205c905b447e0655d8c21d2f5f372ae03956129e
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26 #include "main/renderbuffer.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_blorp_blit_eu.h"
33 #include "brw_state.h"
34 #include "brw_meta_util.h"
35
36 #define FILE_DEBUG_FLAG DEBUG_BLORP
37
38 static struct intel_mipmap_tree *
39 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
40 {
41 struct intel_mipmap_tree *mt = irb->mt;
42 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
43 mt = mt->stencil_mt;
44 return mt;
45 }
46
47
48 /**
49 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
50 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
51 * the physical layer holding sample 0. So, for example, if
52 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
53 * 4*n.
54 */
55 void
56 brw_blorp_blit_miptrees(struct brw_context *brw,
57 struct intel_mipmap_tree *src_mt,
58 unsigned src_level, unsigned src_layer,
59 mesa_format src_format,
60 struct intel_mipmap_tree *dst_mt,
61 unsigned dst_level, unsigned dst_layer,
62 mesa_format dst_format,
63 float src_x0, float src_y0,
64 float src_x1, float src_y1,
65 float dst_x0, float dst_y0,
66 float dst_x1, float dst_y1,
67 GLenum filter, bool mirror_x, bool mirror_y)
68 {
69 /* Get ready to blit. This includes depth resolving the src and dst
70 * buffers if necessary. Note: it's not necessary to do a color resolve on
71 * the destination buffer because we use the standard render path to render
72 * to destination color buffers, and the standard render path is
73 * fast-color-aware.
74 */
75 intel_miptree_resolve_color(brw, src_mt);
76 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
77 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
78
79 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
80 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
81 __func__,
82 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
83 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
84 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
85 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
86 mirror_x, mirror_y);
87
88 brw_blorp_blit_params params(brw,
89 src_mt, src_level, src_layer, src_format,
90 dst_mt, dst_level, dst_layer, dst_format,
91 src_x0, src_y0,
92 src_x1, src_y1,
93 dst_x0, dst_y0,
94 dst_x1, dst_y1,
95 filter, mirror_x, mirror_y);
96 brw_blorp_exec(brw, &params);
97
98 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
99 }
100
101 static void
102 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
103 struct intel_renderbuffer *src_irb, mesa_format src_format,
104 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
105 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
106 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
107 GLenum filter, bool mirror_x, bool mirror_y)
108 {
109 /* Find source/dst miptrees */
110 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
111 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
112
113 /* Do the blit */
114 brw_blorp_blit_miptrees(brw,
115 src_mt, src_irb->mt_level, src_irb->mt_layer,
116 src_format,
117 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
118 dst_format,
119 srcX0, srcY0, srcX1, srcY1,
120 dstX0, dstY0, dstX1, dstY1,
121 filter, mirror_x, mirror_y);
122
123 dst_irb->need_downsample = true;
124 }
125
126 static bool
127 try_blorp_blit(struct brw_context *brw,
128 const struct gl_framebuffer *read_fb,
129 const struct gl_framebuffer *draw_fb,
130 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
131 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
132 GLenum filter, GLbitfield buffer_bit)
133 {
134 struct gl_context *ctx = &brw->ctx;
135
136 /* Sync up the state of window system buffers. We need to do this before
137 * we go looking for the buffers.
138 */
139 intel_prepare_render(brw);
140
141 bool mirror_x, mirror_y;
142 if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb,
143 &srcX0, &srcY0, &srcX1, &srcY1,
144 &dstX0, &dstY0, &dstX1, &dstY1,
145 &mirror_x, &mirror_y))
146 return true;
147
148 /* Find buffers */
149 struct intel_renderbuffer *src_irb;
150 struct intel_renderbuffer *dst_irb;
151 struct intel_mipmap_tree *src_mt;
152 struct intel_mipmap_tree *dst_mt;
153 switch (buffer_bit) {
154 case GL_COLOR_BUFFER_BIT:
155 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
156 for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) {
157 dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]);
158 if (dst_irb)
159 do_blorp_blit(brw, buffer_bit,
160 src_irb, src_irb->Base.Base.Format,
161 dst_irb, dst_irb->Base.Base.Format,
162 srcX0, srcY0, srcX1, srcY1,
163 dstX0, dstY0, dstX1, dstY1,
164 filter, mirror_x, mirror_y);
165 }
166 break;
167 case GL_DEPTH_BUFFER_BIT:
168 src_irb =
169 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
170 dst_irb =
171 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
172 src_mt = find_miptree(buffer_bit, src_irb);
173 dst_mt = find_miptree(buffer_bit, dst_irb);
174
175 /* We can't handle format conversions between Z24 and other formats
176 * since we have to lie about the surface format. See the comments in
177 * brw_blorp_surface_info::set().
178 */
179 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
180 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
181 return false;
182
183 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
184 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
185 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
186 filter, mirror_x, mirror_y);
187 break;
188 case GL_STENCIL_BUFFER_BIT:
189 src_irb =
190 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
191 dst_irb =
192 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
193 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
194 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
195 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
196 filter, mirror_x, mirror_y);
197 break;
198 default:
199 unreachable("not reached");
200 }
201
202 return true;
203 }
204
205 bool
206 brw_blorp_copytexsubimage(struct brw_context *brw,
207 struct gl_renderbuffer *src_rb,
208 struct gl_texture_image *dst_image,
209 int slice,
210 int srcX0, int srcY0,
211 int dstX0, int dstY0,
212 int width, int height)
213 {
214 struct gl_context *ctx = &brw->ctx;
215 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
216 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
217
218 /* Sync up the state of window system buffers. We need to do this before
219 * we go looking at the src renderbuffer's miptree.
220 */
221 intel_prepare_render(brw);
222
223 struct intel_mipmap_tree *src_mt = src_irb->mt;
224 struct intel_mipmap_tree *dst_mt = intel_image->mt;
225
226 /* BLORP is only supported for Gen6-7. */
227 if (brw->gen < 6 || brw->gen > 7)
228 return false;
229
230 if (_mesa_get_format_base_format(src_rb->Format) !=
231 _mesa_get_format_base_format(dst_image->TexFormat)) {
232 return false;
233 }
234
235 /* We can't handle format conversions between Z24 and other formats since
236 * we have to lie about the surface format. See the comments in
237 * brw_blorp_surface_info::set().
238 */
239 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
240 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
241 return false;
242 }
243
244 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
245 return false;
246
247 /* Source clipping shouldn't be necessary, since copytexsubimage (in
248 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
249 * takes care of it.
250 *
251 * Destination clipping shouldn't be necessary since the restrictions on
252 * glCopyTexSubImage prevent the user from specifying a destination rectangle
253 * that falls outside the bounds of the destination texture.
254 * See error_check_subtexture_dimensions().
255 */
256
257 int srcY1 = srcY0 + height;
258 int srcX1 = srcX0 + width;
259 int dstX1 = dstX0 + width;
260 int dstY1 = dstY0 + height;
261
262 /* Account for the fact that in the system framebuffer, the origin is at
263 * the lower left.
264 */
265 bool mirror_y = false;
266 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
267 GLint tmp = src_rb->Height - srcY0;
268 srcY0 = src_rb->Height - srcY1;
269 srcY1 = tmp;
270 mirror_y = true;
271 }
272
273 /* Account for face selection and texture view MinLayer */
274 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
275 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
276
277 brw_blorp_blit_miptrees(brw,
278 src_mt, src_irb->mt_level, src_irb->mt_layer,
279 src_rb->Format,
280 dst_mt, dst_level, dst_slice,
281 dst_image->TexFormat,
282 srcX0, srcY0, srcX1, srcY1,
283 dstX0, dstY0, dstX1, dstY1,
284 GL_NEAREST, false, mirror_y);
285
286 /* If we're copying to a packed depth stencil texture and the source
287 * framebuffer has separate stencil, we need to also copy the stencil data
288 * over.
289 */
290 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
291 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
292 src_rb != NULL) {
293 src_irb = intel_renderbuffer(src_rb);
294 src_mt = src_irb->mt;
295
296 if (src_mt->stencil_mt)
297 src_mt = src_mt->stencil_mt;
298 if (dst_mt->stencil_mt)
299 dst_mt = dst_mt->stencil_mt;
300
301 if (src_mt != dst_mt) {
302 brw_blorp_blit_miptrees(brw,
303 src_mt, src_irb->mt_level, src_irb->mt_layer,
304 src_mt->format,
305 dst_mt, dst_level, dst_slice,
306 dst_mt->format,
307 srcX0, srcY0, srcX1, srcY1,
308 dstX0, dstY0, dstX1, dstY1,
309 GL_NEAREST, false, mirror_y);
310 }
311 }
312
313 return true;
314 }
315
316
317 GLbitfield
318 brw_blorp_framebuffer(struct brw_context *brw,
319 struct gl_framebuffer *readFb,
320 struct gl_framebuffer *drawFb,
321 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
322 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
323 GLbitfield mask, GLenum filter)
324 {
325 /* BLORP is not supported before Gen6. */
326 if (brw->gen < 6 || brw->gen >= 8)
327 return mask;
328
329 static GLbitfield buffer_bits[] = {
330 GL_COLOR_BUFFER_BIT,
331 GL_DEPTH_BUFFER_BIT,
332 GL_STENCIL_BUFFER_BIT,
333 };
334
335 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
336 if ((mask & buffer_bits[i]) &&
337 try_blorp_blit(brw, readFb, drawFb,
338 srcX0, srcY0, srcX1, srcY1,
339 dstX0, dstY0, dstX1, dstY1,
340 filter, buffer_bits[i])) {
341 mask &= ~buffer_bits[i];
342 }
343 }
344
345 return mask;
346 }
347
348
349 /**
350 * Enum to specify the order of arguments in a sampler message
351 */
352 enum sampler_message_arg
353 {
354 SAMPLER_MESSAGE_ARG_U_FLOAT,
355 SAMPLER_MESSAGE_ARG_V_FLOAT,
356 SAMPLER_MESSAGE_ARG_U_INT,
357 SAMPLER_MESSAGE_ARG_V_INT,
358 SAMPLER_MESSAGE_ARG_SI_INT,
359 SAMPLER_MESSAGE_ARG_MCS_INT,
360 SAMPLER_MESSAGE_ARG_ZERO_INT,
361 };
362
363 /**
364 * Generator for WM programs used in BLORP blits.
365 *
366 * The bulk of the work done by the WM program is to wrap and unwrap the
367 * coordinate transformations used by the hardware to store surfaces in
368 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
369 * sample index for a multisampled surface) to a memory offset by the
370 * following formulas:
371 *
372 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
373 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
374 *
375 * For a single-sampled surface, or for a multisampled surface using
376 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
377 * function:
378 *
379 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
380 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
381 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
382 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
383 *
384 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
385 * embeds the sample number into bit 1 of the X and Y coordinates:
386 *
387 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
388 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
389 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
390 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
391 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
392 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
393 * S = (Y & 0b10) | (X & 0b10) >> 1
394 *
395 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
396 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
397 * the Y coordinate:
398 *
399 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
400 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
401 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
402 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
403 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
404 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
405 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
406 *
407 * For X tiling, tile() combines together the low-order bits of the X and Y
408 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
409 * bytes wide and 8 rows high:
410 *
411 * tile(x_tiled, X, Y, S) = A
412 * where A = tile_num << 12 | offset
413 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
414 * offset = (Y' & 0b111) << 9
415 * | (X & 0b111111111)
416 * X' = X * cpp
417 * Y' = Y + S * qpitch
418 * detile(x_tiled, A) = (X, Y, S)
419 * where X = X' / cpp
420 * Y = Y' % qpitch
421 * S = Y' / qpitch
422 * Y' = (tile_num / tile_pitch) << 3
423 * | (A & 0b111000000000) >> 9
424 * X' = (tile_num % tile_pitch) << 9
425 * | (A & 0b111111111)
426 *
427 * (In all tiling formulas, cpp is the number of bytes occupied by a single
428 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
429 * to fill the width of the surface, and qpitch is the spacing (in rows)
430 * between array slices).
431 *
432 * For Y tiling, tile() combines together the low-order bits of the X and Y
433 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
434 * bytes wide and 32 rows high:
435 *
436 * tile(y_tiled, X, Y, S) = A
437 * where A = tile_num << 12 | offset
438 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
439 * offset = (X' & 0b1110000) << 5
440 * | (Y' & 0b11111) << 4
441 * | (X' & 0b1111)
442 * X' = X * cpp
443 * Y' = Y + S * qpitch
444 * detile(y_tiled, A) = (X, Y, S)
445 * where X = X' / cpp
446 * Y = Y' % qpitch
447 * S = Y' / qpitch
448 * Y' = (tile_num / tile_pitch) << 5
449 * | (A & 0b111110000) >> 4
450 * X' = (tile_num % tile_pitch) << 7
451 * | (A & 0b111000000000) >> 5
452 * | (A & 0b1111)
453 *
454 * For W tiling, tile() combines together the low-order bits of the X and Y
455 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
456 * bytes wide and 64 rows high (note that W tiling is only used for stencil
457 * buffers, which always have cpp = 1 and S=0):
458 *
459 * tile(w_tiled, X, Y, S) = A
460 * where A = tile_num << 12 | offset
461 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
462 * offset = (X' & 0b111000) << 6
463 * | (Y' & 0b111100) << 3
464 * | (X' & 0b100) << 2
465 * | (Y' & 0b10) << 2
466 * | (X' & 0b10) << 1
467 * | (Y' & 0b1) << 1
468 * | (X' & 0b1)
469 * X' = X * cpp = X
470 * Y' = Y + S * qpitch
471 * detile(w_tiled, A) = (X, Y, S)
472 * where X = X' / cpp = X'
473 * Y = Y' % qpitch = Y'
474 * S = Y / qpitch = 0
475 * Y' = (tile_num / tile_pitch) << 6
476 * | (A & 0b111100000) >> 3
477 * | (A & 0b1000) >> 2
478 * | (A & 0b10) >> 1
479 * X' = (tile_num % tile_pitch) << 6
480 * | (A & 0b111000000000) >> 6
481 * | (A & 0b10000) >> 2
482 * | (A & 0b100) >> 1
483 * | (A & 0b1)
484 *
485 * Finally, for a non-tiled surface, tile() simply combines together the X and
486 * Y coordinates in the natural way:
487 *
488 * tile(untiled, X, Y, S) = A
489 * where A = Y * pitch + X'
490 * X' = X * cpp
491 * Y' = Y + S * qpitch
492 * detile(untiled, A) = (X, Y, S)
493 * where X = X' / cpp
494 * Y = Y' % qpitch
495 * S = Y' / qpitch
496 * X' = A % pitch
497 * Y' = A / pitch
498 *
499 * (In these formulas, pitch is the number of bytes occupied by a single row
500 * of samples).
501 */
502 class brw_blorp_blit_program : public brw_blorp_eu_emitter
503 {
504 public:
505 brw_blorp_blit_program(struct brw_context *brw,
506 const brw_blorp_blit_prog_key *key, bool debug_flag);
507
508 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
509
510 brw_blorp_prog_data prog_data;
511
512 private:
513 void alloc_regs();
514 void alloc_push_const_regs(int base_reg);
515 void compute_frag_coords();
516 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
517 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
518 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
519 void translate_dst_to_src();
520 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
521 struct brw_reg clampX0, struct brw_reg clampY0,
522 struct brw_reg clampX1, struct brw_reg clampY1);
523 void single_to_blend();
524 void manual_blend_average(unsigned num_samples);
525 void manual_blend_bilinear(unsigned num_samples);
526 void sample(struct brw_reg dst);
527 void texel_fetch(struct brw_reg dst);
528 void mcs_fetch();
529 void texture_lookup(struct brw_reg dst, enum opcode op,
530 const sampler_message_arg *args, int num_args);
531 void render_target_write();
532
533 /**
534 * Base-2 logarithm of the maximum number of samples that can be blended.
535 */
536 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
537
538 struct brw_context *brw;
539 const brw_blorp_blit_prog_key *key;
540
541 /* Thread dispatch header */
542 struct brw_reg R0;
543
544 /* Pixel X/Y coordinates (always in R1). */
545 struct brw_reg R1;
546
547 /* Push constants */
548 struct brw_reg dst_x0;
549 struct brw_reg dst_x1;
550 struct brw_reg dst_y0;
551 struct brw_reg dst_y1;
552 /* Top right coordinates of the rectangular grid used for scaled blitting */
553 struct brw_reg rect_grid_x1;
554 struct brw_reg rect_grid_y1;
555 struct {
556 struct brw_reg multiplier;
557 struct brw_reg offset;
558 } x_transform, y_transform;
559
560 /* Data read from texture (4 vec16's per array element) */
561 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
562
563 /* Auxiliary storage for the contents of the MCS surface.
564 *
565 * Since the sampler always returns 8 registers worth of data, this is 8
566 * registers wide, even though we only use the first 2 registers of it.
567 */
568 struct brw_reg mcs_data;
569
570 /* X coordinates. We have two of them so that we can perform coordinate
571 * transformations easily.
572 */
573 struct brw_reg x_coords[2];
574
575 /* Y coordinates. We have two of them so that we can perform coordinate
576 * transformations easily.
577 */
578 struct brw_reg y_coords[2];
579
580 /* X, Y coordinates of the pixel from which we need to fetch the specific
581 * sample. These are used for multisample scaled blitting.
582 */
583 struct brw_reg x_sample_coords;
584 struct brw_reg y_sample_coords;
585
586 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
587 struct brw_reg x_frac;
588 struct brw_reg y_frac;
589
590 /* Which element of x_coords and y_coords is currently in use.
591 */
592 int xy_coord_index;
593
594 /* True if, at the point in the program currently being compiled, the
595 * sample index is known to be zero.
596 */
597 bool s_is_zero;
598
599 /* Register storing the sample index when s_is_zero is false. */
600 struct brw_reg sample_index;
601
602 /* Temporaries */
603 struct brw_reg t1;
604 struct brw_reg t2;
605
606 /* MRF used for sampling and render target writes */
607 GLuint base_mrf;
608 };
609
610 brw_blorp_blit_program::brw_blorp_blit_program(
611 struct brw_context *brw,
612 const brw_blorp_blit_prog_key *key,
613 bool debug_flag)
614 : brw_blorp_eu_emitter(brw, debug_flag),
615 brw(brw),
616 key(key)
617 {
618 }
619
620 const GLuint *
621 brw_blorp_blit_program::compile(struct brw_context *brw,
622 GLuint *program_size)
623 {
624 /* Sanity checks */
625 if (key->dst_tiled_w && key->rt_samples > 0) {
626 /* If the destination image is W tiled and multisampled, then the thread
627 * must be dispatched once per sample, not once per pixel. This is
628 * necessary because after conversion between W and Y tiling, there's no
629 * guarantee that all samples corresponding to a single pixel will still
630 * be together.
631 */
632 assert(key->persample_msaa_dispatch);
633 }
634
635 if (key->blend) {
636 /* We are blending, which means we won't have an opportunity to
637 * translate the tiling and sample count for the texture surface. So
638 * the surface state for the texture must be configured with the correct
639 * tiling and sample count.
640 */
641 assert(!key->src_tiled_w);
642 assert(key->tex_samples == key->src_samples);
643 assert(key->tex_layout == key->src_layout);
644 assert(key->tex_samples > 0);
645 }
646
647 if (key->persample_msaa_dispatch) {
648 /* It only makes sense to do persample dispatch if the render target is
649 * configured as multisampled.
650 */
651 assert(key->rt_samples > 0);
652 }
653
654 /* Make sure layout is consistent with sample count */
655 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
656 (key->tex_samples == 0));
657 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
658 (key->rt_samples == 0));
659 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
660 (key->src_samples == 0));
661 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
662 (key->dst_samples == 0));
663
664 /* Set up prog_data */
665 memset(&prog_data, 0, sizeof(prog_data));
666 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
667
668 alloc_regs();
669 compute_frag_coords();
670
671 /* Render target and texture hardware don't support W tiling. */
672 const bool rt_tiled_w = false;
673 const bool tex_tiled_w = false;
674
675 /* The address that data will be written to is determined by the
676 * coordinates supplied to the WM thread and the tiling and sample count of
677 * the render target, according to the formula:
678 *
679 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
680 *
681 * If the actual tiling and sample count of the destination surface are not
682 * the same as the configuration of the render target, then these
683 * coordinates are wrong and we have to adjust them to compensate for the
684 * difference.
685 */
686 if (rt_tiled_w != key->dst_tiled_w ||
687 key->rt_samples != key->dst_samples ||
688 key->rt_layout != key->dst_layout) {
689 encode_msaa(key->rt_samples, key->rt_layout);
690 /* Now (X, Y, S) = detile(rt_tiling, offset) */
691 translate_tiling(rt_tiled_w, key->dst_tiled_w);
692 /* Now (X, Y, S) = detile(dst_tiling, offset) */
693 decode_msaa(key->dst_samples, key->dst_layout);
694 }
695
696 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
697 *
698 * That is: X, Y and S now contain the true coordinates and sample index of
699 * the data that the WM thread should output.
700 *
701 * If we need to kill pixels that are outside the destination rectangle,
702 * now is the time to do it.
703 */
704
705 if (key->use_kill)
706 emit_kill_if_outside_rect(x_coords[xy_coord_index],
707 y_coords[xy_coord_index],
708 dst_x0, dst_x1, dst_y0, dst_y1);
709
710 /* Next, apply a translation to obtain coordinates in the source image. */
711 translate_dst_to_src();
712
713 /* If the source image is not multisampled, then we want to fetch sample
714 * number 0, because that's the only sample there is.
715 */
716 if (key->src_samples == 0)
717 s_is_zero = true;
718
719 /* X, Y, and S are now the coordinates of the pixel in the source image
720 * that we want to texture from. Exception: if we are blending, then S is
721 * irrelevant, because we are going to fetch all samples.
722 */
723 if (key->blend && !key->blit_scaled) {
724 if (brw->gen == 6) {
725 /* Gen6 hardware an automatically blend using the SAMPLE message */
726 single_to_blend();
727 sample(texture_data[0]);
728 } else {
729 /* Gen7+ hardware doesn't automaticaly blend. */
730 manual_blend_average(key->src_samples);
731 }
732 } else if(key->blend && key->blit_scaled) {
733 manual_blend_bilinear(key->src_samples);
734 } else {
735 /* We aren't blending, which means we just want to fetch a single sample
736 * from the source surface. The address that we want to fetch from is
737 * related to the X, Y and S values according to the formula:
738 *
739 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
740 *
741 * If the actual tiling and sample count of the source surface are not
742 * the same as the configuration of the texture, then we need to adjust
743 * the coordinates to compensate for the difference.
744 */
745 if ((tex_tiled_w != key->src_tiled_w ||
746 key->tex_samples != key->src_samples ||
747 key->tex_layout != key->src_layout) &&
748 !key->bilinear_filter) {
749 encode_msaa(key->src_samples, key->src_layout);
750 /* Now (X, Y, S) = detile(src_tiling, offset) */
751 translate_tiling(key->src_tiled_w, tex_tiled_w);
752 /* Now (X, Y, S) = detile(tex_tiling, offset) */
753 decode_msaa(key->tex_samples, key->tex_layout);
754 }
755
756 if (key->bilinear_filter) {
757 sample(texture_data[0]);
758 }
759 else {
760 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
761 *
762 * In other words: X, Y, and S now contain values which, when passed to
763 * the texturing unit, will cause data to be read from the correct
764 * memory location. So we can fetch the texel now.
765 */
766 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
767 mcs_fetch();
768 texel_fetch(texture_data[0]);
769 }
770 }
771
772 /* Finally, write the fetched (or blended) value to the render target and
773 * terminate the thread.
774 */
775 render_target_write();
776
777 return get_program(program_size);
778 }
779
780 void
781 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
782 {
783 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
784 #define ALLOC_REG(name, type) \
785 this->name = \
786 retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
787 base_reg + CONST_LOC(name) / 32, \
788 (CONST_LOC(name) % 32) / 4), type)
789
790 ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
791 ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
792 ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
793 ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
794 ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
795 ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
796 ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
797 ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
798 ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
799 ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
800 #undef CONST_LOC
801 #undef ALLOC_REG
802 }
803
804 void
805 brw_blorp_blit_program::alloc_regs()
806 {
807 int reg = 0;
808 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
809 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
810 prog_data.first_curbe_grf = reg;
811 alloc_push_const_regs(reg);
812 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
813 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
814 this->texture_data[i] =
815 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
816 reg += 8;
817 }
818 this->mcs_data =
819 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
820
821 for (int i = 0; i < 2; ++i) {
822 this->x_coords[i]
823 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
824 reg += 2;
825 this->y_coords[i]
826 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
827 reg += 2;
828 }
829
830 if (key->blit_scaled && key->blend) {
831 this->x_sample_coords = brw_vec8_grf(reg, 0);
832 reg += 2;
833 this->y_sample_coords = brw_vec8_grf(reg, 0);
834 reg += 2;
835 this->x_frac = brw_vec8_grf(reg, 0);
836 reg += 2;
837 this->y_frac = brw_vec8_grf(reg, 0);
838 reg += 2;
839 }
840
841 this->xy_coord_index = 0;
842 this->sample_index
843 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
844 reg += 2;
845 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
846 reg += 2;
847 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
848 reg += 2;
849
850 /* Make sure we didn't run out of registers */
851 assert(reg <= GEN7_MRF_HACK_START);
852
853 int mrf = 2;
854 this->base_mrf = mrf;
855 }
856
857 /* In the code that follows, X and Y can be used to quickly refer to the
858 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
859 * prime") to the inactive elements.
860 *
861 * S can be used to quickly refer to sample_index.
862 */
863 #define X x_coords[xy_coord_index]
864 #define Y y_coords[xy_coord_index]
865 #define Xp x_coords[!xy_coord_index]
866 #define Yp y_coords[!xy_coord_index]
867 #define S sample_index
868
869 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
870 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
871 */
872 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
873
874 /**
875 * Emit code to compute the X and Y coordinates of the pixels being rendered
876 * by this WM invocation.
877 *
878 * Assuming the render target is set up for Y tiling, these (X, Y) values are
879 * related to the address offset where outputs will be written by the formula:
880 *
881 * (X, Y, S) = decode_msaa(detile(offset)).
882 *
883 * (See brw_blorp_blit_program).
884 */
885 void
886 brw_blorp_blit_program::compute_frag_coords()
887 {
888 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
889 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
890 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
891 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
892 *
893 * Pixels within a subspan are laid out in this arrangement:
894 * 0 1
895 * 2 3
896 *
897 * So, to compute the coordinates of each pixel, we need to read every 2nd
898 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
899 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
900 * In other words, the data we want to access is R1.4<2;4,0>UW.
901 *
902 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
903 * result, since pixels n+1 and n+3 are in the right half of the subspan.
904 */
905 emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
906 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
907
908 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
909 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
910 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
911 * R1.4<2;4,0>UW).
912 *
913 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
914 * pixels n+2 and n+3 are in the bottom half of the subspan.
915 */
916 emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
917 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
918
919 /* Move the coordinates to UD registers. */
920 emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
921 emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
922 SWAP_XY_AND_XPYP();
923
924 if (key->persample_msaa_dispatch) {
925 switch (key->rt_samples) {
926 case 4: {
927 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
928 * Therefore, subspan 0 will represent sample 0, subspan 1 will
929 * represent sample 1, and so on.
930 *
931 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
932 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
933 * populate a temporary variable with the sequence (0, 1, 2, 3), and
934 * then copy from it using vstride=1, width=4, hstride=0.
935 */
936 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
937 emit_mov(vec16(t1_uw1), brw_imm_v(0x3210));
938 /* Move to UD sample_index register. */
939 emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
940 emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
941 break;
942 }
943 case 8: {
944 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
945 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
946 * subspan 1 will represent sample 1, and so on. We can find the
947 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
948 * Index") and multiplying by two (since samples are always delivered
949 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
950 * 0xc0) >> 5.
951 *
952 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
953 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
954 * variable with the sequence (0, 1, 2, 3), and then reading from it
955 * using vstride=1, width=4, hstride=0.
956 */
957 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
958 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
959 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
960 emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
961 emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
962 emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
963 emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
964 stride(t2_uw1, 1, 4, 0));
965 emit_add_8(offset(S, 1),
966 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
967 suboffset(stride(t2_uw1, 1, 4, 0), 2));
968 break;
969 }
970 default:
971 unreachable("Unrecognized sample count in "
972 "brw_blorp_blit_program::compute_frag_coords()");
973 }
974 s_is_zero = false;
975 } else {
976 /* Either the destination surface is single-sampled, or the WM will be
977 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
978 * per pixel). In either case, it's not meaningful to compute a sample
979 * value. Just set it to 0.
980 */
981 s_is_zero = true;
982 }
983 }
984
985 /**
986 * Emit code to compensate for the difference between Y and W tiling.
987 *
988 * This code modifies the X and Y coordinates according to the formula:
989 *
990 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
991 *
992 * (See brw_blorp_blit_program).
993 *
994 * It can only translate between W and Y tiling, so new_tiling and old_tiling
995 * are booleans where true represents W tiling and false represents Y tiling.
996 */
997 void
998 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
999 {
1000 if (old_tiled_w == new_tiled_w)
1001 return;
1002
1003 /* In the code that follows, we can safely assume that S = 0, because W
1004 * tiling formats always use IMS layout.
1005 */
1006 assert(s_is_zero);
1007
1008 if (new_tiled_w) {
1009 /* Given X and Y coordinates that describe an address using Y tiling,
1010 * translate to the X and Y coordinates that describe the same address
1011 * using W tiling.
1012 *
1013 * If we break down the low order bits of X and Y, using a
1014 * single letter to represent each low-order bit:
1015 *
1016 * X = A << 7 | 0bBCDEFGH
1017 * Y = J << 5 | 0bKLMNP (1)
1018 *
1019 * Then we can apply the Y tiling formula to see the memory offset being
1020 * addressed:
1021 *
1022 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1023 *
1024 * If we apply the W detiling formula to this memory location, that the
1025 * corresponding X' and Y' coordinates are:
1026 *
1027 * X' = A << 6 | 0bBCDPFH (3)
1028 * Y' = J << 6 | 0bKLMNEG
1029 *
1030 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1031 * we need to make the following computation:
1032 *
1033 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1034 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1035 */
1036 emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1037 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1038 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1039 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1040 emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1041 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1042 emit_or(Xp, t1, t2);
1043 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1044 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1045 emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1046 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1047 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1048 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1049 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1050 emit_or(Yp, t1, t2);
1051 SWAP_XY_AND_XPYP();
1052 } else {
1053 /* Applying the same logic as above, but in reverse, we obtain the
1054 * formulas:
1055 *
1056 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1057 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1058 */
1059 emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1060 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1061 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1062 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1063 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1064 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1065 emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1066 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1067 | (Y & 0b1) << 1 */
1068 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1069 emit_or(Xp, t1, t2);
1070 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1071 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1072 emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
1073 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1074 emit_or(Yp, t1, t2);
1075 SWAP_XY_AND_XPYP();
1076 }
1077 }
1078
1079 /**
1080 * Emit code to compensate for the difference between MSAA and non-MSAA
1081 * surfaces.
1082 *
1083 * This code modifies the X and Y coordinates according to the formula:
1084 *
1085 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1086 *
1087 * (See brw_blorp_blit_program).
1088 */
1089 void
1090 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1091 intel_msaa_layout layout)
1092 {
1093 switch (layout) {
1094 case INTEL_MSAA_LAYOUT_NONE:
1095 /* No translation necessary, and S should already be zero. */
1096 assert(s_is_zero);
1097 break;
1098 case INTEL_MSAA_LAYOUT_CMS:
1099 /* We can't compensate for compressed layout since at this point in the
1100 * program we haven't read from the MCS buffer.
1101 */
1102 unreachable("Bad layout in encode_msaa");
1103 case INTEL_MSAA_LAYOUT_UMS:
1104 /* No translation necessary. */
1105 break;
1106 case INTEL_MSAA_LAYOUT_IMS:
1107 switch (num_samples) {
1108 case 4:
1109 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1110 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1111 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1112 */
1113 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1114 if (!s_is_zero) {
1115 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1116 emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1117 }
1118 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1119 | (S & 0b1) << 1 */
1120 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1121 emit_or(Xp, t1, t2);
1122 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1123 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1124 if (!s_is_zero) {
1125 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1126 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1127 }
1128 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1129 emit_or(Yp, t1, t2);
1130 break;
1131 case 8:
1132 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1133 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1134 * | (X & 0b1)
1135 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1136 */
1137 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1138 emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1139 if (!s_is_zero) {
1140 emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
1141 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1142 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1143 emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1144 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1145 | (S & 0b1) << 1 */
1146 }
1147 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1148 emit_or(Xp, t1, t2);
1149 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1150 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1151 if (!s_is_zero) {
1152 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1153 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1154 }
1155 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1156 emit_or(Yp, t1, t2);
1157 break;
1158 }
1159 SWAP_XY_AND_XPYP();
1160 s_is_zero = true;
1161 break;
1162 }
1163 }
1164
1165 /**
1166 * Emit code to compensate for the difference between MSAA and non-MSAA
1167 * surfaces.
1168 *
1169 * This code modifies the X and Y coordinates according to the formula:
1170 *
1171 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1172 *
1173 * (See brw_blorp_blit_program).
1174 */
1175 void
1176 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1177 intel_msaa_layout layout)
1178 {
1179 switch (layout) {
1180 case INTEL_MSAA_LAYOUT_NONE:
1181 /* No translation necessary, and S should already be zero. */
1182 assert(s_is_zero);
1183 break;
1184 case INTEL_MSAA_LAYOUT_CMS:
1185 /* We can't compensate for compressed layout since at this point in the
1186 * program we don't have access to the MCS buffer.
1187 */
1188 unreachable("Bad layout in encode_msaa");
1189 case INTEL_MSAA_LAYOUT_UMS:
1190 /* No translation necessary. */
1191 break;
1192 case INTEL_MSAA_LAYOUT_IMS:
1193 assert(s_is_zero);
1194 switch (num_samples) {
1195 case 4:
1196 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1197 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1198 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1199 * S = (Y & 0b10) | (X & 0b10) >> 1
1200 */
1201 emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1202 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1203 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1204 emit_or(Xp, t1, t2);
1205 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1206 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1207 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1208 emit_or(Yp, t1, t2);
1209 emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1210 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1211 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1212 emit_or(S, t1, t2);
1213 break;
1214 case 8:
1215 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1216 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1217 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1218 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1219 */
1220 emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1221 emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1222 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1223 emit_or(Xp, t1, t2);
1224 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1225 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1226 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1227 emit_or(Yp, t1, t2);
1228 emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
1229 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1230 emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1231 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1232 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1233 emit_or(S, t1, t2);
1234 break;
1235 }
1236 s_is_zero = false;
1237 SWAP_XY_AND_XPYP();
1238 break;
1239 }
1240 }
1241
1242 /**
1243 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1244 * coordinates.
1245 */
1246 void
1247 brw_blorp_blit_program::translate_dst_to_src()
1248 {
1249 struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
1250 struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
1251 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1252 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1253
1254 /* Move the UD coordinates to float registers. */
1255 emit_mov(Xp_f, X);
1256 emit_mov(Yp_f, Y);
1257 /* Scale and offset */
1258 emit_mad(X_f, x_transform.offset, Xp_f, x_transform.multiplier);
1259 emit_mad(Y_f, y_transform.offset, Yp_f, y_transform.multiplier);
1260 if (key->blit_scaled && key->blend) {
1261 /* Translate coordinates to lay out the samples in a rectangular grid
1262 * roughly corresponding to sample locations.
1263 */
1264 emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
1265 emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
1266 /* Adjust coordinates so that integers represent pixel centers rather
1267 * than pixel edges.
1268 */
1269 emit_add(X_f, X_f, brw_imm_f(-0.5));
1270 emit_add(Y_f, Y_f, brw_imm_f(-0.5));
1271
1272 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1273 * texels on texture edges.
1274 */
1275 clamp_tex_coords(X_f, Y_f,
1276 brw_imm_f(0.0), brw_imm_f(0.0),
1277 rect_grid_x1, rect_grid_y1);
1278
1279 /* Store the fractional parts to be used as bilinear interpolation
1280 * coefficients.
1281 */
1282 emit_frc(x_frac, X_f);
1283 emit_frc(y_frac, Y_f);
1284
1285 /* Round the float coordinates down to nearest integer */
1286 emit_rndd(Xp_f, X_f);
1287 emit_rndd(Yp_f, Y_f);
1288 emit_mul(X_f, Xp_f, brw_imm_f(1.0f / key->x_scale));
1289 emit_mul(Y_f, Yp_f, brw_imm_f(1.0f / key->y_scale));
1290 SWAP_XY_AND_XPYP();
1291 } else if (!key->bilinear_filter) {
1292 /* Round the float coordinates down to nearest integer by moving to
1293 * UD registers.
1294 */
1295 emit_mov(Xp, X_f);
1296 emit_mov(Yp, Y_f);
1297 SWAP_XY_AND_XPYP();
1298 }
1299 }
1300
1301 void
1302 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1303 struct brw_reg regY,
1304 struct brw_reg clampX0,
1305 struct brw_reg clampY0,
1306 struct brw_reg clampX1,
1307 struct brw_reg clampY1)
1308 {
1309 emit_max(regX, regX, clampX0);
1310 emit_max(regY, regY, clampY0);
1311 emit_min(regX, regX, clampX1);
1312 emit_min(regY, regY, clampY1);
1313 }
1314
1315 /**
1316 * Emit code to transform the X and Y coordinates as needed for blending
1317 * together the different samples in an MSAA texture.
1318 */
1319 void
1320 brw_blorp_blit_program::single_to_blend()
1321 {
1322 /* When looking up samples in an MSAA texture using the SAMPLE message,
1323 * Gen6 requires the texture coordinates to be odd integers (so that they
1324 * correspond to the center of a 2x2 block representing the four samples
1325 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1326 * each by 2 and then add 1.
1327 */
1328 emit_shl(t1, X, brw_imm_w(1));
1329 emit_shl(t2, Y, brw_imm_w(1));
1330 emit_add(Xp, t1, brw_imm_w(1));
1331 emit_add(Yp, t2, brw_imm_w(1));
1332 SWAP_XY_AND_XPYP();
1333 }
1334
1335
1336 /**
1337 * Count the number of trailing 1 bits in the given value. For example:
1338 *
1339 * count_trailing_one_bits(0) == 0
1340 * count_trailing_one_bits(7) == 3
1341 * count_trailing_one_bits(11) == 2
1342 */
1343 inline int count_trailing_one_bits(unsigned value)
1344 {
1345 #ifdef HAVE___BUILTIN_CTZ
1346 return __builtin_ctz(~value);
1347 #else
1348 return _mesa_bitcount(value & ~(value + 1));
1349 #endif
1350 }
1351
1352
1353 void
1354 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1355 {
1356 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1357 mcs_fetch();
1358
1359 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1360 *
1361 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1362 *
1363 * This ensures that when all samples have the same value, no numerical
1364 * precision is lost, since each addition operation always adds two equal
1365 * values, and summing two equal floating point values does not lose
1366 * precision.
1367 *
1368 * We perform this computation by treating the texture_data array as a
1369 * stack and performing the following operations:
1370 *
1371 * - push sample 0 onto stack
1372 * - push sample 1 onto stack
1373 * - add top two stack entries
1374 * - push sample 2 onto stack
1375 * - push sample 3 onto stack
1376 * - add top two stack entries
1377 * - add top two stack entries
1378 * - divide top stack entry by 4
1379 *
1380 * Note that after pushing sample i onto the stack, the number of add
1381 * operations we do is equal to the number of trailing 1 bits in i. This
1382 * works provided the total number of samples is a power of two, which it
1383 * always is for i965.
1384 *
1385 * For integer formats, we replace the add operations with average
1386 * operations and skip the final division.
1387 */
1388 unsigned stack_depth = 0;
1389 for (unsigned i = 0; i < num_samples; ++i) {
1390 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1391
1392 /* Push sample i onto the stack */
1393 assert(stack_depth < ARRAY_SIZE(texture_data));
1394 if (i == 0) {
1395 s_is_zero = true;
1396 } else {
1397 s_is_zero = false;
1398 emit_mov(vec16(S), brw_imm_ud(i));
1399 }
1400 texel_fetch(texture_data[stack_depth++]);
1401
1402 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1403 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1404 * suggests an optimization:
1405 *
1406 * "A simple optimization with probable large return in
1407 * performance is to compare the MCS value to zero (indicating
1408 * all samples are on sample slice 0), and sample only from
1409 * sample slice 0 using ld2dss if MCS is zero."
1410 *
1411 * Note that in the case where the MCS value is zero, sampling from
1412 * sample slice 0 using ld2dss and sampling from sample 0 using
1413 * ld2dms are equivalent (since all samples are on sample slice 0).
1414 * Since we have already sampled from sample 0, all we need to do is
1415 * skip the remaining fetches and averaging if MCS is zero.
1416 */
1417 emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0));
1418 }
1419
1420 /* Do count_trailing_one_bits(i) times */
1421 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1422 assert(stack_depth >= 2);
1423 --stack_depth;
1424
1425 /* TODO: should use a smaller loop bound for non_RGBA formats */
1426 for (int k = 0; k < 4; ++k) {
1427 emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ?
1428 BRW_OPCODE_ADD : BRW_OPCODE_AVG,
1429 offset(texture_data[stack_depth - 1], 2*k),
1430 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1431 offset(vec8(texture_data[stack_depth]), 2*k));
1432 }
1433 }
1434 }
1435
1436 /* We should have just 1 sample on the stack now. */
1437 assert(stack_depth == 1);
1438
1439 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1440 /* Scale the result down by a factor of num_samples */
1441 /* TODO: should use a smaller loop bound for non-RGBA formats */
1442 for (int j = 0; j < 4; ++j) {
1443 emit_mul(offset(texture_data[0], 2*j),
1444 offset(vec8(texture_data[0]), 2*j),
1445 brw_imm_f(1.0f / num_samples));
1446 }
1447 }
1448
1449 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1450 emit_endif();
1451 }
1452
1453 void
1454 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1455 {
1456 /* We do this computation by performing the following operations:
1457 *
1458 * In case of 4x, 8x MSAA:
1459 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1460 * which are later used for interpolation
1461 * - linearly interpolate samples a and b in X
1462 * - linearly interpolate samples c and d in X
1463 * - linearly interpolate the results of last two operations in Y
1464 *
1465 * result = lrp(lrp(a + b) + lrp(c + d))
1466 */
1467 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1468 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1469 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1470 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1471
1472 for (unsigned i = 0; i < 4; ++i) {
1473 assert(i < ARRAY_SIZE(texture_data));
1474 s_is_zero = false;
1475
1476 /* Compute pixel coordinates */
1477 emit_add(vec16(x_sample_coords), Xp_f,
1478 brw_imm_f((float)(i & 0x1) * (1.0f / key->x_scale)));
1479 emit_add(vec16(y_sample_coords), Yp_f,
1480 brw_imm_f((float)((i >> 1) & 0x1) * (1.0f / key->y_scale)));
1481 emit_mov(vec16(X), x_sample_coords);
1482 emit_mov(vec16(Y), y_sample_coords);
1483
1484 /* The MCS value we fetch has to match up with the pixel that we're
1485 * sampling from. Since we sample from different pixels in each
1486 * iteration of this "for" loop, the call to mcs_fetch() should be
1487 * here inside the loop after computing the pixel coordinates.
1488 */
1489 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1490 mcs_fetch();
1491
1492 /* Compute sample index and map the sample index to a sample number.
1493 * Sample index layout shows the numbering of slots in a rectangular
1494 * grid of samples with in a pixel. Sample number layout shows the
1495 * rectangular grid of samples roughly corresponding to the real sample
1496 * locations with in a pixel.
1497 * In case of 4x MSAA, layout of sample indices matches the layout of
1498 * sample numbers:
1499 * ---------
1500 * | 0 | 1 |
1501 * ---------
1502 * | 2 | 3 |
1503 * ---------
1504 *
1505 * In case of 8x MSAA the two layouts don't match.
1506 * sample index layout : --------- sample number layout : ---------
1507 * | 0 | 1 | | 5 | 2 |
1508 * --------- ---------
1509 * | 2 | 3 | | 4 | 6 |
1510 * --------- ---------
1511 * | 4 | 5 | | 0 | 3 |
1512 * --------- ---------
1513 * | 6 | 7 | | 7 | 1 |
1514 * --------- ---------
1515 */
1516 emit_frc(vec16(t1_f), x_sample_coords);
1517 emit_frc(vec16(t2_f), y_sample_coords);
1518 emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1519 emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1520 emit_add(vec16(t1_f), t1_f, t2_f);
1521 emit_mov(vec16(S), t1_f);
1522
1523 if (num_samples == 8) {
1524 /* Map the sample index to a sample number */
1525 emit_cmp_if(BRW_CONDITIONAL_L, S, brw_imm_d(4));
1526 {
1527 emit_mov(vec16(t2), brw_imm_d(5));
1528 emit_if_eq_mov(S, 1, vec16(t2), 2);
1529 emit_if_eq_mov(S, 2, vec16(t2), 4);
1530 emit_if_eq_mov(S, 3, vec16(t2), 6);
1531 }
1532 emit_else();
1533 {
1534 emit_mov(vec16(t2), brw_imm_d(0));
1535 emit_if_eq_mov(S, 5, vec16(t2), 3);
1536 emit_if_eq_mov(S, 6, vec16(t2), 7);
1537 emit_if_eq_mov(S, 7, vec16(t2), 1);
1538 }
1539 emit_endif();
1540 emit_mov(vec16(S), t2);
1541 }
1542 texel_fetch(texture_data[i]);
1543 }
1544
1545 #define SAMPLE(x, y) offset(texture_data[x], y)
1546 for (int index = 3; index > 0; ) {
1547 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1548 * Counter value of 8 in 'for' loop below is used to interpolate all
1549 * the color components.
1550 */
1551 for (int k = 0; k < 8; k += 2)
1552 emit_lrp(vec8(SAMPLE(index - 1, k)),
1553 x_frac,
1554 vec8(SAMPLE(index, k)),
1555 vec8(SAMPLE(index - 1, k)));
1556 index -= 2;
1557 }
1558 for (int k = 0; k < 8; k += 2)
1559 emit_lrp(vec8(SAMPLE(0, k)),
1560 y_frac,
1561 vec8(SAMPLE(2, k)),
1562 vec8(SAMPLE(0, k)));
1563 #undef SAMPLE
1564 }
1565
1566 /**
1567 * Emit code to look up a value in the texture using the SAMPLE message (which
1568 * does blending of MSAA surfaces).
1569 */
1570 void
1571 brw_blorp_blit_program::sample(struct brw_reg dst)
1572 {
1573 static const sampler_message_arg args[2] = {
1574 SAMPLER_MESSAGE_ARG_U_FLOAT,
1575 SAMPLER_MESSAGE_ARG_V_FLOAT
1576 };
1577
1578 texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
1579 }
1580
1581 /**
1582 * Emit code to look up a value in the texture using the SAMPLE_LD message
1583 * (which does a simple texel fetch).
1584 */
1585 void
1586 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1587 {
1588 static const sampler_message_arg gen6_args[5] = {
1589 SAMPLER_MESSAGE_ARG_U_INT,
1590 SAMPLER_MESSAGE_ARG_V_INT,
1591 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1592 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1593 SAMPLER_MESSAGE_ARG_SI_INT
1594 };
1595 static const sampler_message_arg gen7_ld_args[3] = {
1596 SAMPLER_MESSAGE_ARG_U_INT,
1597 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1598 SAMPLER_MESSAGE_ARG_V_INT
1599 };
1600 static const sampler_message_arg gen7_ld2dss_args[3] = {
1601 SAMPLER_MESSAGE_ARG_SI_INT,
1602 SAMPLER_MESSAGE_ARG_U_INT,
1603 SAMPLER_MESSAGE_ARG_V_INT
1604 };
1605 static const sampler_message_arg gen7_ld2dms_args[4] = {
1606 SAMPLER_MESSAGE_ARG_SI_INT,
1607 SAMPLER_MESSAGE_ARG_MCS_INT,
1608 SAMPLER_MESSAGE_ARG_U_INT,
1609 SAMPLER_MESSAGE_ARG_V_INT
1610 };
1611
1612 switch (brw->gen) {
1613 case 6:
1614 texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
1615 break;
1616 case 7:
1617 switch (key->tex_layout) {
1618 case INTEL_MSAA_LAYOUT_IMS:
1619 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1620 * Format):
1621 *
1622 * If this field is MSFMT_DEPTH_STENCIL
1623 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1624 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1625 *
1626 * So fall through to emit the same message as we use for
1627 * INTEL_MSAA_LAYOUT_CMS.
1628 */
1629 case INTEL_MSAA_LAYOUT_CMS:
1630 texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
1631 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1632 break;
1633 case INTEL_MSAA_LAYOUT_UMS:
1634 texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
1635 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1636 break;
1637 case INTEL_MSAA_LAYOUT_NONE:
1638 assert(s_is_zero);
1639 texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
1640 ARRAY_SIZE(gen7_ld_args));
1641 break;
1642 }
1643 break;
1644 default:
1645 unreachable("Should not get here.");
1646 };
1647 }
1648
1649 void
1650 brw_blorp_blit_program::mcs_fetch()
1651 {
1652 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1653 SAMPLER_MESSAGE_ARG_U_INT,
1654 SAMPLER_MESSAGE_ARG_V_INT
1655 };
1656 texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
1657 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1658 }
1659
1660 void
1661 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1662 enum opcode op,
1663 const sampler_message_arg *args,
1664 int num_args)
1665 {
1666 struct brw_reg mrf =
1667 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1668 for (int arg = 0; arg < num_args; ++arg) {
1669 switch (args[arg]) {
1670 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1671 if (key->bilinear_filter)
1672 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1673 retype(X, BRW_REGISTER_TYPE_F));
1674 else
1675 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
1676 break;
1677 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1678 if (key->bilinear_filter)
1679 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1680 retype(Y, BRW_REGISTER_TYPE_F));
1681 else
1682 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
1683 break;
1684 case SAMPLER_MESSAGE_ARG_U_INT:
1685 emit_mov(mrf, X);
1686 break;
1687 case SAMPLER_MESSAGE_ARG_V_INT:
1688 emit_mov(mrf, Y);
1689 break;
1690 case SAMPLER_MESSAGE_ARG_SI_INT:
1691 /* Note: on Gen7, this code may be reached with s_is_zero==true
1692 * because in Gen7's ld2dss message, the sample index is the first
1693 * argument. When this happens, we need to move a 0 into the
1694 * appropriate message register.
1695 */
1696 if (s_is_zero)
1697 emit_mov(mrf, brw_imm_ud(0));
1698 else
1699 emit_mov(mrf, S);
1700 break;
1701 case SAMPLER_MESSAGE_ARG_MCS_INT:
1702 switch (key->tex_layout) {
1703 case INTEL_MSAA_LAYOUT_CMS:
1704 emit_mov(mrf, mcs_data);
1705 break;
1706 case INTEL_MSAA_LAYOUT_IMS:
1707 /* When sampling from an IMS surface, MCS data is not relevant,
1708 * and the hardware ignores it. So don't bother populating it.
1709 */
1710 break;
1711 default:
1712 /* We shouldn't be trying to send MCS data with any other
1713 * layouts.
1714 */
1715 assert (!"Unsupported layout for MCS data");
1716 break;
1717 }
1718 break;
1719 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1720 emit_mov(mrf, brw_imm_ud(0));
1721 break;
1722 }
1723 mrf.nr += 2;
1724 }
1725
1726 emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1727 op,
1728 base_mrf,
1729 mrf.nr - base_mrf /* msg_length */);
1730 }
1731
1732 #undef X
1733 #undef Y
1734 #undef U
1735 #undef V
1736 #undef S
1737 #undef SWAP_XY_AND_XPYP
1738
1739 void
1740 brw_blorp_blit_program::render_target_write()
1741 {
1742 struct brw_reg mrf_rt_write =
1743 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1744 int mrf_offset = 0;
1745
1746 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1747 * so that the render target knows which pixels we killed.
1748 */
1749 bool use_header = key->use_kill;
1750 if (use_header) {
1751 /* Copy R0/1 to MRF */
1752 emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1753 retype(R0, BRW_REGISTER_TYPE_UD));
1754 mrf_offset += 2;
1755 }
1756
1757 /* Copy texture data to MRFs */
1758 for (int i = 0; i < 4; ++i) {
1759 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1760 emit_mov(offset(mrf_rt_write, mrf_offset),
1761 offset(vec8(texture_data[0]), 2*i));
1762 mrf_offset += 2;
1763 }
1764
1765 /* Now write to the render target and terminate the thread */
1766 emit_render_target_write(
1767 mrf_rt_write,
1768 base_mrf,
1769 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1770 use_header);
1771 }
1772
1773
1774 void
1775 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
1776 GLfloat dst0, GLfloat dst1,
1777 bool mirror)
1778 {
1779 float scale = (src1 - src0) / (dst1 - dst0);
1780 if (!mirror) {
1781 /* When not mirroring a coordinate (say, X), we need:
1782 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1783 * Therefore:
1784 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1785 *
1786 * blorp program uses "round toward zero" to convert the
1787 * transformed floating point coordinates to integer coordinates,
1788 * whereas the behaviour we actually want is "round to nearest",
1789 * so 0.5 provides the necessary correction.
1790 */
1791 multiplier = scale;
1792 offset = src0 + (-dst0 + 0.5f) * scale;
1793 } else {
1794 /* When mirroring X we need:
1795 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1796 * Therefore:
1797 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1798 */
1799 multiplier = -scale;
1800 offset = src0 + (dst1 - 0.5f) * scale;
1801 }
1802 }
1803
1804
1805 /**
1806 * Determine which MSAA layout the GPU pipeline should be configured for,
1807 * based on the chip generation, the number of samples, and the true layout of
1808 * the image in memory.
1809 */
1810 inline intel_msaa_layout
1811 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1812 intel_msaa_layout true_layout)
1813 {
1814 if (num_samples <= 1) {
1815 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1816 * format buffers, by transforming coordinates appropriately.
1817 */
1818 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1819 true_layout == INTEL_MSAA_LAYOUT_IMS);
1820 return INTEL_MSAA_LAYOUT_NONE;
1821 } else {
1822 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1823 }
1824
1825 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1826 if (brw->gen == 6) {
1827 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1828 }
1829
1830 return true_layout;
1831 }
1832
1833
1834 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1835 struct intel_mipmap_tree *src_mt,
1836 unsigned src_level, unsigned src_layer,
1837 mesa_format src_format,
1838 struct intel_mipmap_tree *dst_mt,
1839 unsigned dst_level, unsigned dst_layer,
1840 mesa_format dst_format,
1841 GLfloat src_x0, GLfloat src_y0,
1842 GLfloat src_x1, GLfloat src_y1,
1843 GLfloat dst_x0, GLfloat dst_y0,
1844 GLfloat dst_x1, GLfloat dst_y1,
1845 GLenum filter,
1846 bool mirror_x, bool mirror_y)
1847 {
1848 src.set(brw, src_mt, src_level, src_layer, src_format, false);
1849 dst.set(brw, dst_mt, dst_level, dst_layer, dst_format, true);
1850
1851 /* Even though we do multisample resolves at the time of the blit, OpenGL
1852 * specification defines them as if they happen at the time of rendering,
1853 * which means that the type of averaging we do during the resolve should
1854 * only depend on the source format; the destination format should be
1855 * ignored. But, specification doesn't seem to be strict about it.
1856 *
1857 * It has been observed that mulitisample resolves produce slightly better
1858 * looking images when averaging is done using destination format. NVIDIA's
1859 * proprietary OpenGL driver also follow this approach. So, we choose to
1860 * follow it in our driver.
1861 *
1862 * When multisampling, if the source and destination formats are equal
1863 * (aside from the color space), we choose to blit in sRGB space to get
1864 * this higher quality image.
1865 */
1866 if (src.num_samples > 1 &&
1867 _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
1868 _mesa_get_srgb_format_linear(src_mt->format) ==
1869 _mesa_get_srgb_format_linear(dst_mt->format)) {
1870 assert(brw->format_supported_as_render_target[dst_mt->format]);
1871 dst.brw_surfaceformat = brw->render_target_format[dst_mt->format];
1872 src.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
1873 }
1874
1875 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
1876 * texture, the above code configures the source format for L32_FLOAT or
1877 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
1878 * the SAMPLE message appears to handle multisampled L32_FLOAT and
1879 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
1880 * around the problem by using a source format of R32_FLOAT. This
1881 * shouldn't affect rendering correctness, since the destination format is
1882 * R32_FLOAT, so only the contents of the red channel matters.
1883 */
1884 if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
1885 src_mt->format == dst_mt->format &&
1886 dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
1887 src.brw_surfaceformat = dst.brw_surfaceformat;
1888 }
1889
1890 use_wm_prog = true;
1891 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1892
1893 /* texture_data_type indicates the register type that should be used to
1894 * manipulate texture data.
1895 */
1896 switch (_mesa_get_format_datatype(src_mt->format)) {
1897 case GL_UNSIGNED_NORMALIZED:
1898 case GL_SIGNED_NORMALIZED:
1899 case GL_FLOAT:
1900 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1901 break;
1902 case GL_UNSIGNED_INT:
1903 if (src_mt->format == MESA_FORMAT_S_UINT8) {
1904 /* We process stencil as though it's an unsigned normalized color */
1905 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1906 } else {
1907 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1908 }
1909 break;
1910 case GL_INT:
1911 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1912 break;
1913 default:
1914 unreachable("Unrecognized blorp format");
1915 }
1916
1917 if (brw->gen > 6) {
1918 /* Gen7's rendering hardware only supports the IMS layout for depth and
1919 * stencil render targets. Blorp always maps its destination surface as
1920 * a color render target (even if it's actually a depth or stencil
1921 * buffer). So if the destination is IMS, we'll have to map it as a
1922 * single-sampled texture and interleave the samples ourselves.
1923 */
1924 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1925 dst.num_samples = 0;
1926 }
1927
1928 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
1929 /* If the destination surface is a W-tiled multisampled stencil buffer
1930 * that we're mapping as Y tiled, then we need to arrange for the WM
1931 * program to run once per sample rather than once per pixel, because
1932 * the memory layout of related samples doesn't match between W and Y
1933 * tiling.
1934 */
1935 wm_prog_key.persample_msaa_dispatch = true;
1936 }
1937
1938 if (src.num_samples > 0 && dst.num_samples > 1) {
1939 /* We are blitting from a multisample buffer to a multisample buffer, so
1940 * we must preserve samples within a pixel. This means we have to
1941 * arrange for the WM program to run once per sample rather than once
1942 * per pixel.
1943 */
1944 wm_prog_key.persample_msaa_dispatch = true;
1945 }
1946
1947 /* Scaled blitting or not. */
1948 wm_prog_key.blit_scaled =
1949 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
1950 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
1951
1952 /* Scaling factors used for bilinear filtering in multisample scaled
1953 * blits.
1954 */
1955 wm_prog_key.x_scale = 2.0f;
1956 wm_prog_key.y_scale = src_mt->num_samples / 2.0f;
1957
1958 if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
1959 wm_prog_key.bilinear_filter = true;
1960
1961 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1962 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1963 base_format != GL_STENCIL_INDEX &&
1964 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
1965 /* We are downsampling a color buffer, so blend. */
1966 wm_prog_key.blend = true;
1967 }
1968
1969 /* src_samples and dst_samples are the true sample counts */
1970 wm_prog_key.src_samples = src_mt->num_samples;
1971 wm_prog_key.dst_samples = dst_mt->num_samples;
1972
1973 /* tex_samples and rt_samples are the sample counts that are set up in
1974 * SURFACE_STATE.
1975 */
1976 wm_prog_key.tex_samples = src.num_samples;
1977 wm_prog_key.rt_samples = dst.num_samples;
1978
1979 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1980 * use to access the source and destination surfaces.
1981 */
1982 wm_prog_key.tex_layout =
1983 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1984 wm_prog_key.rt_layout =
1985 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1986
1987 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1988 * dst.
1989 */
1990 wm_prog_key.src_layout = src_mt->msaa_layout;
1991 wm_prog_key.dst_layout = dst_mt->msaa_layout;
1992
1993 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1994 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1995 /* Round floating point values to nearest integer to avoid "off by one texel"
1996 * kind of errors when blitting.
1997 */
1998 x0 = wm_push_consts.dst_x0 = roundf(dst_x0);
1999 y0 = wm_push_consts.dst_y0 = roundf(dst_y0);
2000 x1 = wm_push_consts.dst_x1 = roundf(dst_x1);
2001 y1 = wm_push_consts.dst_y1 = roundf(dst_y1);
2002 wm_push_consts.rect_grid_x1 = (minify(src_mt->logical_width0, src_level) *
2003 wm_prog_key.x_scale - 1.0f);
2004 wm_push_consts.rect_grid_y1 = (minify(src_mt->logical_height0, src_level) *
2005 wm_prog_key.y_scale - 1.0f);
2006
2007 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
2008 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
2009
2010 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
2011 /* We must expand the rectangle we send through the rendering pipeline,
2012 * to account for the fact that we are mapping the destination region as
2013 * single-sampled when it is in fact multisampled. We must also align
2014 * it to a multiple of the multisampling pattern, because the
2015 * differences between multisampled and single-sampled surface formats
2016 * will mean that pixels are scrambled within the multisampling pattern.
2017 * TODO: what if this makes the coordinates too large?
2018 *
2019 * Note: this only works if the destination surface uses the IMS layout.
2020 * If it's UMS, then we have no choice but to set up the rendering
2021 * pipeline as multisampled.
2022 */
2023 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2024 switch (dst_mt->num_samples) {
2025 case 4:
2026 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2027 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2028 x1 = ALIGN(x1 * 2, 4);
2029 y1 = ALIGN(y1 * 2, 4);
2030 break;
2031 case 8:
2032 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2033 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2034 x1 = ALIGN(x1 * 4, 8);
2035 y1 = ALIGN(y1 * 2, 4);
2036 break;
2037 default:
2038 unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
2039 }
2040 wm_prog_key.use_kill = true;
2041 }
2042
2043 if (dst.map_stencil_as_y_tiled) {
2044 /* We must modify the rectangle we send through the rendering pipeline
2045 * (and the size and x/y offset of the destination surface), to account
2046 * for the fact that we are mapping it as Y-tiled when it is in fact
2047 * W-tiled.
2048 *
2049 * Both Y tiling and W tiling can be understood as organizations of
2050 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2051 * is different, but the layout of the 32-byte sub-tiles within the 4k
2052 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2053 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2054 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2055 *
2056 * Therefore, to account for the layout differences within the 32-byte
2057 * sub-tiles, we must expand the rectangle so the X coordinates of its
2058 * edges are multiples of 8 (the W sub-tile width), and its Y
2059 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2060 * Then we need to scale the X and Y coordinates of the rectangle to
2061 * account for the differences in aspect ratio between the Y and W
2062 * sub-tiles. We need to modify the layer width and height similarly.
2063 *
2064 * A correction needs to be applied when MSAA is in use: since
2065 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2066 * we need to align the Y coordinates to multiples of 8, so that when
2067 * they are divided by two they are still multiples of 4.
2068 *
2069 * Note: Since the x/y offset of the surface will be applied using the
2070 * SURFACE_STATE command packet, it will be invisible to the swizzling
2071 * code in the shader; therefore it needs to be in a multiple of the
2072 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2073 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2074 * buffer), and the miplevel alignment used for stencil buffers is 8
2075 * pixels horizontally and either 4 or 8 pixels vertically (see
2076 * intel_horizontal_texture_alignment_unit() and
2077 * intel_vertical_texture_alignment_unit()).
2078 *
2079 * Note: Also, since the SURFACE_STATE command packet can only apply
2080 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2081 * vertically, it is important that the offsets will be multiples of
2082 * these sizes after they are converted into Y-tiled coordinates.
2083 * Fortunately they will be, since we know from above that the offsets
2084 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2085 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2086 *
2087 * TODO: what if this makes the coordinates (or the texture size) too
2088 * large?
2089 */
2090 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2091 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2092 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2093 x1 = ALIGN(x1, x_align) * 2;
2094 y1 = ALIGN(y1, y_align) / 2;
2095 dst.width = ALIGN(dst.width, x_align) * 2;
2096 dst.height = ALIGN(dst.height, y_align) / 2;
2097 dst.x_offset *= 2;
2098 dst.y_offset /= 2;
2099 wm_prog_key.use_kill = true;
2100 }
2101
2102 if (src.map_stencil_as_y_tiled) {
2103 /* We must modify the size and x/y offset of the source surface to
2104 * account for the fact that we are mapping it as Y-tiled when it is in
2105 * fact W tiled.
2106 *
2107 * See the comments above concerning x/y offset alignment for the
2108 * destination surface.
2109 *
2110 * TODO: what if this makes the texture size too large?
2111 */
2112 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2113 src.width = ALIGN(src.width, x_align) * 2;
2114 src.height = ALIGN(src.height, y_align) / 2;
2115 src.x_offset *= 2;
2116 src.y_offset /= 2;
2117 }
2118 }
2119
2120 uint32_t
2121 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2122 brw_blorp_prog_data **prog_data) const
2123 {
2124 uint32_t prog_offset = 0;
2125 if (!brw_search_cache(&brw->cache, BRW_CACHE_BLORP_BLIT_PROG,
2126 &this->wm_prog_key, sizeof(this->wm_prog_key),
2127 &prog_offset, prog_data)) {
2128 brw_blorp_blit_program prog(brw, &this->wm_prog_key,
2129 INTEL_DEBUG & DEBUG_BLORP);
2130 GLuint program_size;
2131 const GLuint *program = prog.compile(brw, &program_size);
2132 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_BLIT_PROG,
2133 &this->wm_prog_key, sizeof(this->wm_prog_key),
2134 program, program_size,
2135 &prog.prog_data, sizeof(prog.prog_data),
2136 &prog_offset, prog_data);
2137 }
2138 return prog_offset;
2139 }