X and
500 * Y coordinates in the natural way:
501 *
502 * tile(untiled, X, Y, S) = A
503 * where A = Y * pitch + X'
504 * X' = X * cpp
505 * Y' = Y + S * qpitch
506 * detile(untiled, A) = (X, Y, S)
507 * where X = X' / cpp
508 * Y = Y' % qpitch
509 * S = Y' / qpitch
510 * X' = A % pitch
511 * Y' = A / pitch
512 *
513 * (In these formulas, pitch is the number of bytes occupied by a single row
514 * of samples).
515 */
516 class brw_blorp_blit_program : public brw_blorp_eu_emitter
517 {
518 public:
519 brw_blorp_blit_program(struct brw_context *brw,
520 const brw_blorp_blit_prog_key *key, bool debug_flag);
521
522 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
523
524 brw_blorp_prog_data prog_data;
525
526 private:
527 void alloc_regs();
528 void alloc_push_const_regs(int base_reg);
529 void compute_frag_coords();
530 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
531 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
532 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
533 void translate_dst_to_src();
534 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
535 struct brw_reg clampX0, struct brw_reg clampY0,
536 struct brw_reg clampX1, struct brw_reg clampY1);
537 void single_to_blend();
538 void manual_blend_average(unsigned num_samples);
539 void manual_blend_bilinear(unsigned num_samples);
540 void sample(struct brw_reg dst);
541 void texel_fetch(struct brw_reg dst);
542 void mcs_fetch();
543 void texture_lookup(struct brw_reg dst, enum opcode op,
544 const sampler_message_arg *args, int num_args);
545 void render_target_write();
546
547 /**
548 * Base-2 logarithm of the maximum number of samples that can be blended.
549 */
550 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
551
552 struct brw_context *brw;
553 const brw_blorp_blit_prog_key *key;
554
555 /* Thread dispatch header */
556 struct brw_reg R0;
557
558 /* Pixel X/Y coordinates (always in R1). */
559 struct brw_reg R1;
560
561 /* Push constants */
562 struct brw_reg dst_x0;
563 struct brw_reg dst_x1;
564 struct brw_reg dst_y0;
565 struct brw_reg dst_y1;
566 /* Top right coordinates of the rectangular grid used for scaled blitting */
567 struct brw_reg rect_grid_x1;
568 struct brw_reg rect_grid_y1;
569 struct {
570 struct brw_reg multiplier;
571 struct brw_reg offset;
572 } x_transform, y_transform;
573
574 /* Data read from texture (4 vec16's per array element) */
575 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
576
577 /* Auxiliary storage for the contents of the MCS surface.
578 *
579 * Since the sampler always returns 8 registers worth of data, this is 8
580 * registers wide, even though we only use the first 2 registers of it.
581 */
582 struct brw_reg mcs_data;
583
584 /* X coordinates. We have two of them so that we can perform coordinate
585 * transformations easily.
586 */
587 struct brw_reg x_coords[2];
588
589 /* Y coordinates. We have two of them so that we can perform coordinate
590 * transformations easily.
591 */
592 struct brw_reg y_coords[2];
593
594 /* X, Y coordinates of the pixel from which we need to fetch the specific
595 * sample. These are used for multisample scaled blitting.
596 */
597 struct brw_reg x_sample_coords;
598 struct brw_reg y_sample_coords;
599
600 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
601 struct brw_reg x_frac;
602 struct brw_reg y_frac;
603
604 /* Which element of x_coords and y_coords is currently in use.
605 */
606 int xy_coord_index;
607
608 /* True if, at the point in the program currently being compiled, the
609 * sample index is known to be zero.
610 */
611 bool s_is_zero;
612
613 /* Register storing the sample index when s_is_zero is false. */
614 struct brw_reg sample_index;
615
616 /* Temporaries */
617 struct brw_reg t1;
618 struct brw_reg t2;
619
620 /* MRF used for sampling and render target writes */
621 GLuint base_mrf;
622 };
623
624 brw_blorp_blit_program::brw_blorp_blit_program(
625 struct brw_context *brw,
626 const brw_blorp_blit_prog_key *key,
627 bool debug_flag)
628 : brw_blorp_eu_emitter(brw, debug_flag),
629 brw(brw),
630 key(key)
631 {
632 }
633
634 const GLuint *
635 brw_blorp_blit_program::compile(struct brw_context *brw,
636 GLuint *program_size)
637 {
638 /* Sanity checks */
639 if (key->dst_tiled_w && key->rt_samples > 0) {
640 /* If the destination image is W tiled and multisampled, then the thread
641 * must be dispatched once per sample, not once per pixel. This is
642 * necessary because after conversion between W and Y tiling, there's no
643 * guarantee that all samples corresponding to a single pixel will still
644 * be together.
645 */
646 assert(key->persample_msaa_dispatch);
647 }
648
649 if (key->blend) {
650 /* We are blending, which means we won't have an opportunity to
651 * translate the tiling and sample count for the texture surface. So
652 * the surface state for the texture must be configured with the correct
653 * tiling and sample count.
654 */
655 assert(!key->src_tiled_w);
656 assert(key->tex_samples == key->src_samples);
657 assert(key->tex_layout == key->src_layout);
658 assert(key->tex_samples > 0);
659 }
660
661 if (key->persample_msaa_dispatch) {
662 /* It only makes sense to do persample dispatch if the render target is
663 * configured as multisampled.
664 */
665 assert(key->rt_samples > 0);
666 }
667
668 /* Make sure layout is consistent with sample count */
669 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
670 (key->tex_samples == 0));
671 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
672 (key->rt_samples == 0));
673 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
674 (key->src_samples == 0));
675 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
676 (key->dst_samples == 0));
677
678 /* Set up prog_data */
679 memset(&prog_data, 0, sizeof(prog_data));
680 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
681
682 alloc_regs();
683 compute_frag_coords();
684
685 /* Render target and texture hardware don't support W tiling. */
686 const bool rt_tiled_w = false;
687 const bool tex_tiled_w = false;
688
689 /* The address that data will be written to is determined by the
690 * coordinates supplied to the WM thread and the tiling and sample count of
691 * the render target, according to the formula:
692 *
693 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
694 *
695 * If the actual tiling and sample count of the destination surface are not
696 * the same as the configuration of the render target, then these
697 * coordinates are wrong and we have to adjust them to compensate for the
698 * difference.
699 */
700 if (rt_tiled_w != key->dst_tiled_w ||
701 key->rt_samples != key->dst_samples ||
702 key->rt_layout != key->dst_layout) {
703 encode_msaa(key->rt_samples, key->rt_layout);
704 /* Now (X, Y, S) = detile(rt_tiling, offset) */
705 translate_tiling(rt_tiled_w, key->dst_tiled_w);
706 /* Now (X, Y, S) = detile(dst_tiling, offset) */
707 decode_msaa(key->dst_samples, key->dst_layout);
708 }
709
710 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
711 *
712 * That is: X, Y and S now contain the true coordinates and sample index of
713 * the data that the WM thread should output.
714 *
715 * If we need to kill pixels that are outside the destination rectangle,
716 * now is the time to do it.
717 */
718
719 if (key->use_kill)
720 emit_kill_if_outside_rect(x_coords[xy_coord_index],
721 y_coords[xy_coord_index],
722 dst_x0, dst_x1, dst_y0, dst_y1);
723
724 /* Next, apply a translation to obtain coordinates in the source image. */
725 translate_dst_to_src();
726
727 /* If the source image is not multisampled, then we want to fetch sample
728 * number 0, because that's the only sample there is.
729 */
730 if (key->src_samples == 0)
731 s_is_zero = true;
732
733 /* X, Y, and S are now the coordinates of the pixel in the source image
734 * that we want to texture from. Exception: if we are blending, then S is
735 * irrelevant, because we are going to fetch all samples.
736 */
737 if (key->blend && !key->blit_scaled) {
738 if (brw->gen == 6) {
739 /* Gen6 hardware an automatically blend using the SAMPLE message */
740 single_to_blend();
741 sample(texture_data[0]);
742 } else {
743 /* Gen7+ hardware doesn't automaticaly blend. */
744 manual_blend_average(key->src_samples);
745 }
746 } else if(key->blend && key->blit_scaled) {
747 manual_blend_bilinear(key->src_samples);
748 } else {
749 /* We aren't blending, which means we just want to fetch a single sample
750 * from the source surface. The address that we want to fetch from is
751 * related to the X, Y and S values according to the formula:
752 *
753 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
754 *
755 * If the actual tiling and sample count of the source surface are not
756 * the same as the configuration of the texture, then we need to adjust
757 * the coordinates to compensate for the difference.
758 */
759 if ((tex_tiled_w != key->src_tiled_w ||
760 key->tex_samples != key->src_samples ||
761 key->tex_layout != key->src_layout) &&
762 !key->bilinear_filter) {
763 encode_msaa(key->src_samples, key->src_layout);
764 /* Now (X, Y, S) = detile(src_tiling, offset) */
765 translate_tiling(key->src_tiled_w, tex_tiled_w);
766 /* Now (X, Y, S) = detile(tex_tiling, offset) */
767 decode_msaa(key->tex_samples, key->tex_layout);
768 }
769
770 if (key->bilinear_filter) {
771 sample(texture_data[0]);
772 }
773 else {
774 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
775 *
776 * In other words: X, Y, and S now contain values which, when passed to
777 * the texturing unit, will cause data to be read from the correct
778 * memory location. So we can fetch the texel now.
779 */
780 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
781 mcs_fetch();
782 texel_fetch(texture_data[0]);
783 }
784 }
785
786 /* Finally, write the fetched (or blended) value to the render target and
787 * terminate the thread.
788 */
789 render_target_write();
790
791 return get_program(program_size);
792 }
793
794 void
795 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
796 {
797 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
798 #define ALLOC_REG(name, type) \
799 this->name = \
800 retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
801 base_reg + CONST_LOC(name) / 32, \
802 (CONST_LOC(name) % 32) / 4), type)
803
804 ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
805 ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
806 ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
807 ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
808 ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
809 ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
810 ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
811 ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
812 ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
813 ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
814 #undef CONST_LOC
815 #undef ALLOC_REG
816 }
817
818 void
819 brw_blorp_blit_program::alloc_regs()
820 {
821 int reg = 0;
822 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
823 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
824 prog_data.first_curbe_grf = reg;
825 alloc_push_const_regs(reg);
826 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
827 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
828 this->texture_data[i] =
829 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
830 reg += 8;
831 }
832 this->mcs_data =
833 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
834
835 for (int i = 0; i < 2; ++i) {
836 this->x_coords[i]
837 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
838 reg += 2;
839 this->y_coords[i]
840 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
841 reg += 2;
842 }
843
844 if (key->blit_scaled && key->blend) {
845 this->x_sample_coords = brw_vec8_grf(reg, 0);
846 reg += 2;
847 this->y_sample_coords = brw_vec8_grf(reg, 0);
848 reg += 2;
849 this->x_frac = brw_vec8_grf(reg, 0);
850 reg += 2;
851 this->y_frac = brw_vec8_grf(reg, 0);
852 reg += 2;
853 }
854
855 this->xy_coord_index = 0;
856 this->sample_index
857 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
858 reg += 2;
859 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
860 reg += 2;
861 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
862 reg += 2;
863
864 /* Make sure we didn't run out of registers */
865 assert(reg <= GEN7_MRF_HACK_START);
866
867 int mrf = 2;
868 this->base_mrf = mrf;
869 }
870
871 /* In the code that follows, X and Y can be used to quickly refer to the
872 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
873 * prime") to the inactive elements.
874 *
875 * S can be used to quickly refer to sample_index.
876 */
877 #define X x_coords[xy_coord_index]
878 #define Y y_coords[xy_coord_index]
879 #define Xp x_coords[!xy_coord_index]
880 #define Yp y_coords[!xy_coord_index]
881 #define S sample_index
882
883 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
884 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
885 */
886 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
887
888 /**
889 * Emit code to compute the X and Y coordinates of the pixels being rendered
890 * by this WM invocation.
891 *
892 * Assuming the render target is set up for Y tiling, these (X, Y) values are
893 * related to the address offset where outputs will be written by the formula:
894 *
895 * (X, Y, S) = decode_msaa(detile(offset)).
896 *
897 * (See brw_blorp_blit_program).
898 */
899 void
900 brw_blorp_blit_program::compute_frag_coords()
901 {
902 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
903 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
904 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
905 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
906 *
907 * Pixels within a subspan are laid out in this arrangement:
908 * 0 1
909 * 2 3
910 *
911 * So, to compute the coordinates of each pixel, we need to read every 2nd
912 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
913 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
914 * In other words, the data we want to access is R1.4<2;4,0>UW.
915 *
916 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
917 * result, since pixels n+1 and n+3 are in the right half of the subspan.
918 */
919 emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
920 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
921
922 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
923 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
924 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
925 * R1.4<2;4,0>UW).
926 *
927 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
928 * pixels n+2 and n+3 are in the bottom half of the subspan.
929 */
930 emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
931 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
932
933 /* Move the coordinates to UD registers. */
934 emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
935 emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
936 SWAP_XY_AND_XPYP();
937
938 if (key->persample_msaa_dispatch) {
939 switch (key->rt_samples) {
940 case 4: {
941 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
942 * Therefore, subspan 0 will represent sample 0, subspan 1 will
943 * represent sample 1, and so on.
944 *
945 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
946 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
947 * populate a temporary variable with the sequence (0, 1, 2, 3), and
948 * then copy from it using vstride=1, width=4, hstride=0.
949 */
950 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
951 emit_mov(vec16(t1_uw1), brw_imm_v(0x3210));
952 /* Move to UD sample_index register. */
953 emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
954 emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
955 break;
956 }
957 case 8: {
958 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
959 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
960 * subspan 1 will represent sample 1, and so on. We can find the
961 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
962 * Index") and multiplying by two (since samples are always delivered
963 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
964 * 0xc0) >> 5.
965 *
966 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
967 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
968 * variable with the sequence (0, 1, 2, 3), and then reading from it
969 * using vstride=1, width=4, hstride=0.
970 */
971 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
972 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
973 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
974 emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
975 emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
976 emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
977 emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
978 stride(t2_uw1, 1, 4, 0));
979 emit_add_8(offset(S, 1),
980 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
981 suboffset(stride(t2_uw1, 1, 4, 0), 2));
982 break;
983 }
984 default:
985 assert(!"Unrecognized sample count in "
986 "brw_blorp_blit_program::compute_frag_coords()");
987 break;
988 }
989 s_is_zero = false;
990 } else {
991 /* Either the destination surface is single-sampled, or the WM will be
992 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
993 * per pixel). In either case, it's not meaningful to compute a sample
994 * value. Just set it to 0.
995 */
996 s_is_zero = true;
997 }
998 }
999
1000 /**
1001 * Emit code to compensate for the difference between Y and W tiling.
1002 *
1003 * This code modifies the X and Y coordinates according to the formula:
1004 *
1005 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
1006 *
1007 * (See brw_blorp_blit_program).
1008 *
1009 * It can only translate between W and Y tiling, so new_tiling and old_tiling
1010 * are booleans where true represents W tiling and false represents Y tiling.
1011 */
1012 void
1013 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
1014 {
1015 if (old_tiled_w == new_tiled_w)
1016 return;
1017
1018 /* In the code that follows, we can safely assume that S = 0, because W
1019 * tiling formats always use IMS layout.
1020 */
1021 assert(s_is_zero);
1022
1023 if (new_tiled_w) {
1024 /* Given X and Y coordinates that describe an address using Y tiling,
1025 * translate to the X and Y coordinates that describe the same address
1026 * using W tiling.
1027 *
1028 * If we break down the low order bits of X and Y, using a
1029 * single letter to represent each low-order bit:
1030 *
1031 * X = A << 7 | 0bBCDEFGH
1032 * Y = J << 5 | 0bKLMNP (1)
1033 *
1034 * Then we can apply the Y tiling formula to see the memory offset being
1035 * addressed:
1036 *
1037 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1038 *
1039 * If we apply the W detiling formula to this memory location, that the
1040 * corresponding X' and Y' coordinates are:
1041 *
1042 * X' = A << 6 | 0bBCDPFH (3)
1043 * Y' = J << 6 | 0bKLMNEG
1044 *
1045 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1046 * we need to make the following computation:
1047 *
1048 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1049 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1050 */
1051 emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1052 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1053 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1054 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1055 emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1056 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1057 emit_or(Xp, t1, t2);
1058 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1059 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1060 emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1061 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1062 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1063 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1064 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1065 emit_or(Yp, t1, t2);
1066 SWAP_XY_AND_XPYP();
1067 } else {
1068 /* Applying the same logic as above, but in reverse, we obtain the
1069 * formulas:
1070 *
1071 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1072 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1073 */
1074 emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1075 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1076 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1077 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1078 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1079 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1080 emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1081 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1082 | (Y & 0b1) << 1 */
1083 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1084 emit_or(Xp, t1, t2);
1085 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1086 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1087 emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
1088 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1089 emit_or(Yp, t1, t2);
1090 SWAP_XY_AND_XPYP();
1091 }
1092 }
1093
1094 /**
1095 * Emit code to compensate for the difference between MSAA and non-MSAA
1096 * surfaces.
1097 *
1098 * This code modifies the X and Y coordinates according to the formula:
1099 *
1100 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1101 *
1102 * (See brw_blorp_blit_program).
1103 */
1104 void
1105 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1106 intel_msaa_layout layout)
1107 {
1108 switch (layout) {
1109 case INTEL_MSAA_LAYOUT_NONE:
1110 /* No translation necessary, and S should already be zero. */
1111 assert(s_is_zero);
1112 break;
1113 case INTEL_MSAA_LAYOUT_CMS:
1114 /* We can't compensate for compressed layout since at this point in the
1115 * program we haven't read from the MCS buffer.
1116 */
1117 assert(!"Bad layout in encode_msaa");
1118 break;
1119 case INTEL_MSAA_LAYOUT_UMS:
1120 /* No translation necessary. */
1121 break;
1122 case INTEL_MSAA_LAYOUT_IMS:
1123 switch (num_samples) {
1124 case 4:
1125 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1126 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1127 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1128 */
1129 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1130 if (!s_is_zero) {
1131 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1132 emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1133 }
1134 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1135 | (S & 0b1) << 1 */
1136 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1137 emit_or(Xp, t1, t2);
1138 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1139 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1140 if (!s_is_zero) {
1141 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1142 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1143 }
1144 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1145 emit_or(Yp, t1, t2);
1146 break;
1147 case 8:
1148 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1149 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1150 * | (X & 0b1)
1151 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1152 */
1153 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1154 emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1155 if (!s_is_zero) {
1156 emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
1157 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1158 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1159 emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1160 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1161 | (S & 0b1) << 1 */
1162 }
1163 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1164 emit_or(Xp, t1, t2);
1165 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1166 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1167 if (!s_is_zero) {
1168 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1169 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1170 }
1171 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1172 emit_or(Yp, t1, t2);
1173 break;
1174 }
1175 SWAP_XY_AND_XPYP();
1176 s_is_zero = true;
1177 break;
1178 }
1179 }
1180
1181 /**
1182 * Emit code to compensate for the difference between MSAA and non-MSAA
1183 * surfaces.
1184 *
1185 * This code modifies the X and Y coordinates according to the formula:
1186 *
1187 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1188 *
1189 * (See brw_blorp_blit_program).
1190 */
1191 void
1192 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1193 intel_msaa_layout layout)
1194 {
1195 switch (layout) {
1196 case INTEL_MSAA_LAYOUT_NONE:
1197 /* No translation necessary, and S should already be zero. */
1198 assert(s_is_zero);
1199 break;
1200 case INTEL_MSAA_LAYOUT_CMS:
1201 /* We can't compensate for compressed layout since at this point in the
1202 * program we don't have access to the MCS buffer.
1203 */
1204 assert(!"Bad layout in encode_msaa");
1205 break;
1206 case INTEL_MSAA_LAYOUT_UMS:
1207 /* No translation necessary. */
1208 break;
1209 case INTEL_MSAA_LAYOUT_IMS:
1210 assert(s_is_zero);
1211 switch (num_samples) {
1212 case 4:
1213 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1214 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1215 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1216 * S = (Y & 0b10) | (X & 0b10) >> 1
1217 */
1218 emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1219 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1220 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1221 emit_or(Xp, t1, t2);
1222 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1223 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1224 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1225 emit_or(Yp, t1, t2);
1226 emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1227 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1228 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1229 emit_or(S, t1, t2);
1230 break;
1231 case 8:
1232 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1233 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1234 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1235 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1236 */
1237 emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1238 emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1239 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1240 emit_or(Xp, t1, t2);
1241 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1242 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1243 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1244 emit_or(Yp, t1, t2);
1245 emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
1246 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1247 emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1248 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1249 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1250 emit_or(S, t1, t2);
1251 break;
1252 }
1253 s_is_zero = false;
1254 SWAP_XY_AND_XPYP();
1255 break;
1256 }
1257 }
1258
1259 /**
1260 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1261 * coordinates.
1262 */
1263 void
1264 brw_blorp_blit_program::translate_dst_to_src()
1265 {
1266 struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
1267 struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
1268 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1269 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1270
1271 /* Move the UD coordinates to float registers. */
1272 emit_mov(Xp_f, X);
1273 emit_mov(Yp_f, Y);
1274 /* Scale and offset */
1275 emit_mul(X_f, Xp_f, x_transform.multiplier);
1276 emit_mul(Y_f, Yp_f, y_transform.multiplier);
1277 emit_add(X_f, X_f, x_transform.offset);
1278 emit_add(Y_f, Y_f, y_transform.offset);
1279 if (key->blit_scaled && key->blend) {
1280 /* Translate coordinates to lay out the samples in a rectangular grid
1281 * roughly corresponding to sample locations.
1282 */
1283 emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
1284 emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
1285 /* Adjust coordinates so that integers represent pixel centers rather
1286 * than pixel edges.
1287 */
1288 emit_add(X_f, X_f, brw_imm_f(-0.5));
1289 emit_add(Y_f, Y_f, brw_imm_f(-0.5));
1290
1291 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1292 * texels on texture edges.
1293 */
1294 clamp_tex_coords(X_f, Y_f,
1295 brw_imm_f(0.0), brw_imm_f(0.0),
1296 rect_grid_x1, rect_grid_y1);
1297
1298 /* Store the fractional parts to be used as bilinear interpolation
1299 * coefficients.
1300 */
1301 emit_frc(x_frac, X_f);
1302 emit_frc(y_frac, Y_f);
1303
1304 /* Round the float coordinates down to nearest integer */
1305 emit_rndd(Xp_f, X_f);
1306 emit_rndd(Yp_f, Y_f);
1307 emit_mul(X_f, Xp_f, brw_imm_f(1 / key->x_scale));
1308 emit_mul(Y_f, Yp_f, brw_imm_f(1 / key->y_scale));
1309 SWAP_XY_AND_XPYP();
1310 } else if (!key->bilinear_filter) {
1311 /* Round the float coordinates down to nearest integer by moving to
1312 * UD registers.
1313 */
1314 emit_mov(Xp, X_f);
1315 emit_mov(Yp, Y_f);
1316 SWAP_XY_AND_XPYP();
1317 }
1318 }
1319
1320 void
1321 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1322 struct brw_reg regY,
1323 struct brw_reg clampX0,
1324 struct brw_reg clampY0,
1325 struct brw_reg clampX1,
1326 struct brw_reg clampY1)
1327 {
1328 emit_cond_mov(regX, clampX0, BRW_CONDITIONAL_L, regX, clampX0);
1329 emit_cond_mov(regX, clampX1, BRW_CONDITIONAL_G, regX, clampX1);
1330 emit_cond_mov(regY, clampY0, BRW_CONDITIONAL_L, regY, clampY0);
1331 emit_cond_mov(regY, clampY1, BRW_CONDITIONAL_G, regY, clampY1);
1332 }
1333
1334 /**
1335 * Emit code to transform the X and Y coordinates as needed for blending
1336 * together the different samples in an MSAA texture.
1337 */
1338 void
1339 brw_blorp_blit_program::single_to_blend()
1340 {
1341 /* When looking up samples in an MSAA texture using the SAMPLE message,
1342 * Gen6 requires the texture coordinates to be odd integers (so that they
1343 * correspond to the center of a 2x2 block representing the four samples
1344 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1345 * each by 2 and then add 1.
1346 */
1347 emit_shl(t1, X, brw_imm_w(1));
1348 emit_shl(t2, Y, brw_imm_w(1));
1349 emit_add(Xp, t1, brw_imm_w(1));
1350 emit_add(Yp, t2, brw_imm_w(1));
1351 SWAP_XY_AND_XPYP();
1352 }
1353
1354
1355 /**
1356 * Count the number of trailing 1 bits in the given value. For example:
1357 *
1358 * count_trailing_one_bits(0) == 0
1359 * count_trailing_one_bits(7) == 3
1360 * count_trailing_one_bits(11) == 2
1361 */
1362 inline int count_trailing_one_bits(unsigned value)
1363 {
1364 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1365 return __builtin_ctz(~value);
1366 #else
1367 return _mesa_bitcount(value & ~(value + 1));
1368 #endif
1369 }
1370
1371
1372 void
1373 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1374 {
1375 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1376 mcs_fetch();
1377
1378 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1379 *
1380 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1381 *
1382 * This ensures that when all samples have the same value, no numerical
1383 * precision is lost, since each addition operation always adds two equal
1384 * values, and summing two equal floating point values does not lose
1385 * precision.
1386 *
1387 * We perform this computation by treating the texture_data array as a
1388 * stack and performing the following operations:
1389 *
1390 * - push sample 0 onto stack
1391 * - push sample 1 onto stack
1392 * - add top two stack entries
1393 * - push sample 2 onto stack
1394 * - push sample 3 onto stack
1395 * - add top two stack entries
1396 * - add top two stack entries
1397 * - divide top stack entry by 4
1398 *
1399 * Note that after pushing sample i onto the stack, the number of add
1400 * operations we do is equal to the number of trailing 1 bits in i. This
1401 * works provided the total number of samples is a power of two, which it
1402 * always is for i965.
1403 *
1404 * For integer formats, we replace the add operations with average
1405 * operations and skip the final division.
1406 */
1407 unsigned stack_depth = 0;
1408 for (unsigned i = 0; i < num_samples; ++i) {
1409 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1410
1411 /* Push sample i onto the stack */
1412 assert(stack_depth < ARRAY_SIZE(texture_data));
1413 if (i == 0) {
1414 s_is_zero = true;
1415 } else {
1416 s_is_zero = false;
1417 emit_mov(vec16(S), brw_imm_ud(i));
1418 }
1419 texel_fetch(texture_data[stack_depth++]);
1420
1421 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1422 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1423 * suggests an optimization:
1424 *
1425 * "A simple optimization with probable large return in
1426 * performance is to compare the MCS value to zero (indicating
1427 * all samples are on sample slice 0), and sample only from
1428 * sample slice 0 using ld2dss if MCS is zero."
1429 *
1430 * Note that in the case where the MCS value is zero, sampling from
1431 * sample slice 0 using ld2dss and sampling from sample 0 using
1432 * ld2dms are equivalent (since all samples are on sample slice 0).
1433 * Since we have already sampled from sample 0, all we need to do is
1434 * skip the remaining fetches and averaging if MCS is zero.
1435 */
1436 emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0));
1437 }
1438
1439 /* Do count_trailing_one_bits(i) times */
1440 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1441 assert(stack_depth >= 2);
1442 --stack_depth;
1443
1444 /* TODO: should use a smaller loop bound for non_RGBA formats */
1445 for (int k = 0; k < 4; ++k) {
1446 emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ?
1447 BRW_OPCODE_ADD : BRW_OPCODE_AVG,
1448 offset(texture_data[stack_depth - 1], 2*k),
1449 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1450 offset(vec8(texture_data[stack_depth]), 2*k));
1451 }
1452 }
1453 }
1454
1455 /* We should have just 1 sample on the stack now. */
1456 assert(stack_depth == 1);
1457
1458 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1459 /* Scale the result down by a factor of num_samples */
1460 /* TODO: should use a smaller loop bound for non-RGBA formats */
1461 for (int j = 0; j < 4; ++j) {
1462 emit_mul(offset(texture_data[0], 2*j),
1463 offset(vec8(texture_data[0]), 2*j),
1464 brw_imm_f(1.0/num_samples));
1465 }
1466 }
1467
1468 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1469 emit_endif();
1470 }
1471
1472 void
1473 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1474 {
1475 /* We do this computation by performing the following operations:
1476 *
1477 * In case of 4x, 8x MSAA:
1478 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1479 * which are later used for interpolation
1480 * - linearly interpolate samples a and b in X
1481 * - linearly interpolate samples c and d in X
1482 * - linearly interpolate the results of last two operations in Y
1483 *
1484 * result = lrp(lrp(a + b) + lrp(c + d))
1485 */
1486 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1487 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1488 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1489 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1490
1491 for (unsigned i = 0; i < 4; ++i) {
1492 assert(i < ARRAY_SIZE(texture_data));
1493 s_is_zero = false;
1494
1495 /* Compute pixel coordinates */
1496 emit_add(vec16(x_sample_coords), Xp_f,
1497 brw_imm_f((float)(i & 0x1) * (1.0 / key->x_scale)));
1498 emit_add(vec16(y_sample_coords), Yp_f,
1499 brw_imm_f((float)((i >> 1) & 0x1) * (1.0 / key->y_scale)));
1500 emit_mov(vec16(X), x_sample_coords);
1501 emit_mov(vec16(Y), y_sample_coords);
1502
1503 /* The MCS value we fetch has to match up with the pixel that we're
1504 * sampling from. Since we sample from different pixels in each
1505 * iteration of this "for" loop, the call to mcs_fetch() should be
1506 * here inside the loop after computing the pixel coordinates.
1507 */
1508 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1509 mcs_fetch();
1510
1511 /* Compute sample index and map the sample index to a sample number.
1512 * Sample index layout shows the numbering of slots in a rectangular
1513 * grid of samples with in a pixel. Sample number layout shows the
1514 * rectangular grid of samples roughly corresponding to the real sample
1515 * locations with in a pixel.
1516 * In case of 4x MSAA, layout of sample indices matches the layout of
1517 * sample numbers:
1518 * ---------
1519 * | 0 | 1 |
1520 * ---------
1521 * | 2 | 3 |
1522 * ---------
1523 *
1524 * In case of 8x MSAA the two layouts don't match.
1525 * sample index layout : --------- sample number layout : ---------
1526 * | 0 | 1 | | 5 | 2 |
1527 * --------- ---------
1528 * | 2 | 3 | | 4 | 6 |
1529 * --------- ---------
1530 * | 4 | 5 | | 0 | 3 |
1531 * --------- ---------
1532 * | 6 | 7 | | 7 | 1 |
1533 * --------- ---------
1534 */
1535 emit_frc(vec16(t1_f), x_sample_coords);
1536 emit_frc(vec16(t2_f), y_sample_coords);
1537 emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1538 emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1539 emit_add(vec16(t1_f), t1_f, t2_f);
1540 emit_mov(vec16(S), t1_f);
1541
1542 if (num_samples == 8) {
1543 /* Map the sample index to a sample number */
1544 emit_cmp_if(BRW_CONDITIONAL_L, S, brw_imm_d(4));
1545 {
1546 emit_mov(vec16(t2), brw_imm_d(5));
1547 emit_if_eq_mov(S, 1, vec16(t2), 2);
1548 emit_if_eq_mov(S, 2, vec16(t2), 4);
1549 emit_if_eq_mov(S, 3, vec16(t2), 6);
1550 }
1551 emit_else();
1552 {
1553 emit_mov(vec16(t2), brw_imm_d(0));
1554 emit_if_eq_mov(S, 5, vec16(t2), 3);
1555 emit_if_eq_mov(S, 6, vec16(t2), 7);
1556 emit_if_eq_mov(S, 7, vec16(t2), 1);
1557 }
1558 emit_endif();
1559 emit_mov(vec16(S), t2);
1560 }
1561 texel_fetch(texture_data[i]);
1562 }
1563
1564 #define SAMPLE(x, y) offset(texture_data[x], y)
1565 for (int index = 3; index > 0; ) {
1566 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1567 * Counter value of 8 in 'for' loop below is used to interpolate all
1568 * the color components.
1569 */
1570 for (int k = 0; k < 8; k += 2)
1571 emit_lrp(vec8(SAMPLE(index - 1, k)),
1572 x_frac,
1573 vec8(SAMPLE(index, k)),
1574 vec8(SAMPLE(index - 1, k)));
1575 index -= 2;
1576 }
1577 for (int k = 0; k < 8; k += 2)
1578 emit_lrp(vec8(SAMPLE(0, k)),
1579 y_frac,
1580 vec8(SAMPLE(2, k)),
1581 vec8(SAMPLE(0, k)));
1582 #undef SAMPLE
1583 }
1584
1585 /**
1586 * Emit code to look up a value in the texture using the SAMPLE message (which
1587 * does blending of MSAA surfaces).
1588 */
1589 void
1590 brw_blorp_blit_program::sample(struct brw_reg dst)
1591 {
1592 static const sampler_message_arg args[2] = {
1593 SAMPLER_MESSAGE_ARG_U_FLOAT,
1594 SAMPLER_MESSAGE_ARG_V_FLOAT
1595 };
1596
1597 texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
1598 }
1599
1600 /**
1601 * Emit code to look up a value in the texture using the SAMPLE_LD message
1602 * (which does a simple texel fetch).
1603 */
1604 void
1605 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1606 {
1607 static const sampler_message_arg gen6_args[5] = {
1608 SAMPLER_MESSAGE_ARG_U_INT,
1609 SAMPLER_MESSAGE_ARG_V_INT,
1610 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1611 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1612 SAMPLER_MESSAGE_ARG_SI_INT
1613 };
1614 static const sampler_message_arg gen7_ld_args[3] = {
1615 SAMPLER_MESSAGE_ARG_U_INT,
1616 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1617 SAMPLER_MESSAGE_ARG_V_INT
1618 };
1619 static const sampler_message_arg gen7_ld2dss_args[3] = {
1620 SAMPLER_MESSAGE_ARG_SI_INT,
1621 SAMPLER_MESSAGE_ARG_U_INT,
1622 SAMPLER_MESSAGE_ARG_V_INT
1623 };
1624 static const sampler_message_arg gen7_ld2dms_args[4] = {
1625 SAMPLER_MESSAGE_ARG_SI_INT,
1626 SAMPLER_MESSAGE_ARG_MCS_INT,
1627 SAMPLER_MESSAGE_ARG_U_INT,
1628 SAMPLER_MESSAGE_ARG_V_INT
1629 };
1630
1631 switch (brw->gen) {
1632 case 6:
1633 texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
1634 break;
1635 case 7:
1636 switch (key->tex_layout) {
1637 case INTEL_MSAA_LAYOUT_IMS:
1638 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1639 * Format):
1640 *
1641 * If this field is MSFMT_DEPTH_STENCIL
1642 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1643 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1644 *
1645 * So fall through to emit the same message as we use for
1646 * INTEL_MSAA_LAYOUT_CMS.
1647 */
1648 case INTEL_MSAA_LAYOUT_CMS:
1649 texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
1650 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1651 break;
1652 case INTEL_MSAA_LAYOUT_UMS:
1653 texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
1654 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1655 break;
1656 case INTEL_MSAA_LAYOUT_NONE:
1657 assert(s_is_zero);
1658 texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
1659 ARRAY_SIZE(gen7_ld_args));
1660 break;
1661 }
1662 break;
1663 default:
1664 assert(!"Should not get here.");
1665 break;
1666 };
1667 }
1668
1669 void
1670 brw_blorp_blit_program::mcs_fetch()
1671 {
1672 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1673 SAMPLER_MESSAGE_ARG_U_INT,
1674 SAMPLER_MESSAGE_ARG_V_INT
1675 };
1676 texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
1677 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1678 }
1679
1680 void
1681 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1682 enum opcode op,
1683 const sampler_message_arg *args,
1684 int num_args)
1685 {
1686 struct brw_reg mrf =
1687 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1688 for (int arg = 0; arg < num_args; ++arg) {
1689 switch (args[arg]) {
1690 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1691 if (key->bilinear_filter)
1692 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1693 retype(X, BRW_REGISTER_TYPE_F));
1694 else
1695 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
1696 break;
1697 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1698 if (key->bilinear_filter)
1699 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1700 retype(Y, BRW_REGISTER_TYPE_F));
1701 else
1702 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
1703 break;
1704 case SAMPLER_MESSAGE_ARG_U_INT:
1705 emit_mov(mrf, X);
1706 break;
1707 case SAMPLER_MESSAGE_ARG_V_INT:
1708 emit_mov(mrf, Y);
1709 break;
1710 case SAMPLER_MESSAGE_ARG_SI_INT:
1711 /* Note: on Gen7, this code may be reached with s_is_zero==true
1712 * because in Gen7's ld2dss message, the sample index is the first
1713 * argument. When this happens, we need to move a 0 into the
1714 * appropriate message register.
1715 */
1716 if (s_is_zero)
1717 emit_mov(mrf, brw_imm_ud(0));
1718 else
1719 emit_mov(mrf, S);
1720 break;
1721 case SAMPLER_MESSAGE_ARG_MCS_INT:
1722 switch (key->tex_layout) {
1723 case INTEL_MSAA_LAYOUT_CMS:
1724 emit_mov(mrf, mcs_data);
1725 break;
1726 case INTEL_MSAA_LAYOUT_IMS:
1727 /* When sampling from an IMS surface, MCS data is not relevant,
1728 * and the hardware ignores it. So don't bother populating it.
1729 */
1730 break;
1731 default:
1732 /* We shouldn't be trying to send MCS data with any other
1733 * layouts.
1734 */
1735 assert (!"Unsupported layout for MCS data");
1736 break;
1737 }
1738 break;
1739 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1740 emit_mov(mrf, brw_imm_ud(0));
1741 break;
1742 }
1743 mrf.nr += 2;
1744 }
1745
1746 emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1747 op,
1748 base_mrf,
1749 mrf.nr - base_mrf /* msg_length */);
1750 }
1751
1752 #undef X
1753 #undef Y
1754 #undef U
1755 #undef V
1756 #undef S
1757 #undef SWAP_XY_AND_XPYP
1758
1759 void
1760 brw_blorp_blit_program::render_target_write()
1761 {
1762 struct brw_reg mrf_rt_write =
1763 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1764 int mrf_offset = 0;
1765
1766 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1767 * so that the render target knows which pixels we killed.
1768 */
1769 bool use_header = key->use_kill;
1770 if (use_header) {
1771 /* Copy R0/1 to MRF */
1772 emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1773 retype(R0, BRW_REGISTER_TYPE_UD));
1774 mrf_offset += 2;
1775 }
1776
1777 /* Copy texture data to MRFs */
1778 for (int i = 0; i < 4; ++i) {
1779 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1780 emit_mov(offset(mrf_rt_write, mrf_offset),
1781 offset(vec8(texture_data[0]), 2*i));
1782 mrf_offset += 2;
1783 }
1784
1785 /* Now write to the render target and terminate the thread */
1786 emit_render_target_write(
1787 mrf_rt_write,
1788 base_mrf,
1789 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1790 use_header);
1791 }
1792
1793
1794 void
1795 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
1796 GLfloat dst0, GLfloat dst1,
1797 bool mirror)
1798 {
1799 float scale = (src1 - src0) / (dst1 - dst0);
1800 if (!mirror) {
1801 /* When not mirroring a coordinate (say, X), we need:
1802 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1803 * Therefore:
1804 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1805 *
1806 * blorp program uses "round toward zero" to convert the
1807 * transformed floating point coordinates to integer coordinates,
1808 * whereas the behaviour we actually want is "round to nearest",
1809 * so 0.5 provides the necessary correction.
1810 */
1811 multiplier = scale;
1812 offset = src0 + (-dst0 + 0.5) * scale;
1813 } else {
1814 /* When mirroring X we need:
1815 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1816 * Therefore:
1817 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1818 */
1819 multiplier = -scale;
1820 offset = src0 + (dst1 - 0.5) * scale;
1821 }
1822 }
1823
1824
1825 /**
1826 * Determine which MSAA layout the GPU pipeline should be configured for,
1827 * based on the chip generation, the number of samples, and the true layout of
1828 * the image in memory.
1829 */
1830 inline intel_msaa_layout
1831 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1832 intel_msaa_layout true_layout)
1833 {
1834 if (num_samples <= 1) {
1835 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1836 * format buffers, by transforming coordinates appropriately.
1837 */
1838 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1839 true_layout == INTEL_MSAA_LAYOUT_IMS);
1840 return INTEL_MSAA_LAYOUT_NONE;
1841 } else {
1842 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1843 }
1844
1845 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1846 if (brw->gen == 6) {
1847 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1848 }
1849
1850 return true_layout;
1851 }
1852
1853
1854 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1855 struct intel_mipmap_tree *src_mt,
1856 unsigned src_level, unsigned src_layer,
1857 struct intel_mipmap_tree *dst_mt,
1858 unsigned dst_level, unsigned dst_layer,
1859 GLfloat src_x0, GLfloat src_y0,
1860 GLfloat src_x1, GLfloat src_y1,
1861 GLfloat dst_x0, GLfloat dst_y0,
1862 GLfloat dst_x1, GLfloat dst_y1,
1863 GLenum filter,
1864 bool mirror_x, bool mirror_y)
1865 {
1866 src.set(brw, src_mt, src_level, src_layer, false);
1867 dst.set(brw, dst_mt, dst_level, dst_layer, true);
1868
1869 /* Even though we do multisample resolves at the time of the blit, OpenGL
1870 * specification defines them as if they happen at the time of rendering,
1871 * which means that the type of averaging we do during the resolve should
1872 * only depend on the source format; the destination format should be
1873 * ignored. But, specification doesn't seem to be strict about it.
1874 *
1875 * It has been observed that mulitisample resolves produce slightly better
1876 * looking images when averaging is done using destination format. NVIDIA's
1877 * proprietary OpenGL driver also follow this approach. So, we choose to
1878 * follow it in our driver.
1879 *
1880 * When multisampling, if the source and destination formats are equal
1881 * (aside from the color space), we choose to blit in sRGB space to get
1882 * this higher quality image.
1883 */
1884 if (src.num_samples > 1 &&
1885 _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
1886 _mesa_get_srgb_format_linear(src_mt->format) ==
1887 _mesa_get_srgb_format_linear(dst_mt->format)) {
1888 dst.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
1889 src.brw_surfaceformat = dst.brw_surfaceformat;
1890 }
1891
1892 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
1893 * texture, the above code configures the source format for L32_FLOAT or
1894 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
1895 * the SAMPLE message appears to handle multisampled L32_FLOAT and
1896 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
1897 * around the problem by using a source format of R32_FLOAT. This
1898 * shouldn't affect rendering correctness, since the destination format is
1899 * R32_FLOAT, so only the contents of the red channel matters.
1900 */
1901 if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
1902 src_mt->format == dst_mt->format &&
1903 dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
1904 src.brw_surfaceformat = dst.brw_surfaceformat;
1905 }
1906
1907 use_wm_prog = true;
1908 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1909
1910 /* texture_data_type indicates the register type that should be used to
1911 * manipulate texture data.
1912 */
1913 switch (_mesa_get_format_datatype(src_mt->format)) {
1914 case GL_UNSIGNED_NORMALIZED:
1915 case GL_SIGNED_NORMALIZED:
1916 case GL_FLOAT:
1917 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1918 break;
1919 case GL_UNSIGNED_INT:
1920 if (src_mt->format == MESA_FORMAT_S_UINT8) {
1921 /* We process stencil as though it's an unsigned normalized color */
1922 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1923 } else {
1924 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1925 }
1926 break;
1927 case GL_INT:
1928 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1929 break;
1930 default:
1931 assert(!"Unrecognized blorp format");
1932 break;
1933 }
1934
1935 if (brw->gen > 6) {
1936 /* Gen7's rendering hardware only supports the IMS layout for depth and
1937 * stencil render targets. Blorp always maps its destination surface as
1938 * a color render target (even if it's actually a depth or stencil
1939 * buffer). So if the destination is IMS, we'll have to map it as a
1940 * single-sampled texture and interleave the samples ourselves.
1941 */
1942 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1943 dst.num_samples = 0;
1944 }
1945
1946 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
1947 /* If the destination surface is a W-tiled multisampled stencil buffer
1948 * that we're mapping as Y tiled, then we need to arrange for the WM
1949 * program to run once per sample rather than once per pixel, because
1950 * the memory layout of related samples doesn't match between W and Y
1951 * tiling.
1952 */
1953 wm_prog_key.persample_msaa_dispatch = true;
1954 }
1955
1956 if (src.num_samples > 0 && dst.num_samples > 1) {
1957 /* We are blitting from a multisample buffer to a multisample buffer, so
1958 * we must preserve samples within a pixel. This means we have to
1959 * arrange for the WM program to run once per sample rather than once
1960 * per pixel.
1961 */
1962 wm_prog_key.persample_msaa_dispatch = true;
1963 }
1964
1965 /* Scaled blitting or not. */
1966 wm_prog_key.blit_scaled =
1967 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
1968 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
1969
1970 /* Scaling factors used for bilinear filtering in multisample scaled
1971 * blits.
1972 */
1973 wm_prog_key.x_scale = 2.0;
1974 wm_prog_key.y_scale = src_mt->num_samples / 2.0;
1975
1976 if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
1977 wm_prog_key.bilinear_filter = true;
1978
1979 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1980 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1981 base_format != GL_STENCIL_INDEX &&
1982 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
1983 /* We are downsampling a color buffer, so blend. */
1984 wm_prog_key.blend = true;
1985 }
1986
1987 /* src_samples and dst_samples are the true sample counts */
1988 wm_prog_key.src_samples = src_mt->num_samples;
1989 wm_prog_key.dst_samples = dst_mt->num_samples;
1990
1991 /* tex_samples and rt_samples are the sample counts that are set up in
1992 * SURFACE_STATE.
1993 */
1994 wm_prog_key.tex_samples = src.num_samples;
1995 wm_prog_key.rt_samples = dst.num_samples;
1996
1997 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1998 * use to access the source and destination surfaces.
1999 */
2000 wm_prog_key.tex_layout =
2001 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
2002 wm_prog_key.rt_layout =
2003 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
2004
2005 /* src_layout and dst_layout indicate the true MSAA layout used by src and
2006 * dst.
2007 */
2008 wm_prog_key.src_layout = src_mt->msaa_layout;
2009 wm_prog_key.dst_layout = dst_mt->msaa_layout;
2010
2011 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
2012 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
2013 x0 = wm_push_consts.dst_x0 = dst_x0;
2014 y0 = wm_push_consts.dst_y0 = dst_y0;
2015 x1 = wm_push_consts.dst_x1 = dst_x1;
2016 y1 = wm_push_consts.dst_y1 = dst_y1;
2017 wm_push_consts.rect_grid_x1 = (minify(src_mt->logical_width0, src_level) *
2018 wm_prog_key.x_scale - 1.0);
2019 wm_push_consts.rect_grid_y1 = (minify(src_mt->logical_height0, src_level) *
2020 wm_prog_key.y_scale - 1.0);
2021
2022 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
2023 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
2024
2025 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
2026 /* We must expand the rectangle we send through the rendering pipeline,
2027 * to account for the fact that we are mapping the destination region as
2028 * single-sampled when it is in fact multisampled. We must also align
2029 * it to a multiple of the multisampling pattern, because the
2030 * differences between multisampled and single-sampled surface formats
2031 * will mean that pixels are scrambled within the multisampling pattern.
2032 * TODO: what if this makes the coordinates too large?
2033 *
2034 * Note: this only works if the destination surface uses the IMS layout.
2035 * If it's UMS, then we have no choice but to set up the rendering
2036 * pipeline as multisampled.
2037 */
2038 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2039 switch (dst_mt->num_samples) {
2040 case 4:
2041 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2042 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2043 x1 = ALIGN(x1 * 2, 4);
2044 y1 = ALIGN(y1 * 2, 4);
2045 break;
2046 case 8:
2047 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2048 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2049 x1 = ALIGN(x1 * 4, 8);
2050 y1 = ALIGN(y1 * 2, 4);
2051 break;
2052 default:
2053 assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
2054 break;
2055 }
2056 wm_prog_key.use_kill = true;
2057 }
2058
2059 if (dst.map_stencil_as_y_tiled) {
2060 /* We must modify the rectangle we send through the rendering pipeline
2061 * (and the size and x/y offset of the destination surface), to account
2062 * for the fact that we are mapping it as Y-tiled when it is in fact
2063 * W-tiled.
2064 *
2065 * Both Y tiling and W tiling can be understood as organizations of
2066 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2067 * is different, but the layout of the 32-byte sub-tiles within the 4k
2068 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2069 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2070 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2071 *
2072 * Therefore, to account for the layout differences within the 32-byte
2073 * sub-tiles, we must expand the rectangle so the X coordinates of its
2074 * edges are multiples of 8 (the W sub-tile width), and its Y
2075 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2076 * Then we need to scale the X and Y coordinates of the rectangle to
2077 * account for the differences in aspect ratio between the Y and W
2078 * sub-tiles. We need to modify the layer width and height similarly.
2079 *
2080 * A correction needs to be applied when MSAA is in use: since
2081 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2082 * we need to align the Y coordinates to multiples of 8, so that when
2083 * they are divided by two they are still multiples of 4.
2084 *
2085 * Note: Since the x/y offset of the surface will be applied using the
2086 * SURFACE_STATE command packet, it will be invisible to the swizzling
2087 * code in the shader; therefore it needs to be in a multiple of the
2088 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2089 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2090 * buffer), and the miplevel alignment used for stencil buffers is 8
2091 * pixels horizontally and either 4 or 8 pixels vertically (see
2092 * intel_horizontal_texture_alignment_unit() and
2093 * intel_vertical_texture_alignment_unit()).
2094 *
2095 * Note: Also, since the SURFACE_STATE command packet can only apply
2096 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2097 * vertically, it is important that the offsets will be multiples of
2098 * these sizes after they are converted into Y-tiled coordinates.
2099 * Fortunately they will be, since we know from above that the offsets
2100 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2101 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2102 *
2103 * TODO: what if this makes the coordinates (or the texture size) too
2104 * large?
2105 */
2106 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2107 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2108 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2109 x1 = ALIGN(x1, x_align) * 2;
2110 y1 = ALIGN(y1, y_align) / 2;
2111 dst.width = ALIGN(dst.width, x_align) * 2;
2112 dst.height = ALIGN(dst.height, y_align) / 2;
2113 dst.x_offset *= 2;
2114 dst.y_offset /= 2;
2115 wm_prog_key.use_kill = true;
2116 }
2117
2118 if (src.map_stencil_as_y_tiled) {
2119 /* We must modify the size and x/y offset of the source surface to
2120 * account for the fact that we are mapping it as Y-tiled when it is in
2121 * fact W tiled.
2122 *
2123 * See the comments above concerning x/y offset alignment for the
2124 * destination surface.
2125 *
2126 * TODO: what if this makes the texture size too large?
2127 */
2128 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2129 src.width = ALIGN(src.width, x_align) * 2;
2130 src.height = ALIGN(src.height, y_align) / 2;
2131 src.x_offset *= 2;
2132 src.y_offset /= 2;
2133 }
2134 }
2135
2136 uint32_t
2137 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2138 brw_blorp_prog_data **prog_data) const
2139 {
2140 uint32_t prog_offset = 0;
2141 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2142 &this->wm_prog_key, sizeof(this->wm_prog_key),
2143 &prog_offset, prog_data)) {
2144 brw_blorp_blit_program prog(brw, &this->wm_prog_key,
2145 INTEL_DEBUG & DEBUG_BLORP);
2146 GLuint program_size;
2147 const GLuint *program = prog.compile(brw, &program_size);
2148 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2149 &this->wm_prog_key, sizeof(this->wm_prog_key),
2150 program, program_size,
2151 &prog.prog_data, sizeof(prog.prog_data),
2152 &prog_offset, prog_data);
2153 }
2154 return prog_offset;
2155 }