8c0db487a29ee6edd0ccbaa41316de8ac09dc7e6
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26 #include "main/renderbuffer.h"
27
28 #include "glsl/ralloc.h"
29
30 #include "intel_fbo.h"
31
32 #include "brw_blorp.h"
33 #include "brw_context.h"
34 #include "brw_eu.h"
35 #include "brw_state.h"
36
37 #define FILE_DEBUG_FLAG DEBUG_BLORP
38
39 /**
40 * Helper function for handling mirror image blits.
41 *
42 * If coord0 > coord1, swap them and invert the "mirror" boolean.
43 */
44 static inline void
45 fixup_mirroring(bool &mirror, GLfloat &coord0, GLfloat &coord1)
46 {
47 if (coord0 > coord1) {
48 mirror = !mirror;
49 GLfloat tmp = coord0;
50 coord0 = coord1;
51 coord1 = tmp;
52 }
53 }
54
55
56 /**
57 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
58 * destination coordinates.
59 *
60 * Return true if there is still blitting to do, false if all pixels got
61 * rejected by the clip and/or scissor.
62 *
63 * For clarity, the nomenclature of this function assumes we are clipping and
64 * scissoring the X coordinate; the exact same logic applies for Y
65 * coordinates.
66 *
67 * Note: this function may also be used to account for clipping of source
68 * coordinates, by swapping the roles of src and dst.
69 */
70 static inline bool
71 clip_or_scissor(bool mirror, GLfloat &src_x0, GLfloat &src_x1, GLfloat &dst_x0,
72 GLfloat &dst_x1, GLfloat fb_xmin, GLfloat fb_xmax)
73 {
74 float scale = (float) (src_x1 - src_x0) / (dst_x1 - dst_x0);
75 /* If we are going to scissor everything away, stop. */
76 if (!(fb_xmin < fb_xmax &&
77 dst_x0 < fb_xmax &&
78 fb_xmin < dst_x1 &&
79 dst_x0 < dst_x1)) {
80 return false;
81 }
82
83 /* Clip the destination rectangle, and keep track of how many pixels we
84 * clipped off of the left and right sides of it.
85 */
86 GLint pixels_clipped_left = 0;
87 GLint pixels_clipped_right = 0;
88 if (dst_x0 < fb_xmin) {
89 pixels_clipped_left = fb_xmin - dst_x0;
90 dst_x0 = fb_xmin;
91 }
92 if (fb_xmax < dst_x1) {
93 pixels_clipped_right = dst_x1 - fb_xmax;
94 dst_x1 = fb_xmax;
95 }
96
97 /* If we are mirrored, then before applying pixels_clipped_{left,right} to
98 * the source coordinates, we need to flip them to account for the
99 * mirroring.
100 */
101 if (mirror) {
102 GLint tmp = pixels_clipped_left;
103 pixels_clipped_left = pixels_clipped_right;
104 pixels_clipped_right = tmp;
105 }
106
107 /* Adjust the source rectangle to remove the pixels corresponding to those
108 * that were clipped/scissored out of the destination rectangle.
109 */
110 src_x0 += pixels_clipped_left * scale;
111 src_x1 -= pixels_clipped_right * scale;
112
113 return true;
114 }
115
116
117 static struct intel_mipmap_tree *
118 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
119 {
120 struct intel_mipmap_tree *mt = irb->mt;
121 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
122 mt = mt->stencil_mt;
123 return mt;
124 }
125
126 void
127 brw_blorp_blit_miptrees(struct brw_context *brw,
128 struct intel_mipmap_tree *src_mt,
129 unsigned src_level, unsigned src_layer,
130 struct intel_mipmap_tree *dst_mt,
131 unsigned dst_level, unsigned dst_layer,
132 float src_x0, float src_y0,
133 float src_x1, float src_y1,
134 float dst_x0, float dst_y0,
135 float dst_x1, float dst_y1,
136 bool mirror_x, bool mirror_y)
137 {
138 /* Get ready to blit. This includes depth resolving the src and dst
139 * buffers if necessary. Note: it's not necessary to do a color resolve on
140 * the destination buffer because we use the standard render path to render
141 * to destination color buffers, and the standard render path is
142 * fast-color-aware.
143 */
144 intel_miptree_resolve_color(brw, src_mt);
145 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
146 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
147
148 DBG("%s from %s mt %p %d %d (%f,%f) (%f,%f)"
149 "to %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
150 __FUNCTION__,
151 _mesa_get_format_name(src_mt->format), src_mt,
152 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
153 _mesa_get_format_name(dst_mt->format), dst_mt,
154 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
155 mirror_x, mirror_y);
156
157 brw_blorp_blit_params params(brw,
158 src_mt, src_level, src_layer,
159 dst_mt, dst_level, dst_layer,
160 src_x0, src_y0,
161 src_x1, src_y1,
162 dst_x0, dst_y0,
163 dst_x1, dst_y1,
164 mirror_x, mirror_y);
165 brw_blorp_exec(brw, &params);
166
167 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
168 }
169
170 static void
171 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
172 struct intel_renderbuffer *src_irb,
173 struct intel_renderbuffer *dst_irb,
174 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
175 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
176 bool mirror_x, bool mirror_y)
177 {
178 /* Find source/dst miptrees */
179 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
180 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
181
182 /* Do the blit */
183 brw_blorp_blit_miptrees(brw,
184 src_mt, src_irb->mt_level, src_irb->mt_layer,
185 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
186 srcX0, srcY0, srcX1, srcY1,
187 dstX0, dstY0, dstX1, dstY1,
188 mirror_x, mirror_y);
189
190 intel_renderbuffer_set_needs_downsample(dst_irb);
191 }
192
193 static bool
194 color_formats_match(gl_format src_format, gl_format dst_format)
195 {
196 gl_format linear_src_format = _mesa_get_srgb_format_linear(src_format);
197 gl_format linear_dst_format = _mesa_get_srgb_format_linear(dst_format);
198
199 /* Normally, we require the formats to be equal. However, we also support
200 * blitting from ARGB to XRGB (discarding alpha), and from XRGB to ARGB
201 * (overriding alpha to 1.0 via blending).
202 */
203 return linear_src_format == linear_dst_format ||
204 (linear_src_format == MESA_FORMAT_XRGB8888 &&
205 linear_dst_format == MESA_FORMAT_ARGB8888) ||
206 (linear_src_format == MESA_FORMAT_ARGB8888 &&
207 linear_dst_format == MESA_FORMAT_XRGB8888);
208 }
209
210 static bool
211 formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
212 struct intel_renderbuffer *dst_irb)
213 {
214 /* Note: don't just check gl_renderbuffer::Format, because in some cases
215 * multiple gl_formats resolve to the same native type in the miptree (for
216 * example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit
217 * between those formats.
218 */
219 gl_format src_format = find_miptree(buffer_bit, src_irb)->format;
220 gl_format dst_format = find_miptree(buffer_bit, dst_irb)->format;
221
222 return color_formats_match(src_format, dst_format);
223 }
224
225 static bool
226 try_blorp_blit(struct brw_context *brw,
227 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
228 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
229 GLenum filter, GLbitfield buffer_bit)
230 {
231 struct gl_context *ctx = &brw->ctx;
232
233 /* Sync up the state of window system buffers. We need to do this before
234 * we go looking for the buffers.
235 */
236 intel_prepare_render(brw);
237
238 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
239 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
240
241 /* Detect if the blit needs to be mirrored */
242 bool mirror_x = false, mirror_y = false;
243 fixup_mirroring(mirror_x, srcX0, srcX1);
244 fixup_mirroring(mirror_x, dstX0, dstX1);
245 fixup_mirroring(mirror_y, srcY0, srcY1);
246 fixup_mirroring(mirror_y, dstY0, dstY1);
247
248 /* Linear filtering is not yet implemented in blorp engine. So, fallback
249 * to other blit paths.
250 */
251 if ((srcX1 - srcX0 != dstX1 - dstX0 ||
252 srcY1 - srcY0 != dstY1 - dstY0) &&
253 filter == GL_LINEAR)
254 return false;
255
256 /* If the destination rectangle needs to be clipped or scissored, do so.
257 */
258 if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
259 draw_fb->_Xmin, draw_fb->_Xmax) &&
260 clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
261 draw_fb->_Ymin, draw_fb->_Ymax))) {
262 /* Everything got clipped/scissored away, so the blit was successful. */
263 return true;
264 }
265
266 /* If the source rectangle needs to be clipped or scissored, do so. */
267 if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
268 0, read_fb->Width) &&
269 clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
270 0, read_fb->Height))) {
271 /* Everything got clipped/scissored away, so the blit was successful. */
272 return true;
273 }
274
275 /* Account for the fact that in the system framebuffer, the origin is at
276 * the lower left.
277 */
278 if (_mesa_is_winsys_fbo(read_fb)) {
279 GLint tmp = read_fb->Height - srcY0;
280 srcY0 = read_fb->Height - srcY1;
281 srcY1 = tmp;
282 mirror_y = !mirror_y;
283 }
284 if (_mesa_is_winsys_fbo(draw_fb)) {
285 GLint tmp = draw_fb->Height - dstY0;
286 dstY0 = draw_fb->Height - dstY1;
287 dstY1 = tmp;
288 mirror_y = !mirror_y;
289 }
290
291 /* Find buffers */
292 struct intel_renderbuffer *src_irb;
293 struct intel_renderbuffer *dst_irb;
294 switch (buffer_bit) {
295 case GL_COLOR_BUFFER_BIT:
296 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
297 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
298 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
299 if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
300 return false;
301 }
302 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
303 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
304 if (dst_irb)
305 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
306 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
307 mirror_x, mirror_y);
308 }
309 break;
310 case GL_DEPTH_BUFFER_BIT:
311 src_irb =
312 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
313 dst_irb =
314 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
315 if (!formats_match(buffer_bit, src_irb, dst_irb))
316 return false;
317 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
318 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
319 mirror_x, mirror_y);
320 break;
321 case GL_STENCIL_BUFFER_BIT:
322 src_irb =
323 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
324 dst_irb =
325 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
326 if (!formats_match(buffer_bit, src_irb, dst_irb))
327 return false;
328 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
329 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
330 mirror_x, mirror_y);
331 break;
332 default:
333 assert(false);
334 }
335
336 return true;
337 }
338
339 bool
340 brw_blorp_copytexsubimage(struct brw_context *brw,
341 struct gl_renderbuffer *src_rb,
342 struct gl_texture_image *dst_image,
343 int slice,
344 int srcX0, int srcY0,
345 int dstX0, int dstY0,
346 int width, int height)
347 {
348 struct gl_context *ctx = &brw->ctx;
349 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
350 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
351
352 /* Sync up the state of window system buffers. We need to do this before
353 * we go looking at the src renderbuffer's miptree.
354 */
355 intel_prepare_render(brw);
356
357 struct intel_mipmap_tree *src_mt = src_irb->mt;
358 struct intel_mipmap_tree *dst_mt = intel_image->mt;
359
360 /* BLORP is not supported before Gen6. */
361 if (brw->gen < 6)
362 return false;
363
364 if (!color_formats_match(src_mt->format, dst_mt->format)) {
365 return false;
366 }
367
368 /* Source clipping shouldn't be necessary, since copytexsubimage (in
369 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
370 * takes care of it.
371 *
372 * Destination clipping shouldn't be necessary since the restrictions on
373 * glCopyTexSubImage prevent the user from specifying a destination rectangle
374 * that falls outside the bounds of the destination texture.
375 * See error_check_subtexture_dimensions().
376 */
377
378 int srcY1 = srcY0 + height;
379 int srcX1 = srcX0 + width;
380 int dstX1 = dstX0 + width;
381 int dstY1 = dstY0 + height;
382
383 /* Account for the fact that in the system framebuffer, the origin is at
384 * the lower left.
385 */
386 bool mirror_y = false;
387 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
388 GLint tmp = src_rb->Height - srcY0;
389 srcY0 = src_rb->Height - srcY1;
390 srcY1 = tmp;
391 mirror_y = true;
392 }
393
394 brw_blorp_blit_miptrees(brw,
395 src_mt, src_irb->mt_level, src_irb->mt_layer,
396 dst_mt, dst_image->Level, dst_image->Face + slice,
397 srcX0, srcY0, srcX1, srcY1,
398 dstX0, dstY0, dstX1, dstY1,
399 false, mirror_y);
400
401 /* If we're copying to a packed depth stencil texture and the source
402 * framebuffer has separate stencil, we need to also copy the stencil data
403 * over.
404 */
405 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
406 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
407 src_rb != NULL) {
408 src_irb = intel_renderbuffer(src_rb);
409 src_mt = src_irb->mt;
410
411 if (src_mt->stencil_mt)
412 src_mt = src_mt->stencil_mt;
413 if (dst_mt->stencil_mt)
414 dst_mt = dst_mt->stencil_mt;
415
416 if (src_mt != dst_mt) {
417 brw_blorp_blit_miptrees(brw,
418 src_mt, src_irb->mt_level, src_irb->mt_layer,
419 dst_mt, dst_image->Level,
420 dst_image->Face + slice,
421 srcX0, srcY0, srcX1, srcY1,
422 dstX0, dstY0, dstX1, dstY1,
423 false, mirror_y);
424 }
425 }
426
427 return true;
428 }
429
430
431 GLbitfield
432 brw_blorp_framebuffer(struct brw_context *brw,
433 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
434 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
435 GLbitfield mask, GLenum filter)
436 {
437 /* BLORP is not supported before Gen6. */
438 if (brw->gen < 6)
439 return mask;
440
441 static GLbitfield buffer_bits[] = {
442 GL_COLOR_BUFFER_BIT,
443 GL_DEPTH_BUFFER_BIT,
444 GL_STENCIL_BUFFER_BIT,
445 };
446
447 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
448 if ((mask & buffer_bits[i]) &&
449 try_blorp_blit(brw,
450 srcX0, srcY0, srcX1, srcY1,
451 dstX0, dstY0, dstX1, dstY1,
452 filter, buffer_bits[i])) {
453 mask &= ~buffer_bits[i];
454 }
455 }
456
457 return mask;
458 }
459
460
461 /**
462 * Enum to specify the order of arguments in a sampler message
463 */
464 enum sampler_message_arg
465 {
466 SAMPLER_MESSAGE_ARG_U_FLOAT,
467 SAMPLER_MESSAGE_ARG_V_FLOAT,
468 SAMPLER_MESSAGE_ARG_U_INT,
469 SAMPLER_MESSAGE_ARG_V_INT,
470 SAMPLER_MESSAGE_ARG_SI_INT,
471 SAMPLER_MESSAGE_ARG_MCS_INT,
472 SAMPLER_MESSAGE_ARG_ZERO_INT,
473 };
474
475 /**
476 * Generator for WM programs used in BLORP blits.
477 *
478 * The bulk of the work done by the WM program is to wrap and unwrap the
479 * coordinate transformations used by the hardware to store surfaces in
480 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
481 * sample index for a multisampled surface) to a memory offset by the
482 * following formulas:
483 *
484 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
485 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
486 *
487 * For a single-sampled surface, or for a multisampled surface using
488 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
489 * function:
490 *
491 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
492 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
493 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
494 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
495 *
496 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
497 * embeds the sample number into bit 1 of the X and Y coordinates:
498 *
499 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
500 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
501 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
502 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
503 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
504 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
505 * S = (Y & 0b10) | (X & 0b10) >> 1
506 *
507 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
508 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
509 * the Y coordinate:
510 *
511 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
512 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
513 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
514 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
515 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
516 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
517 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
518 *
519 * For X tiling, tile() combines together the low-order bits of the X and Y
520 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
521 * bytes wide and 8 rows high:
522 *
523 * tile(x_tiled, X, Y, S) = A
524 * where A = tile_num << 12 | offset
525 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
526 * offset = (Y' & 0b111) << 9
527 * | (X & 0b111111111)
528 * X' = X * cpp
529 * Y' = Y + S * qpitch
530 * detile(x_tiled, A) = (X, Y, S)
531 * where X = X' / cpp
532 * Y = Y' % qpitch
533 * S = Y' / qpitch
534 * Y' = (tile_num / tile_pitch) << 3
535 * | (A & 0b111000000000) >> 9
536 * X' = (tile_num % tile_pitch) << 9
537 * | (A & 0b111111111)
538 *
539 * (In all tiling formulas, cpp is the number of bytes occupied by a single
540 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
541 * to fill the width of the surface, and qpitch is the spacing (in rows)
542 * between array slices).
543 *
544 * For Y tiling, tile() combines together the low-order bits of the X and Y
545 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
546 * bytes wide and 32 rows high:
547 *
548 * tile(y_tiled, X, Y, S) = A
549 * where A = tile_num << 12 | offset
550 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
551 * offset = (X' & 0b1110000) << 5
552 * | (Y' & 0b11111) << 4
553 * | (X' & 0b1111)
554 * X' = X * cpp
555 * Y' = Y + S * qpitch
556 * detile(y_tiled, A) = (X, Y, S)
557 * where X = X' / cpp
558 * Y = Y' % qpitch
559 * S = Y' / qpitch
560 * Y' = (tile_num / tile_pitch) << 5
561 * | (A & 0b111110000) >> 4
562 * X' = (tile_num % tile_pitch) << 7
563 * | (A & 0b111000000000) >> 5
564 * | (A & 0b1111)
565 *
566 * For W tiling, tile() combines together the low-order bits of the X and Y
567 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
568 * bytes wide and 64 rows high (note that W tiling is only used for stencil
569 * buffers, which always have cpp = 1 and S=0):
570 *
571 * tile(w_tiled, X, Y, S) = A
572 * where A = tile_num << 12 | offset
573 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
574 * offset = (X' & 0b111000) << 6
575 * | (Y' & 0b111100) << 3
576 * | (X' & 0b100) << 2
577 * | (Y' & 0b10) << 2
578 * | (X' & 0b10) << 1
579 * | (Y' & 0b1) << 1
580 * | (X' & 0b1)
581 * X' = X * cpp = X
582 * Y' = Y + S * qpitch
583 * detile(w_tiled, A) = (X, Y, S)
584 * where X = X' / cpp = X'
585 * Y = Y' % qpitch = Y'
586 * S = Y / qpitch = 0
587 * Y' = (tile_num / tile_pitch) << 6
588 * | (A & 0b111100000) >> 3
589 * | (A & 0b1000) >> 2
590 * | (A & 0b10) >> 1
591 * X' = (tile_num % tile_pitch) << 6
592 * | (A & 0b111000000000) >> 6
593 * | (A & 0b10000) >> 2
594 * | (A & 0b100) >> 1
595 * | (A & 0b1)
596 *
597 * Finally, for a non-tiled surface, tile() simply combines together the X and
598 * Y coordinates in the natural way:
599 *
600 * tile(untiled, X, Y, S) = A
601 * where A = Y * pitch + X'
602 * X' = X * cpp
603 * Y' = Y + S * qpitch
604 * detile(untiled, A) = (X, Y, S)
605 * where X = X' / cpp
606 * Y = Y' % qpitch
607 * S = Y' / qpitch
608 * X' = A % pitch
609 * Y' = A / pitch
610 *
611 * (In these formulas, pitch is the number of bytes occupied by a single row
612 * of samples).
613 */
614 class brw_blorp_blit_program
615 {
616 public:
617 brw_blorp_blit_program(struct brw_context *brw,
618 const brw_blorp_blit_prog_key *key);
619 ~brw_blorp_blit_program();
620
621 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
622
623 brw_blorp_prog_data prog_data;
624
625 private:
626 void alloc_regs();
627 void alloc_push_const_regs(int base_reg);
628 void compute_frag_coords();
629 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
630 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
631 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
632 void kill_if_outside_dst_rect();
633 void translate_dst_to_src();
634 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
635 struct brw_reg clampX0, struct brw_reg clampY0,
636 struct brw_reg clampX1, struct brw_reg clampY1);
637 void single_to_blend();
638 void manual_blend_average(unsigned num_samples);
639 void manual_blend_bilinear(unsigned num_samples);
640 void sample(struct brw_reg dst);
641 void texel_fetch(struct brw_reg dst);
642 void mcs_fetch();
643 void texture_lookup(struct brw_reg dst, GLuint msg_type,
644 const sampler_message_arg *args, int num_args);
645 void render_target_write();
646
647 /**
648 * Base-2 logarithm of the maximum number of samples that can be blended.
649 */
650 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
651
652 void *mem_ctx;
653 struct brw_context *brw;
654 const brw_blorp_blit_prog_key *key;
655 struct brw_compile func;
656
657 /* Thread dispatch header */
658 struct brw_reg R0;
659
660 /* Pixel X/Y coordinates (always in R1). */
661 struct brw_reg R1;
662
663 /* Push constants */
664 struct brw_reg dst_x0;
665 struct brw_reg dst_x1;
666 struct brw_reg dst_y0;
667 struct brw_reg dst_y1;
668 /* Top right coordinates of the rectangular grid used for scaled blitting */
669 struct brw_reg rect_grid_x1;
670 struct brw_reg rect_grid_y1;
671 struct {
672 struct brw_reg multiplier;
673 struct brw_reg offset;
674 } x_transform, y_transform;
675
676 /* Data read from texture (4 vec16's per array element) */
677 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
678
679 /* Auxiliary storage for the contents of the MCS surface.
680 *
681 * Since the sampler always returns 8 registers worth of data, this is 8
682 * registers wide, even though we only use the first 2 registers of it.
683 */
684 struct brw_reg mcs_data;
685
686 /* X coordinates. We have two of them so that we can perform coordinate
687 * transformations easily.
688 */
689 struct brw_reg x_coords[2];
690
691 /* Y coordinates. We have two of them so that we can perform coordinate
692 * transformations easily.
693 */
694 struct brw_reg y_coords[2];
695
696 /* X, Y coordinates of the pixel from which we need to fetch the specific
697 * sample. These are used for multisample scaled blitting.
698 */
699 struct brw_reg x_sample_coords;
700 struct brw_reg y_sample_coords;
701
702 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
703 struct brw_reg x_frac;
704 struct brw_reg y_frac;
705
706 /* Which element of x_coords and y_coords is currently in use.
707 */
708 int xy_coord_index;
709
710 /* True if, at the point in the program currently being compiled, the
711 * sample index is known to be zero.
712 */
713 bool s_is_zero;
714
715 /* Register storing the sample index when s_is_zero is false. */
716 struct brw_reg sample_index;
717
718 /* Temporaries */
719 struct brw_reg t1;
720 struct brw_reg t2;
721
722 /* MRF used for sampling and render target writes */
723 GLuint base_mrf;
724 };
725
726 brw_blorp_blit_program::brw_blorp_blit_program(
727 struct brw_context *brw,
728 const brw_blorp_blit_prog_key *key)
729 : mem_ctx(ralloc_context(NULL)),
730 brw(brw),
731 key(key)
732 {
733 brw_init_compile(brw, &func, mem_ctx);
734 }
735
736 brw_blorp_blit_program::~brw_blorp_blit_program()
737 {
738 ralloc_free(mem_ctx);
739 }
740
741 const GLuint *
742 brw_blorp_blit_program::compile(struct brw_context *brw,
743 GLuint *program_size)
744 {
745 /* Sanity checks */
746 if (key->dst_tiled_w && key->rt_samples > 0) {
747 /* If the destination image is W tiled and multisampled, then the thread
748 * must be dispatched once per sample, not once per pixel. This is
749 * necessary because after conversion between W and Y tiling, there's no
750 * guarantee that all samples corresponding to a single pixel will still
751 * be together.
752 */
753 assert(key->persample_msaa_dispatch);
754 }
755
756 if (key->blend) {
757 /* We are blending, which means we won't have an opportunity to
758 * translate the tiling and sample count for the texture surface. So
759 * the surface state for the texture must be configured with the correct
760 * tiling and sample count.
761 */
762 assert(!key->src_tiled_w);
763 assert(key->tex_samples == key->src_samples);
764 assert(key->tex_layout == key->src_layout);
765 assert(key->tex_samples > 0);
766 }
767
768 if (key->persample_msaa_dispatch) {
769 /* It only makes sense to do persample dispatch if the render target is
770 * configured as multisampled.
771 */
772 assert(key->rt_samples > 0);
773 }
774
775 /* Make sure layout is consistent with sample count */
776 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
777 (key->tex_samples == 0));
778 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
779 (key->rt_samples == 0));
780 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
781 (key->src_samples == 0));
782 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
783 (key->dst_samples == 0));
784
785 /* Set up prog_data */
786 memset(&prog_data, 0, sizeof(prog_data));
787 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
788
789 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
790
791 alloc_regs();
792 compute_frag_coords();
793
794 /* Render target and texture hardware don't support W tiling. */
795 const bool rt_tiled_w = false;
796 const bool tex_tiled_w = false;
797
798 /* The address that data will be written to is determined by the
799 * coordinates supplied to the WM thread and the tiling and sample count of
800 * the render target, according to the formula:
801 *
802 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
803 *
804 * If the actual tiling and sample count of the destination surface are not
805 * the same as the configuration of the render target, then these
806 * coordinates are wrong and we have to adjust them to compensate for the
807 * difference.
808 */
809 if (rt_tiled_w != key->dst_tiled_w ||
810 key->rt_samples != key->dst_samples ||
811 key->rt_layout != key->dst_layout) {
812 encode_msaa(key->rt_samples, key->rt_layout);
813 /* Now (X, Y, S) = detile(rt_tiling, offset) */
814 translate_tiling(rt_tiled_w, key->dst_tiled_w);
815 /* Now (X, Y, S) = detile(dst_tiling, offset) */
816 decode_msaa(key->dst_samples, key->dst_layout);
817 }
818
819 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
820 *
821 * That is: X, Y and S now contain the true coordinates and sample index of
822 * the data that the WM thread should output.
823 *
824 * If we need to kill pixels that are outside the destination rectangle,
825 * now is the time to do it.
826 */
827
828 if (key->use_kill)
829 kill_if_outside_dst_rect();
830
831 /* Next, apply a translation to obtain coordinates in the source image. */
832 translate_dst_to_src();
833
834 /* If the source image is not multisampled, then we want to fetch sample
835 * number 0, because that's the only sample there is.
836 */
837 if (key->src_samples == 0)
838 s_is_zero = true;
839
840 /* X, Y, and S are now the coordinates of the pixel in the source image
841 * that we want to texture from. Exception: if we are blending, then S is
842 * irrelevant, because we are going to fetch all samples.
843 */
844 if (key->blend && !key->blit_scaled) {
845 if (brw->gen == 6) {
846 /* Gen6 hardware an automatically blend using the SAMPLE message */
847 single_to_blend();
848 sample(texture_data[0]);
849 } else {
850 /* Gen7+ hardware doesn't automaticaly blend. */
851 manual_blend_average(key->src_samples);
852 }
853 } else if(key->blend && key->blit_scaled) {
854 manual_blend_bilinear(key->src_samples);
855 } else {
856 /* We aren't blending, which means we just want to fetch a single sample
857 * from the source surface. The address that we want to fetch from is
858 * related to the X, Y and S values according to the formula:
859 *
860 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
861 *
862 * If the actual tiling and sample count of the source surface are not
863 * the same as the configuration of the texture, then we need to adjust
864 * the coordinates to compensate for the difference.
865 */
866 if (tex_tiled_w != key->src_tiled_w ||
867 key->tex_samples != key->src_samples ||
868 key->tex_layout != key->src_layout) {
869 encode_msaa(key->src_samples, key->src_layout);
870 /* Now (X, Y, S) = detile(src_tiling, offset) */
871 translate_tiling(key->src_tiled_w, tex_tiled_w);
872 /* Now (X, Y, S) = detile(tex_tiling, offset) */
873 decode_msaa(key->tex_samples, key->tex_layout);
874 }
875
876 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
877 *
878 * In other words: X, Y, and S now contain values which, when passed to
879 * the texturing unit, will cause data to be read from the correct
880 * memory location. So we can fetch the texel now.
881 */
882 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
883 mcs_fetch();
884 texel_fetch(texture_data[0]);
885 }
886
887 /* Finally, write the fetched (or blended) value to the render target and
888 * terminate the thread.
889 */
890 render_target_write();
891
892 if (unlikely(INTEL_DEBUG & DEBUG_BLORP)) {
893 printf("Native code for BLORP blit:\n");
894 brw_dump_compile(&func, stdout, 0, func.next_insn_offset);
895 printf("\n");
896 }
897 return brw_get_program(&func, program_size);
898 }
899
900 void
901 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
902 {
903 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
904 #define ALLOC_REG(name) \
905 this->name = \
906 brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
907 base_reg + CONST_LOC(name) / 32, \
908 (CONST_LOC(name) % 32) / 4)
909
910 ALLOC_REG(dst_x0);
911 ALLOC_REG(dst_x1);
912 ALLOC_REG(dst_y0);
913 ALLOC_REG(dst_y1);
914 ALLOC_REG(rect_grid_x1);
915 ALLOC_REG(rect_grid_y1);
916 ALLOC_REG(x_transform.multiplier);
917 ALLOC_REG(x_transform.offset);
918 ALLOC_REG(y_transform.multiplier);
919 ALLOC_REG(y_transform.offset);
920 #undef CONST_LOC
921 #undef ALLOC_REG
922 }
923
924 void
925 brw_blorp_blit_program::alloc_regs()
926 {
927 int reg = 0;
928 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
929 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
930 prog_data.first_curbe_grf = reg;
931 alloc_push_const_regs(reg);
932 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
933 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
934 this->texture_data[i] =
935 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
936 reg += 8;
937 }
938 this->mcs_data =
939 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
940
941 for (int i = 0; i < 2; ++i) {
942 this->x_coords[i]
943 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
944 reg += 2;
945 this->y_coords[i]
946 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
947 reg += 2;
948 }
949
950 if (key->blit_scaled && key->blend) {
951 this->x_sample_coords = brw_vec8_grf(reg, 0);
952 reg += 2;
953 this->y_sample_coords = brw_vec8_grf(reg, 0);
954 reg += 2;
955 this->x_frac = brw_vec8_grf(reg, 0);
956 reg += 2;
957 this->y_frac = brw_vec8_grf(reg, 0);
958 reg += 2;
959 }
960
961 this->xy_coord_index = 0;
962 this->sample_index
963 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
964 reg += 2;
965 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
966 reg += 2;
967 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
968 reg += 2;
969
970 /* Make sure we didn't run out of registers */
971 assert(reg <= GEN7_MRF_HACK_START);
972
973 int mrf = 2;
974 this->base_mrf = mrf;
975 }
976
977 /* In the code that follows, X and Y can be used to quickly refer to the
978 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
979 * prime") to the inactive elements.
980 *
981 * S can be used to quickly refer to sample_index.
982 */
983 #define X x_coords[xy_coord_index]
984 #define Y y_coords[xy_coord_index]
985 #define Xp x_coords[!xy_coord_index]
986 #define Yp y_coords[!xy_coord_index]
987 #define S sample_index
988
989 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
990 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
991 */
992 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
993
994 /**
995 * Emit code to compute the X and Y coordinates of the pixels being rendered
996 * by this WM invocation.
997 *
998 * Assuming the render target is set up for Y tiling, these (X, Y) values are
999 * related to the address offset where outputs will be written by the formula:
1000 *
1001 * (X, Y, S) = decode_msaa(detile(offset)).
1002 *
1003 * (See brw_blorp_blit_program).
1004 */
1005 void
1006 brw_blorp_blit_program::compute_frag_coords()
1007 {
1008 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
1009 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
1010 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
1011 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
1012 *
1013 * Pixels within a subspan are laid out in this arrangement:
1014 * 0 1
1015 * 2 3
1016 *
1017 * So, to compute the coordinates of each pixel, we need to read every 2nd
1018 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
1019 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
1020 * In other words, the data we want to access is R1.4<2;4,0>UW.
1021 *
1022 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
1023 * result, since pixels n+1 and n+3 are in the right half of the subspan.
1024 */
1025 brw_ADD(&func, vec16(retype(X, BRW_REGISTER_TYPE_UW)),
1026 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
1027
1028 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
1029 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
1030 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
1031 * R1.4<2;4,0>UW).
1032 *
1033 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
1034 * pixels n+2 and n+3 are in the bottom half of the subspan.
1035 */
1036 brw_ADD(&func, vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
1037 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
1038
1039 /* Move the coordinates to UD registers. */
1040 brw_MOV(&func, vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
1041 brw_MOV(&func, vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
1042 SWAP_XY_AND_XPYP();
1043
1044 if (key->persample_msaa_dispatch) {
1045 switch (key->rt_samples) {
1046 case 4: {
1047 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
1048 * Therefore, subspan 0 will represent sample 0, subspan 1 will
1049 * represent sample 1, and so on.
1050 *
1051 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
1052 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
1053 * populate a temporary variable with the sequence (0, 1, 2, 3), and
1054 * then copy from it using vstride=1, width=4, hstride=0.
1055 */
1056 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
1057 brw_MOV(&func, vec16(t1_uw1), brw_imm_v(0x3210));
1058 /* Move to UD sample_index register. */
1059 brw_MOV(&func, S, stride(t1_uw1, 1, 4, 0));
1060 brw_MOV(&func, offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
1061 break;
1062 }
1063 case 8: {
1064 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
1065 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
1066 * subspan 1 will represent sample 1, and so on. We can find the
1067 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
1068 * Index") and multiplying by two (since samples are always delivered
1069 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
1070 * 0xc0) >> 5.
1071 *
1072 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
1073 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
1074 * variable with the sequence (0, 1, 2, 3), and then reading from it
1075 * using vstride=1, width=4, hstride=0.
1076 */
1077 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
1078 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
1079 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
1080 brw_AND(&func, t1_ud1, r0_ud1, brw_imm_ud(0xc0));
1081 brw_SHR(&func, t1_ud1, t1_ud1, brw_imm_ud(5));
1082 brw_MOV(&func, vec16(t2_uw1), brw_imm_v(0x3210));
1083 brw_ADD(&func, vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
1084 stride(t2_uw1, 1, 4, 0));
1085 brw_ADD(&func, offset(S, 1),
1086 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
1087 suboffset(stride(t2_uw1, 1, 4, 0), 2));
1088 break;
1089 }
1090 default:
1091 assert(!"Unrecognized sample count in "
1092 "brw_blorp_blit_program::compute_frag_coords()");
1093 break;
1094 }
1095 s_is_zero = false;
1096 } else {
1097 /* Either the destination surface is single-sampled, or the WM will be
1098 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
1099 * per pixel). In either case, it's not meaningful to compute a sample
1100 * value. Just set it to 0.
1101 */
1102 s_is_zero = true;
1103 }
1104 }
1105
1106 /**
1107 * Emit code to compensate for the difference between Y and W tiling.
1108 *
1109 * This code modifies the X and Y coordinates according to the formula:
1110 *
1111 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
1112 *
1113 * (See brw_blorp_blit_program).
1114 *
1115 * It can only translate between W and Y tiling, so new_tiling and old_tiling
1116 * are booleans where true represents W tiling and false represents Y tiling.
1117 */
1118 void
1119 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
1120 {
1121 if (old_tiled_w == new_tiled_w)
1122 return;
1123
1124 /* In the code that follows, we can safely assume that S = 0, because W
1125 * tiling formats always use IMS layout.
1126 */
1127 assert(s_is_zero);
1128
1129 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1130 if (new_tiled_w) {
1131 /* Given X and Y coordinates that describe an address using Y tiling,
1132 * translate to the X and Y coordinates that describe the same address
1133 * using W tiling.
1134 *
1135 * If we break down the low order bits of X and Y, using a
1136 * single letter to represent each low-order bit:
1137 *
1138 * X = A << 7 | 0bBCDEFGH
1139 * Y = J << 5 | 0bKLMNP (1)
1140 *
1141 * Then we can apply the Y tiling formula to see the memory offset being
1142 * addressed:
1143 *
1144 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1145 *
1146 * If we apply the W detiling formula to this memory location, that the
1147 * corresponding X' and Y' coordinates are:
1148 *
1149 * X' = A << 6 | 0bBCDPFH (3)
1150 * Y' = J << 6 | 0bKLMNEG
1151 *
1152 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1153 * we need to make the following computation:
1154 *
1155 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1156 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1157 */
1158 brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1159 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1160 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1161 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1162 brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1163 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1164 brw_OR(&func, Xp, t1, t2);
1165 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1166 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1167 brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1168 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1169 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1170 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1171 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1172 brw_OR(&func, Yp, t1, t2);
1173 SWAP_XY_AND_XPYP();
1174 } else {
1175 /* Applying the same logic as above, but in reverse, we obtain the
1176 * formulas:
1177 *
1178 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1179 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1180 */
1181 brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1182 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1183 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1184 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1185 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1186 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1187 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1188 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1189 | (Y & 0b1) << 1 */
1190 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1191 brw_OR(&func, Xp, t1, t2);
1192 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1193 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1194 brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
1195 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1196 brw_OR(&func, Yp, t1, t2);
1197 SWAP_XY_AND_XPYP();
1198 }
1199 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1200 }
1201
1202 /**
1203 * Emit code to compensate for the difference between MSAA and non-MSAA
1204 * surfaces.
1205 *
1206 * This code modifies the X and Y coordinates according to the formula:
1207 *
1208 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1209 *
1210 * (See brw_blorp_blit_program).
1211 */
1212 void
1213 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1214 intel_msaa_layout layout)
1215 {
1216 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1217 switch (layout) {
1218 case INTEL_MSAA_LAYOUT_NONE:
1219 /* No translation necessary, and S should already be zero. */
1220 assert(s_is_zero);
1221 break;
1222 case INTEL_MSAA_LAYOUT_CMS:
1223 /* We can't compensate for compressed layout since at this point in the
1224 * program we haven't read from the MCS buffer.
1225 */
1226 assert(!"Bad layout in encode_msaa");
1227 break;
1228 case INTEL_MSAA_LAYOUT_UMS:
1229 /* No translation necessary. */
1230 break;
1231 case INTEL_MSAA_LAYOUT_IMS:
1232 switch (num_samples) {
1233 case 4:
1234 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1235 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1236 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1237 */
1238 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1239 if (!s_is_zero) {
1240 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
1241 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1242 }
1243 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1244 | (S & 0b1) << 1 */
1245 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1246 brw_OR(&func, Xp, t1, t2);
1247 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1248 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1249 if (!s_is_zero) {
1250 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
1251 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1252 }
1253 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1254 brw_OR(&func, Yp, t1, t2);
1255 break;
1256 case 8:
1257 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1258 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1259 * | (X & 0b1)
1260 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1261 */
1262 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1263 brw_SHL(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1264 if (!s_is_zero) {
1265 brw_AND(&func, t2, S, brw_imm_uw(4)); /* S & 0b100 */
1266 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1267 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
1268 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1269 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1270 | (S & 0b1) << 1 */
1271 }
1272 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1273 brw_OR(&func, Xp, t1, t2);
1274 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1275 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1276 if (!s_is_zero) {
1277 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
1278 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1279 }
1280 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1281 brw_OR(&func, Yp, t1, t2);
1282 break;
1283 }
1284 SWAP_XY_AND_XPYP();
1285 s_is_zero = true;
1286 break;
1287 }
1288 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1289 }
1290
1291 /**
1292 * Emit code to compensate for the difference between MSAA and non-MSAA
1293 * surfaces.
1294 *
1295 * This code modifies the X and Y coordinates according to the formula:
1296 *
1297 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1298 *
1299 * (See brw_blorp_blit_program).
1300 */
1301 void
1302 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1303 intel_msaa_layout layout)
1304 {
1305 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1306 switch (layout) {
1307 case INTEL_MSAA_LAYOUT_NONE:
1308 /* No translation necessary, and S should already be zero. */
1309 assert(s_is_zero);
1310 break;
1311 case INTEL_MSAA_LAYOUT_CMS:
1312 /* We can't compensate for compressed layout since at this point in the
1313 * program we don't have access to the MCS buffer.
1314 */
1315 assert(!"Bad layout in encode_msaa");
1316 break;
1317 case INTEL_MSAA_LAYOUT_UMS:
1318 /* No translation necessary. */
1319 break;
1320 case INTEL_MSAA_LAYOUT_IMS:
1321 assert(s_is_zero);
1322 switch (num_samples) {
1323 case 4:
1324 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1325 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1326 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1327 * S = (Y & 0b10) | (X & 0b10) >> 1
1328 */
1329 brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1330 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1331 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1332 brw_OR(&func, Xp, t1, t2);
1333 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1334 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1335 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1336 brw_OR(&func, Yp, t1, t2);
1337 brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1338 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1339 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1340 brw_OR(&func, S, t1, t2);
1341 break;
1342 case 8:
1343 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1344 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1345 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1346 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1347 */
1348 brw_AND(&func, t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1349 brw_SHR(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1350 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1351 brw_OR(&func, Xp, t1, t2);
1352 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1353 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1354 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1355 brw_OR(&func, Yp, t1, t2);
1356 brw_AND(&func, t1, X, brw_imm_uw(4)); /* X & 0b100 */
1357 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1358 brw_OR(&func, t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1359 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1360 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1361 brw_OR(&func, S, t1, t2);
1362 break;
1363 }
1364 s_is_zero = false;
1365 SWAP_XY_AND_XPYP();
1366 break;
1367 }
1368 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1369 }
1370
1371 /**
1372 * Emit code that kills pixels whose X and Y coordinates are outside the
1373 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
1374 * dst_x1, dst_y1).
1375 */
1376 void
1377 brw_blorp_blit_program::kill_if_outside_dst_rect()
1378 {
1379 struct brw_reg f0 = brw_flag_reg(0, 0);
1380 struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1381 struct brw_reg null32 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
1382
1383 brw_CMP(&func, null32, BRW_CONDITIONAL_GE, X, dst_x0);
1384 brw_CMP(&func, null32, BRW_CONDITIONAL_GE, Y, dst_y0);
1385 brw_CMP(&func, null32, BRW_CONDITIONAL_L, X, dst_x1);
1386 brw_CMP(&func, null32, BRW_CONDITIONAL_L, Y, dst_y1);
1387
1388 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1389 brw_push_insn_state(&func);
1390 brw_set_mask_control(&func, BRW_MASK_DISABLE);
1391 brw_AND(&func, g1, f0, g1);
1392 brw_pop_insn_state(&func);
1393 }
1394
1395 #define X_f retype(X, BRW_REGISTER_TYPE_F)
1396 #define Y_f retype(Y, BRW_REGISTER_TYPE_F)
1397 #define Xp_f retype(Xp, BRW_REGISTER_TYPE_F)
1398 #define Yp_f retype(Yp, BRW_REGISTER_TYPE_F)
1399 /**
1400 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1401 * coordinates.
1402 */
1403 void
1404 brw_blorp_blit_program::translate_dst_to_src()
1405 {
1406 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1407 /* Move the UD coordinates to float registers. */
1408 brw_MOV(&func, Xp_f, X);
1409 brw_MOV(&func, Yp_f, Y);
1410 /* Scale and offset */
1411 brw_MUL(&func, X_f, Xp_f, x_transform.multiplier);
1412 brw_MUL(&func, Y_f, Yp_f, y_transform.multiplier);
1413 brw_ADD(&func, X_f, X_f, x_transform.offset);
1414 brw_ADD(&func, Y_f, Y_f, y_transform.offset);
1415 if (key->blit_scaled && key->blend) {
1416 /* Translate coordinates to lay out the samples in a rectangular grid
1417 * roughly corresponding to sample locations.
1418 */
1419 brw_MUL(&func, X_f, X_f, brw_imm_f(key->x_scale));
1420 brw_MUL(&func, Y_f, Y_f, brw_imm_f(key->y_scale));
1421 /* Adjust coordinates so that integers represent pixel centers rather
1422 * than pixel edges.
1423 */
1424 brw_ADD(&func, X_f, X_f, brw_imm_f(-0.5));
1425 brw_ADD(&func, Y_f, Y_f, brw_imm_f(-0.5));
1426
1427 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1428 * texels on texture edges.
1429 */
1430 clamp_tex_coords(X_f, Y_f,
1431 brw_imm_f(0.0), brw_imm_f(0.0),
1432 rect_grid_x1, rect_grid_y1);
1433
1434 /* Store the fractional parts to be used as bilinear interpolation
1435 * coefficients.
1436 */
1437 brw_FRC(&func, x_frac, X_f);
1438 brw_FRC(&func, y_frac, Y_f);
1439
1440 /* Round the float coordinates down to nearest integer */
1441 brw_RNDD(&func, Xp_f, X_f);
1442 brw_RNDD(&func, Yp_f, Y_f);
1443 brw_MUL(&func, X_f, Xp_f, brw_imm_f(1 / key->x_scale));
1444 brw_MUL(&func, Y_f, Yp_f, brw_imm_f(1 / key->y_scale));
1445 } else {
1446 /* Round the float coordinates down to nearest integer by moving to
1447 * UD registers.
1448 */
1449 brw_MOV(&func, Xp, X_f);
1450 brw_MOV(&func, Yp, Y_f);
1451 }
1452 SWAP_XY_AND_XPYP();
1453 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1454 }
1455
1456 void
1457 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1458 struct brw_reg regY,
1459 struct brw_reg clampX0,
1460 struct brw_reg clampY0,
1461 struct brw_reg clampX1,
1462 struct brw_reg clampY1)
1463 {
1464 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_L, regX, clampX0);
1465 brw_MOV(&func, regX, clampX0);
1466 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1467
1468 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_G, regX, clampX1);
1469 brw_MOV(&func, regX, clampX1);
1470 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1471
1472 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_L, regY, clampY0);
1473 brw_MOV(&func, regY, clampY0);
1474 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1475
1476 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_G, regY, clampY1);
1477 brw_MOV(&func, regY, clampY1);
1478 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1479 }
1480 #undef X_f
1481 #undef Y_f
1482 #undef Xp_f
1483 #undef Yp_f
1484
1485 /**
1486 * Emit code to transform the X and Y coordinates as needed for blending
1487 * together the different samples in an MSAA texture.
1488 */
1489 void
1490 brw_blorp_blit_program::single_to_blend()
1491 {
1492 /* When looking up samples in an MSAA texture using the SAMPLE message,
1493 * Gen6 requires the texture coordinates to be odd integers (so that they
1494 * correspond to the center of a 2x2 block representing the four samples
1495 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1496 * each by 2 and then add 1.
1497 */
1498 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1499 brw_SHL(&func, t1, X, brw_imm_w(1));
1500 brw_SHL(&func, t2, Y, brw_imm_w(1));
1501 brw_ADD(&func, Xp, t1, brw_imm_w(1));
1502 brw_ADD(&func, Yp, t2, brw_imm_w(1));
1503 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1504 SWAP_XY_AND_XPYP();
1505 }
1506
1507
1508 /**
1509 * Count the number of trailing 1 bits in the given value. For example:
1510 *
1511 * count_trailing_one_bits(0) == 0
1512 * count_trailing_one_bits(7) == 3
1513 * count_trailing_one_bits(11) == 2
1514 */
1515 inline int count_trailing_one_bits(unsigned value)
1516 {
1517 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1518 return __builtin_ctz(~value);
1519 #else
1520 return _mesa_bitcount(value & ~(value + 1));
1521 #endif
1522 }
1523
1524
1525 void
1526 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1527 {
1528 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1529 mcs_fetch();
1530
1531 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1532 *
1533 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1534 *
1535 * This ensures that when all samples have the same value, no numerical
1536 * precision is lost, since each addition operation always adds two equal
1537 * values, and summing two equal floating point values does not lose
1538 * precision.
1539 *
1540 * We perform this computation by treating the texture_data array as a
1541 * stack and performing the following operations:
1542 *
1543 * - push sample 0 onto stack
1544 * - push sample 1 onto stack
1545 * - add top two stack entries
1546 * - push sample 2 onto stack
1547 * - push sample 3 onto stack
1548 * - add top two stack entries
1549 * - add top two stack entries
1550 * - divide top stack entry by 4
1551 *
1552 * Note that after pushing sample i onto the stack, the number of add
1553 * operations we do is equal to the number of trailing 1 bits in i. This
1554 * works provided the total number of samples is a power of two, which it
1555 * always is for i965.
1556 *
1557 * For integer formats, we replace the add operations with average
1558 * operations and skip the final division.
1559 */
1560 typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *,
1561 struct brw_reg,
1562 struct brw_reg,
1563 struct brw_reg);
1564 brw_op2_ptr combine_op =
1565 key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG;
1566 unsigned stack_depth = 0;
1567 for (unsigned i = 0; i < num_samples; ++i) {
1568 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1569
1570 /* Push sample i onto the stack */
1571 assert(stack_depth < ARRAY_SIZE(texture_data));
1572 if (i == 0) {
1573 s_is_zero = true;
1574 } else {
1575 s_is_zero = false;
1576 brw_MOV(&func, vec16(S), brw_imm_ud(i));
1577 }
1578 texel_fetch(texture_data[stack_depth++]);
1579
1580 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1581 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1582 * suggests an optimization:
1583 *
1584 * "A simple optimization with probable large return in
1585 * performance is to compare the MCS value to zero (indicating
1586 * all samples are on sample slice 0), and sample only from
1587 * sample slice 0 using ld2dss if MCS is zero."
1588 *
1589 * Note that in the case where the MCS value is zero, sampling from
1590 * sample slice 0 using ld2dss and sampling from sample 0 using
1591 * ld2dms are equivalent (since all samples are on sample slice 0).
1592 * Since we have already sampled from sample 0, all we need to do is
1593 * skip the remaining fetches and averaging if MCS is zero.
1594 */
1595 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
1596 mcs_data, brw_imm_ud(0));
1597 brw_IF(&func, BRW_EXECUTE_16);
1598 }
1599
1600 /* Do count_trailing_one_bits(i) times */
1601 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1602 assert(stack_depth >= 2);
1603 --stack_depth;
1604
1605 /* TODO: should use a smaller loop bound for non_RGBA formats */
1606 for (int k = 0; k < 4; ++k) {
1607 combine_op(&func, offset(texture_data[stack_depth - 1], 2*k),
1608 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1609 offset(vec8(texture_data[stack_depth]), 2*k));
1610 }
1611 }
1612 }
1613
1614 /* We should have just 1 sample on the stack now. */
1615 assert(stack_depth == 1);
1616
1617 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1618 /* Scale the result down by a factor of num_samples */
1619 /* TODO: should use a smaller loop bound for non-RGBA formats */
1620 for (int j = 0; j < 4; ++j) {
1621 brw_MUL(&func, offset(texture_data[0], 2*j),
1622 offset(vec8(texture_data[0]), 2*j),
1623 brw_imm_f(1.0/num_samples));
1624 }
1625 }
1626
1627 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1628 brw_ENDIF(&func);
1629 }
1630
1631 void
1632 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1633 {
1634 /* We do this computation by performing the following operations:
1635 *
1636 * In case of 4x, 8x MSAA:
1637 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1638 * which are later used for interpolation
1639 * - linearly interpolate samples a and b in X
1640 * - linearly interpolate samples c and d in X
1641 * - linearly interpolate the results of last two operations in Y
1642 *
1643 * result = lrp(lrp(a + b) + lrp(c + d))
1644 */
1645 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1646 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1647 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1648 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1649
1650 for (unsigned i = 0; i < 4; ++i) {
1651 assert(i < ARRAY_SIZE(texture_data));
1652 s_is_zero = false;
1653
1654 /* Compute pixel coordinates */
1655 brw_ADD(&func, vec16(x_sample_coords), Xp_f,
1656 brw_imm_f((float)(i & 0x1) * (1.0 / key->x_scale)));
1657 brw_ADD(&func, vec16(y_sample_coords), Yp_f,
1658 brw_imm_f((float)((i >> 1) & 0x1) * (1.0 / key->y_scale)));
1659 brw_MOV(&func, vec16(X), x_sample_coords);
1660 brw_MOV(&func, vec16(Y), y_sample_coords);
1661
1662 /* The MCS value we fetch has to match up with the pixel that we're
1663 * sampling from. Since we sample from different pixels in each
1664 * iteration of this "for" loop, the call to mcs_fetch() should be
1665 * here inside the loop after computing the pixel coordinates.
1666 */
1667 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1668 mcs_fetch();
1669
1670 /* Compute sample index and map the sample index to a sample number.
1671 * Sample index layout shows the numbering of slots in a rectangular
1672 * grid of samples with in a pixel. Sample number layout shows the
1673 * rectangular grid of samples roughly corresponding to the real sample
1674 * locations with in a pixel.
1675 * In case of 4x MSAA, layout of sample indices matches the layout of
1676 * sample numbers:
1677 * ---------
1678 * | 0 | 1 |
1679 * ---------
1680 * | 2 | 3 |
1681 * ---------
1682 *
1683 * In case of 8x MSAA the two layouts don't match.
1684 * sample index layout : --------- sample number layout : ---------
1685 * | 0 | 1 | | 5 | 2 |
1686 * --------- ---------
1687 * | 2 | 3 | | 4 | 6 |
1688 * --------- ---------
1689 * | 4 | 5 | | 0 | 3 |
1690 * --------- ---------
1691 * | 6 | 7 | | 7 | 1 |
1692 * --------- ---------
1693 */
1694 brw_FRC(&func, vec16(t1_f), x_sample_coords);
1695 brw_FRC(&func, vec16(t2_f), y_sample_coords);
1696 brw_MUL(&func, vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1697 brw_MUL(&func, vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1698 brw_ADD(&func, vec16(t1_f), t1_f, t2_f);
1699 brw_MOV(&func, vec16(S), t1_f);
1700
1701 if (num_samples == 8) {
1702 /* Map the sample index to a sample number */
1703 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_L,
1704 S, brw_imm_d(4));
1705 brw_IF(&func, BRW_EXECUTE_16);
1706 {
1707 brw_MOV(&func, vec16(t2), brw_imm_d(5));
1708 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1709 S, brw_imm_d(1));
1710 brw_MOV(&func, vec16(t2), brw_imm_d(2));
1711 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1712 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1713 S, brw_imm_d(2));
1714 brw_MOV(&func, vec16(t2), brw_imm_d(4));
1715 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1716 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1717 S, brw_imm_d(3));
1718 brw_MOV(&func, vec16(t2), brw_imm_d(6));
1719 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1720 }
1721 brw_ELSE(&func);
1722 {
1723 brw_MOV(&func, vec16(t2), brw_imm_d(0));
1724 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1725 S, brw_imm_d(5));
1726 brw_MOV(&func, vec16(t2), brw_imm_d(3));
1727 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1728 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1729 S, brw_imm_d(6));
1730 brw_MOV(&func, vec16(t2), brw_imm_d(7));
1731 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1732 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1733 S, brw_imm_d(7));
1734 brw_MOV(&func, vec16(t2), brw_imm_d(1));
1735 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1736 }
1737 brw_ENDIF(&func);
1738 brw_MOV(&func, vec16(S), t2);
1739 }
1740 texel_fetch(texture_data[i]);
1741 }
1742
1743 #define SAMPLE(x, y) offset(texture_data[x], y)
1744 brw_set_access_mode(&func, BRW_ALIGN_16);
1745 for (int index = 3; index > 0; ) {
1746 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1747 * Counter value of 8 in 'for' loop below is used to interpolate all
1748 * the color components.
1749 */
1750 for (int k = 0; k < 8; ++k)
1751 brw_LRP(&func,
1752 vec8(SAMPLE(index - 1, k)),
1753 offset(x_frac, k & 1),
1754 SAMPLE(index, k),
1755 SAMPLE(index - 1, k));
1756 index -= 2;
1757 }
1758 for (int k = 0; k < 8; ++k)
1759 brw_LRP(&func,
1760 vec8(SAMPLE(0, k)),
1761 offset(y_frac, k & 1),
1762 vec8(SAMPLE(2, k)),
1763 vec8(SAMPLE(0, k)));
1764 brw_set_access_mode(&func, BRW_ALIGN_1);
1765 #undef SAMPLE
1766 }
1767
1768 /**
1769 * Emit code to look up a value in the texture using the SAMPLE message (which
1770 * does blending of MSAA surfaces).
1771 */
1772 void
1773 brw_blorp_blit_program::sample(struct brw_reg dst)
1774 {
1775 static const sampler_message_arg args[2] = {
1776 SAMPLER_MESSAGE_ARG_U_FLOAT,
1777 SAMPLER_MESSAGE_ARG_V_FLOAT
1778 };
1779
1780 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args,
1781 ARRAY_SIZE(args));
1782 }
1783
1784 /**
1785 * Emit code to look up a value in the texture using the SAMPLE_LD message
1786 * (which does a simple texel fetch).
1787 */
1788 void
1789 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1790 {
1791 static const sampler_message_arg gen6_args[5] = {
1792 SAMPLER_MESSAGE_ARG_U_INT,
1793 SAMPLER_MESSAGE_ARG_V_INT,
1794 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1795 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1796 SAMPLER_MESSAGE_ARG_SI_INT
1797 };
1798 static const sampler_message_arg gen7_ld_args[3] = {
1799 SAMPLER_MESSAGE_ARG_U_INT,
1800 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1801 SAMPLER_MESSAGE_ARG_V_INT
1802 };
1803 static const sampler_message_arg gen7_ld2dss_args[3] = {
1804 SAMPLER_MESSAGE_ARG_SI_INT,
1805 SAMPLER_MESSAGE_ARG_U_INT,
1806 SAMPLER_MESSAGE_ARG_V_INT
1807 };
1808 static const sampler_message_arg gen7_ld2dms_args[4] = {
1809 SAMPLER_MESSAGE_ARG_SI_INT,
1810 SAMPLER_MESSAGE_ARG_MCS_INT,
1811 SAMPLER_MESSAGE_ARG_U_INT,
1812 SAMPLER_MESSAGE_ARG_V_INT
1813 };
1814
1815 switch (brw->gen) {
1816 case 6:
1817 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1818 s_is_zero ? 2 : 5);
1819 break;
1820 case 7:
1821 switch (key->tex_layout) {
1822 case INTEL_MSAA_LAYOUT_IMS:
1823 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1824 * Format):
1825 *
1826 * If this field is MSFMT_DEPTH_STENCIL
1827 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1828 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1829 *
1830 * So fall through to emit the same message as we use for
1831 * INTEL_MSAA_LAYOUT_CMS.
1832 */
1833 case INTEL_MSAA_LAYOUT_CMS:
1834 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
1835 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1836 break;
1837 case INTEL_MSAA_LAYOUT_UMS:
1838 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1839 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1840 break;
1841 case INTEL_MSAA_LAYOUT_NONE:
1842 assert(s_is_zero);
1843 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1844 ARRAY_SIZE(gen7_ld_args));
1845 break;
1846 }
1847 break;
1848 default:
1849 assert(!"Should not get here.");
1850 break;
1851 };
1852 }
1853
1854 void
1855 brw_blorp_blit_program::mcs_fetch()
1856 {
1857 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1858 SAMPLER_MESSAGE_ARG_U_INT,
1859 SAMPLER_MESSAGE_ARG_V_INT
1860 };
1861 texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
1862 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1863 }
1864
1865 void
1866 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1867 GLuint msg_type,
1868 const sampler_message_arg *args,
1869 int num_args)
1870 {
1871 struct brw_reg mrf =
1872 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1873 for (int arg = 0; arg < num_args; ++arg) {
1874 switch (args[arg]) {
1875 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1876 brw_MOV(&func, retype(mrf, BRW_REGISTER_TYPE_F), X);
1877 break;
1878 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1879 brw_MOV(&func, retype(mrf, BRW_REGISTER_TYPE_F), Y);
1880 break;
1881 case SAMPLER_MESSAGE_ARG_U_INT:
1882 brw_MOV(&func, mrf, X);
1883 break;
1884 case SAMPLER_MESSAGE_ARG_V_INT:
1885 brw_MOV(&func, mrf, Y);
1886 break;
1887 case SAMPLER_MESSAGE_ARG_SI_INT:
1888 /* Note: on Gen7, this code may be reached with s_is_zero==true
1889 * because in Gen7's ld2dss message, the sample index is the first
1890 * argument. When this happens, we need to move a 0 into the
1891 * appropriate message register.
1892 */
1893 if (s_is_zero)
1894 brw_MOV(&func, mrf, brw_imm_ud(0));
1895 else
1896 brw_MOV(&func, mrf, S);
1897 break;
1898 case SAMPLER_MESSAGE_ARG_MCS_INT:
1899 switch (key->tex_layout) {
1900 case INTEL_MSAA_LAYOUT_CMS:
1901 brw_MOV(&func, mrf, mcs_data);
1902 break;
1903 case INTEL_MSAA_LAYOUT_IMS:
1904 /* When sampling from an IMS surface, MCS data is not relevant,
1905 * and the hardware ignores it. So don't bother populating it.
1906 */
1907 break;
1908 default:
1909 /* We shouldn't be trying to send MCS data with any other
1910 * layouts.
1911 */
1912 assert (!"Unsupported layout for MCS data");
1913 break;
1914 }
1915 break;
1916 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1917 brw_MOV(&func, mrf, brw_imm_ud(0));
1918 break;
1919 }
1920 mrf.nr += 2;
1921 }
1922
1923 brw_SAMPLE(&func,
1924 retype(dst, BRW_REGISTER_TYPE_F) /* dest */,
1925 base_mrf /* msg_reg_nr */,
1926 brw_message_reg(base_mrf) /* src0 */,
1927 BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1928 0 /* sampler */,
1929 msg_type,
1930 8 /* response_length. TODO: should be smaller for non-RGBA formats? */,
1931 mrf.nr - base_mrf /* msg_length */,
1932 0 /* header_present */,
1933 BRW_SAMPLER_SIMD_MODE_SIMD16,
1934 BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1935 }
1936
1937 #undef X
1938 #undef Y
1939 #undef U
1940 #undef V
1941 #undef S
1942 #undef SWAP_XY_AND_XPYP
1943
1944 void
1945 brw_blorp_blit_program::render_target_write()
1946 {
1947 struct brw_reg mrf_rt_write =
1948 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1949 int mrf_offset = 0;
1950
1951 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1952 * so that the render target knows which pixels we killed.
1953 */
1954 bool use_header = key->use_kill;
1955 if (use_header) {
1956 /* Copy R0/1 to MRF */
1957 brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1958 retype(R0, BRW_REGISTER_TYPE_UD));
1959 mrf_offset += 2;
1960 }
1961
1962 /* Copy texture data to MRFs */
1963 for (int i = 0; i < 4; ++i) {
1964 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1965 brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1966 offset(vec8(texture_data[0]), 2*i));
1967 mrf_offset += 2;
1968 }
1969
1970 /* Now write to the render target and terminate the thread */
1971 brw_fb_WRITE(&func,
1972 16 /* dispatch_width */,
1973 base_mrf /* msg_reg_nr */,
1974 mrf_rt_write /* src0 */,
1975 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
1976 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
1977 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1978 0 /* response_length */,
1979 true /* eot */,
1980 use_header);
1981 }
1982
1983
1984 void
1985 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
1986 GLfloat dst0, GLfloat dst1,
1987 bool mirror)
1988 {
1989 float scale = (src1 - src0) / (dst1 - dst0);
1990 if (!mirror) {
1991 /* When not mirroring a coordinate (say, X), we need:
1992 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1993 * Therefore:
1994 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1995 *
1996 * blorp program uses "round toward zero" to convert the
1997 * transformed floating point coordinates to integer coordinates,
1998 * whereas the behaviour we actually want is "round to nearest",
1999 * so 0.5 provides the necessary correction.
2000 */
2001 multiplier = scale;
2002 offset = src0 + (-dst0 + 0.5) * scale;
2003 } else {
2004 /* When mirroring X we need:
2005 * src_x - src_x0 = dst_x1 - dst_x - 0.5
2006 * Therefore:
2007 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
2008 */
2009 multiplier = -scale;
2010 offset = src0 + (dst1 - 0.5) * scale;
2011 }
2012 }
2013
2014
2015 /**
2016 * Determine which MSAA layout the GPU pipeline should be configured for,
2017 * based on the chip generation, the number of samples, and the true layout of
2018 * the image in memory.
2019 */
2020 inline intel_msaa_layout
2021 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
2022 intel_msaa_layout true_layout)
2023 {
2024 if (num_samples <= 1) {
2025 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
2026 * format buffers, by transforming coordinates appropriately.
2027 */
2028 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
2029 true_layout == INTEL_MSAA_LAYOUT_IMS);
2030 return INTEL_MSAA_LAYOUT_NONE;
2031 } else {
2032 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
2033 }
2034
2035 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
2036 if (brw->gen == 6) {
2037 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
2038 }
2039
2040 return true_layout;
2041 }
2042
2043
2044 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
2045 struct intel_mipmap_tree *src_mt,
2046 unsigned src_level, unsigned src_layer,
2047 struct intel_mipmap_tree *dst_mt,
2048 unsigned dst_level, unsigned dst_layer,
2049 GLfloat src_x0, GLfloat src_y0,
2050 GLfloat src_x1, GLfloat src_y1,
2051 GLfloat dst_x0, GLfloat dst_y0,
2052 GLfloat dst_x1, GLfloat dst_y1,
2053 bool mirror_x, bool mirror_y)
2054 {
2055 struct gl_context *ctx = &brw->ctx;
2056 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
2057
2058 src.set(brw, src_mt, src_level, src_layer);
2059 dst.set(brw, dst_mt, dst_level, dst_layer);
2060
2061 src.brw_surfaceformat = dst.brw_surfaceformat;
2062
2063 use_wm_prog = true;
2064 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
2065
2066 /* texture_data_type indicates the register type that should be used to
2067 * manipulate texture data.
2068 */
2069 switch (_mesa_get_format_datatype(src_mt->format)) {
2070 case GL_UNSIGNED_NORMALIZED:
2071 case GL_SIGNED_NORMALIZED:
2072 case GL_FLOAT:
2073 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
2074 break;
2075 case GL_UNSIGNED_INT:
2076 if (src_mt->format == MESA_FORMAT_S8) {
2077 /* We process stencil as though it's an unsigned normalized color */
2078 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
2079 } else {
2080 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
2081 }
2082 break;
2083 case GL_INT:
2084 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
2085 break;
2086 default:
2087 assert(!"Unrecognized blorp format");
2088 break;
2089 }
2090
2091 if (brw->gen > 6) {
2092 /* Gen7's rendering hardware only supports the IMS layout for depth and
2093 * stencil render targets. Blorp always maps its destination surface as
2094 * a color render target (even if it's actually a depth or stencil
2095 * buffer). So if the destination is IMS, we'll have to map it as a
2096 * single-sampled texture and interleave the samples ourselves.
2097 */
2098 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
2099 dst.num_samples = 0;
2100 }
2101
2102 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
2103 /* If the destination surface is a W-tiled multisampled stencil buffer
2104 * that we're mapping as Y tiled, then we need to arrange for the WM
2105 * program to run once per sample rather than once per pixel, because
2106 * the memory layout of related samples doesn't match between W and Y
2107 * tiling.
2108 */
2109 wm_prog_key.persample_msaa_dispatch = true;
2110 }
2111
2112 if (src.num_samples > 0 && dst.num_samples > 1) {
2113 /* We are blitting from a multisample buffer to a multisample buffer, so
2114 * we must preserve samples within a pixel. This means we have to
2115 * arrange for the WM program to run once per sample rather than once
2116 * per pixel.
2117 */
2118 wm_prog_key.persample_msaa_dispatch = true;
2119 }
2120
2121 /* Scaled blitting or not. */
2122 wm_prog_key.blit_scaled =
2123 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2124 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2125
2126 /* Scaling factors used for bilinear filtering in multisample scaled
2127 * blits.
2128 */
2129 wm_prog_key.x_scale = 2.0;
2130 wm_prog_key.y_scale = src_mt->num_samples / 2.0;
2131
2132 /* The render path must be configured to use the same number of samples as
2133 * the destination buffer.
2134 */
2135 num_samples = dst.num_samples;
2136
2137 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
2138 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
2139 base_format != GL_STENCIL_INDEX &&
2140 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
2141 /* We are downsampling a color buffer, so blend. */
2142 wm_prog_key.blend = true;
2143 }
2144
2145 /* src_samples and dst_samples are the true sample counts */
2146 wm_prog_key.src_samples = src_mt->num_samples;
2147 wm_prog_key.dst_samples = dst_mt->num_samples;
2148
2149 /* tex_samples and rt_samples are the sample counts that are set up in
2150 * SURFACE_STATE.
2151 */
2152 wm_prog_key.tex_samples = src.num_samples;
2153 wm_prog_key.rt_samples = dst.num_samples;
2154
2155 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
2156 * use to access the source and destination surfaces.
2157 */
2158 wm_prog_key.tex_layout =
2159 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
2160 wm_prog_key.rt_layout =
2161 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
2162
2163 /* src_layout and dst_layout indicate the true MSAA layout used by src and
2164 * dst.
2165 */
2166 wm_prog_key.src_layout = src_mt->msaa_layout;
2167 wm_prog_key.dst_layout = dst_mt->msaa_layout;
2168
2169 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
2170 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
2171 x0 = wm_push_consts.dst_x0 = dst_x0;
2172 y0 = wm_push_consts.dst_y0 = dst_y0;
2173 x1 = wm_push_consts.dst_x1 = dst_x1;
2174 y1 = wm_push_consts.dst_y1 = dst_y1;
2175 wm_push_consts.rect_grid_x1 = read_fb->Width * wm_prog_key.x_scale - 1.0;
2176 wm_push_consts.rect_grid_y1 = read_fb->Height * wm_prog_key.y_scale - 1.0;
2177
2178 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
2179 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
2180
2181 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
2182 /* We must expand the rectangle we send through the rendering pipeline,
2183 * to account for the fact that we are mapping the destination region as
2184 * single-sampled when it is in fact multisampled. We must also align
2185 * it to a multiple of the multisampling pattern, because the
2186 * differences between multisampled and single-sampled surface formats
2187 * will mean that pixels are scrambled within the multisampling pattern.
2188 * TODO: what if this makes the coordinates too large?
2189 *
2190 * Note: this only works if the destination surface uses the IMS layout.
2191 * If it's UMS, then we have no choice but to set up the rendering
2192 * pipeline as multisampled.
2193 */
2194 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2195 switch (dst_mt->num_samples) {
2196 case 4:
2197 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2198 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2199 x1 = ALIGN(x1 * 2, 4);
2200 y1 = ALIGN(y1 * 2, 4);
2201 break;
2202 case 8:
2203 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2204 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2205 x1 = ALIGN(x1 * 4, 8);
2206 y1 = ALIGN(y1 * 2, 4);
2207 break;
2208 default:
2209 assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
2210 break;
2211 }
2212 wm_prog_key.use_kill = true;
2213 }
2214
2215 if (dst.map_stencil_as_y_tiled) {
2216 /* We must modify the rectangle we send through the rendering pipeline
2217 * (and the size and x/y offset of the destination surface), to account
2218 * for the fact that we are mapping it as Y-tiled when it is in fact
2219 * W-tiled.
2220 *
2221 * Both Y tiling and W tiling can be understood as organizations of
2222 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2223 * is different, but the layout of the 32-byte sub-tiles within the 4k
2224 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2225 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2226 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2227 *
2228 * Therefore, to account for the layout differences within the 32-byte
2229 * sub-tiles, we must expand the rectangle so the X coordinates of its
2230 * edges are multiples of 8 (the W sub-tile width), and its Y
2231 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2232 * Then we need to scale the X and Y coordinates of the rectangle to
2233 * account for the differences in aspect ratio between the Y and W
2234 * sub-tiles. We need to modify the layer width and height similarly.
2235 *
2236 * A correction needs to be applied when MSAA is in use: since
2237 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2238 * we need to align the Y coordinates to multiples of 8, so that when
2239 * they are divided by two they are still multiples of 4.
2240 *
2241 * Note: Since the x/y offset of the surface will be applied using the
2242 * SURFACE_STATE command packet, it will be invisible to the swizzling
2243 * code in the shader; therefore it needs to be in a multiple of the
2244 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2245 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2246 * buffer), and the miplevel alignment used for stencil buffers is 8
2247 * pixels horizontally and either 4 or 8 pixels vertically (see
2248 * intel_horizontal_texture_alignment_unit() and
2249 * intel_vertical_texture_alignment_unit()).
2250 *
2251 * Note: Also, since the SURFACE_STATE command packet can only apply
2252 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2253 * vertically, it is important that the offsets will be multiples of
2254 * these sizes after they are converted into Y-tiled coordinates.
2255 * Fortunately they will be, since we know from above that the offsets
2256 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2257 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2258 *
2259 * TODO: what if this makes the coordinates (or the texture size) too
2260 * large?
2261 */
2262 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2263 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2264 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2265 x1 = ALIGN(x1, x_align) * 2;
2266 y1 = ALIGN(y1, y_align) / 2;
2267 dst.width = ALIGN(dst.width, x_align) * 2;
2268 dst.height = ALIGN(dst.height, y_align) / 2;
2269 dst.x_offset *= 2;
2270 dst.y_offset /= 2;
2271 wm_prog_key.use_kill = true;
2272 }
2273
2274 if (src.map_stencil_as_y_tiled) {
2275 /* We must modify the size and x/y offset of the source surface to
2276 * account for the fact that we are mapping it as Y-tiled when it is in
2277 * fact W tiled.
2278 *
2279 * See the comments above concerning x/y offset alignment for the
2280 * destination surface.
2281 *
2282 * TODO: what if this makes the texture size too large?
2283 */
2284 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2285 src.width = ALIGN(src.width, x_align) * 2;
2286 src.height = ALIGN(src.height, y_align) / 2;
2287 src.x_offset *= 2;
2288 src.y_offset /= 2;
2289 }
2290 }
2291
2292 uint32_t
2293 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2294 brw_blorp_prog_data **prog_data) const
2295 {
2296 uint32_t prog_offset = 0;
2297 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2298 &this->wm_prog_key, sizeof(this->wm_prog_key),
2299 &prog_offset, prog_data)) {
2300 brw_blorp_blit_program prog(brw, &this->wm_prog_key);
2301 GLuint program_size;
2302 const GLuint *program = prog.compile(brw, &program_size);
2303 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2304 &this->wm_prog_key, sizeof(this->wm_prog_key),
2305 program, program_size,
2306 &prog.prog_data, sizeof(prog.prog_data),
2307 &prog_offset, prog_data);
2308 }
2309 return prog_offset;
2310 }