i965: Move pre-draw resolve buffers to dd::UpdateState
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26 #include "main/renderbuffer.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_blorp_blit_eu.h"
33 #include "brw_state.h"
34 #include "brw_meta_util.h"
35
36 #define FILE_DEBUG_FLAG DEBUG_BLORP
37
38 static struct intel_mipmap_tree *
39 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
40 {
41 struct intel_mipmap_tree *mt = irb->mt;
42 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
43 mt = mt->stencil_mt;
44 return mt;
45 }
46
47
48 /**
49 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
50 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
51 * the physical layer holding sample 0. So, for example, if
52 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
53 * 4*n.
54 */
55 void
56 brw_blorp_blit_miptrees(struct brw_context *brw,
57 struct intel_mipmap_tree *src_mt,
58 unsigned src_level, unsigned src_layer,
59 struct intel_mipmap_tree *dst_mt,
60 unsigned dst_level, unsigned dst_layer,
61 float src_x0, float src_y0,
62 float src_x1, float src_y1,
63 float dst_x0, float dst_y0,
64 float dst_x1, float dst_y1,
65 GLenum filter, bool mirror_x, bool mirror_y)
66 {
67 /* Get ready to blit. This includes depth resolving the src and dst
68 * buffers if necessary. Note: it's not necessary to do a color resolve on
69 * the destination buffer because we use the standard render path to render
70 * to destination color buffers, and the standard render path is
71 * fast-color-aware.
72 */
73 intel_miptree_resolve_color(brw, src_mt);
74 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
75 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
76
77 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
78 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
79 __FUNCTION__,
80 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
81 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
82 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
83 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
84 mirror_x, mirror_y);
85
86 brw_blorp_blit_params params(brw,
87 src_mt, src_level, src_layer,
88 dst_mt, dst_level, dst_layer,
89 src_x0, src_y0,
90 src_x1, src_y1,
91 dst_x0, dst_y0,
92 dst_x1, dst_y1,
93 filter, mirror_x, mirror_y);
94 brw_blorp_exec(brw, &params);
95
96 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
97 }
98
99 static void
100 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
101 struct intel_renderbuffer *src_irb,
102 struct intel_renderbuffer *dst_irb,
103 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
104 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
105 GLenum filter, bool mirror_x, bool mirror_y)
106 {
107 /* Find source/dst miptrees */
108 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
109 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
110
111 /* Do the blit */
112 brw_blorp_blit_miptrees(brw,
113 src_mt, src_irb->mt_level, src_irb->mt_layer,
114 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
115 srcX0, srcY0, srcX1, srcY1,
116 dstX0, dstY0, dstX1, dstY1,
117 filter, mirror_x, mirror_y);
118
119 dst_irb->need_downsample = true;
120 }
121
122 static bool
123 try_blorp_blit(struct brw_context *brw,
124 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
125 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
126 GLenum filter, GLbitfield buffer_bit)
127 {
128 struct gl_context *ctx = &brw->ctx;
129
130 /* Sync up the state of window system buffers. We need to do this before
131 * we go looking for the buffers.
132 */
133 intel_prepare_render(brw);
134
135 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
136 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
137
138 bool mirror_x, mirror_y;
139 if (brw_meta_mirror_clip_and_scissor(ctx,
140 &srcX0, &srcY0, &srcX1, &srcY1,
141 &dstX0, &dstY0, &dstX1, &dstY1,
142 &mirror_x, &mirror_y))
143 return true;
144
145 /* Find buffers */
146 struct intel_renderbuffer *src_irb;
147 struct intel_renderbuffer *dst_irb;
148 struct intel_mipmap_tree *src_mt;
149 struct intel_mipmap_tree *dst_mt;
150 switch (buffer_bit) {
151 case GL_COLOR_BUFFER_BIT:
152 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
153 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
154 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
155 if (dst_irb)
156 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
157 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
158 filter, mirror_x, mirror_y);
159 }
160 break;
161 case GL_DEPTH_BUFFER_BIT:
162 src_irb =
163 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
164 dst_irb =
165 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
166 src_mt = find_miptree(buffer_bit, src_irb);
167 dst_mt = find_miptree(buffer_bit, dst_irb);
168
169 /* We can't handle format conversions between Z24 and other formats
170 * since we have to lie about the surface format. See the comments in
171 * brw_blorp_surface_info::set().
172 */
173 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
174 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
175 return false;
176
177 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
178 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
179 filter, mirror_x, mirror_y);
180 break;
181 case GL_STENCIL_BUFFER_BIT:
182 src_irb =
183 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
184 dst_irb =
185 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
186 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
187 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
188 filter, mirror_x, mirror_y);
189 break;
190 default:
191 unreachable("not reached");
192 }
193
194 return true;
195 }
196
197 bool
198 brw_blorp_copytexsubimage(struct brw_context *brw,
199 struct gl_renderbuffer *src_rb,
200 struct gl_texture_image *dst_image,
201 int slice,
202 int srcX0, int srcY0,
203 int dstX0, int dstY0,
204 int width, int height)
205 {
206 struct gl_context *ctx = &brw->ctx;
207 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
208 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
209
210 /* Sync up the state of window system buffers. We need to do this before
211 * we go looking at the src renderbuffer's miptree.
212 */
213 intel_prepare_render(brw);
214
215 struct intel_mipmap_tree *src_mt = src_irb->mt;
216 struct intel_mipmap_tree *dst_mt = intel_image->mt;
217
218 /* BLORP is not supported before Gen6. */
219 if (brw->gen < 6 || brw->gen >= 8)
220 return false;
221
222 if (_mesa_get_format_base_format(src_mt->format) !=
223 _mesa_get_format_base_format(dst_mt->format)) {
224 return false;
225 }
226
227 /* We can't handle format conversions between Z24 and other formats since
228 * we have to lie about the surface format. See the comments in
229 * brw_blorp_surface_info::set().
230 */
231 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
232 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
233 return false;
234 }
235
236 if (!brw->format_supported_as_render_target[dst_mt->format])
237 return false;
238
239 /* Source clipping shouldn't be necessary, since copytexsubimage (in
240 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
241 * takes care of it.
242 *
243 * Destination clipping shouldn't be necessary since the restrictions on
244 * glCopyTexSubImage prevent the user from specifying a destination rectangle
245 * that falls outside the bounds of the destination texture.
246 * See error_check_subtexture_dimensions().
247 */
248
249 int srcY1 = srcY0 + height;
250 int srcX1 = srcX0 + width;
251 int dstX1 = dstX0 + width;
252 int dstY1 = dstY0 + height;
253
254 /* Account for the fact that in the system framebuffer, the origin is at
255 * the lower left.
256 */
257 bool mirror_y = false;
258 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
259 GLint tmp = src_rb->Height - srcY0;
260 srcY0 = src_rb->Height - srcY1;
261 srcY1 = tmp;
262 mirror_y = true;
263 }
264
265 /* Account for face selection and texture view MinLayer */
266 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
267 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
268
269 brw_blorp_blit_miptrees(brw,
270 src_mt, src_irb->mt_level, src_irb->mt_layer,
271 dst_mt, dst_level, dst_slice,
272 srcX0, srcY0, srcX1, srcY1,
273 dstX0, dstY0, dstX1, dstY1,
274 GL_NEAREST, false, mirror_y);
275
276 /* If we're copying to a packed depth stencil texture and the source
277 * framebuffer has separate stencil, we need to also copy the stencil data
278 * over.
279 */
280 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
281 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
282 src_rb != NULL) {
283 src_irb = intel_renderbuffer(src_rb);
284 src_mt = src_irb->mt;
285
286 if (src_mt->stencil_mt)
287 src_mt = src_mt->stencil_mt;
288 if (dst_mt->stencil_mt)
289 dst_mt = dst_mt->stencil_mt;
290
291 if (src_mt != dst_mt) {
292 brw_blorp_blit_miptrees(brw,
293 src_mt, src_irb->mt_level, src_irb->mt_layer,
294 dst_mt, dst_level, dst_slice,
295 srcX0, srcY0, srcX1, srcY1,
296 dstX0, dstY0, dstX1, dstY1,
297 GL_NEAREST, false, mirror_y);
298 }
299 }
300
301 return true;
302 }
303
304
305 GLbitfield
306 brw_blorp_framebuffer(struct brw_context *brw,
307 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
308 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
309 GLbitfield mask, GLenum filter)
310 {
311 /* BLORP is not supported before Gen6. */
312 if (brw->gen < 6 || brw->gen >= 8)
313 return mask;
314
315 static GLbitfield buffer_bits[] = {
316 GL_COLOR_BUFFER_BIT,
317 GL_DEPTH_BUFFER_BIT,
318 GL_STENCIL_BUFFER_BIT,
319 };
320
321 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
322 if ((mask & buffer_bits[i]) &&
323 try_blorp_blit(brw,
324 srcX0, srcY0, srcX1, srcY1,
325 dstX0, dstY0, dstX1, dstY1,
326 filter, buffer_bits[i])) {
327 mask &= ~buffer_bits[i];
328 }
329 }
330
331 return mask;
332 }
333
334
335 /**
336 * Enum to specify the order of arguments in a sampler message
337 */
338 enum sampler_message_arg
339 {
340 SAMPLER_MESSAGE_ARG_U_FLOAT,
341 SAMPLER_MESSAGE_ARG_V_FLOAT,
342 SAMPLER_MESSAGE_ARG_U_INT,
343 SAMPLER_MESSAGE_ARG_V_INT,
344 SAMPLER_MESSAGE_ARG_SI_INT,
345 SAMPLER_MESSAGE_ARG_MCS_INT,
346 SAMPLER_MESSAGE_ARG_ZERO_INT,
347 };
348
349 /**
350 * Generator for WM programs used in BLORP blits.
351 *
352 * The bulk of the work done by the WM program is to wrap and unwrap the
353 * coordinate transformations used by the hardware to store surfaces in
354 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
355 * sample index for a multisampled surface) to a memory offset by the
356 * following formulas:
357 *
358 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
359 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
360 *
361 * For a single-sampled surface, or for a multisampled surface using
362 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
363 * function:
364 *
365 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
366 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
367 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
368 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
369 *
370 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
371 * embeds the sample number into bit 1 of the X and Y coordinates:
372 *
373 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
374 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
375 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
376 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
377 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
378 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
379 * S = (Y & 0b10) | (X & 0b10) >> 1
380 *
381 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
382 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
383 * the Y coordinate:
384 *
385 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
386 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
387 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
388 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
389 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
390 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
391 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
392 *
393 * For X tiling, tile() combines together the low-order bits of the X and Y
394 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
395 * bytes wide and 8 rows high:
396 *
397 * tile(x_tiled, X, Y, S) = A
398 * where A = tile_num << 12 | offset
399 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
400 * offset = (Y' & 0b111) << 9
401 * | (X & 0b111111111)
402 * X' = X * cpp
403 * Y' = Y + S * qpitch
404 * detile(x_tiled, A) = (X, Y, S)
405 * where X = X' / cpp
406 * Y = Y' % qpitch
407 * S = Y' / qpitch
408 * Y' = (tile_num / tile_pitch) << 3
409 * | (A & 0b111000000000) >> 9
410 * X' = (tile_num % tile_pitch) << 9
411 * | (A & 0b111111111)
412 *
413 * (In all tiling formulas, cpp is the number of bytes occupied by a single
414 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
415 * to fill the width of the surface, and qpitch is the spacing (in rows)
416 * between array slices).
417 *
418 * For Y tiling, tile() combines together the low-order bits of the X and Y
419 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
420 * bytes wide and 32 rows high:
421 *
422 * tile(y_tiled, X, Y, S) = A
423 * where A = tile_num << 12 | offset
424 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
425 * offset = (X' & 0b1110000) << 5
426 * | (Y' & 0b11111) << 4
427 * | (X' & 0b1111)
428 * X' = X * cpp
429 * Y' = Y + S * qpitch
430 * detile(y_tiled, A) = (X, Y, S)
431 * where X = X' / cpp
432 * Y = Y' % qpitch
433 * S = Y' / qpitch
434 * Y' = (tile_num / tile_pitch) << 5
435 * | (A & 0b111110000) >> 4
436 * X' = (tile_num % tile_pitch) << 7
437 * | (A & 0b111000000000) >> 5
438 * | (A & 0b1111)
439 *
440 * For W tiling, tile() combines together the low-order bits of the X and Y
441 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
442 * bytes wide and 64 rows high (note that W tiling is only used for stencil
443 * buffers, which always have cpp = 1 and S=0):
444 *
445 * tile(w_tiled, X, Y, S) = A
446 * where A = tile_num << 12 | offset
447 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
448 * offset = (X' & 0b111000) << 6
449 * | (Y' & 0b111100) << 3
450 * | (X' & 0b100) << 2
451 * | (Y' & 0b10) << 2
452 * | (X' & 0b10) << 1
453 * | (Y' & 0b1) << 1
454 * | (X' & 0b1)
455 * X' = X * cpp = X
456 * Y' = Y + S * qpitch
457 * detile(w_tiled, A) = (X, Y, S)
458 * where X = X' / cpp = X'
459 * Y = Y' % qpitch = Y'
460 * S = Y / qpitch = 0
461 * Y' = (tile_num / tile_pitch) << 6
462 * | (A & 0b111100000) >> 3
463 * | (A & 0b1000) >> 2
464 * | (A & 0b10) >> 1
465 * X' = (tile_num % tile_pitch) << 6
466 * | (A & 0b111000000000) >> 6
467 * | (A & 0b10000) >> 2
468 * | (A & 0b100) >> 1
469 * | (A & 0b1)
470 *
471 * Finally, for a non-tiled surface, tile() simply combines together the X and
472 * Y coordinates in the natural way:
473 *
474 * tile(untiled, X, Y, S) = A
475 * where A = Y * pitch + X'
476 * X' = X * cpp
477 * Y' = Y + S * qpitch
478 * detile(untiled, A) = (X, Y, S)
479 * where X = X' / cpp
480 * Y = Y' % qpitch
481 * S = Y' / qpitch
482 * X' = A % pitch
483 * Y' = A / pitch
484 *
485 * (In these formulas, pitch is the number of bytes occupied by a single row
486 * of samples).
487 */
488 class brw_blorp_blit_program : public brw_blorp_eu_emitter
489 {
490 public:
491 brw_blorp_blit_program(struct brw_context *brw,
492 const brw_blorp_blit_prog_key *key, bool debug_flag);
493
494 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
495
496 brw_blorp_prog_data prog_data;
497
498 private:
499 void alloc_regs();
500 void alloc_push_const_regs(int base_reg);
501 void compute_frag_coords();
502 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
503 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
504 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
505 void translate_dst_to_src();
506 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
507 struct brw_reg clampX0, struct brw_reg clampY0,
508 struct brw_reg clampX1, struct brw_reg clampY1);
509 void single_to_blend();
510 void manual_blend_average(unsigned num_samples);
511 void manual_blend_bilinear(unsigned num_samples);
512 void sample(struct brw_reg dst);
513 void texel_fetch(struct brw_reg dst);
514 void mcs_fetch();
515 void texture_lookup(struct brw_reg dst, enum opcode op,
516 const sampler_message_arg *args, int num_args);
517 void render_target_write();
518
519 /**
520 * Base-2 logarithm of the maximum number of samples that can be blended.
521 */
522 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
523
524 struct brw_context *brw;
525 const brw_blorp_blit_prog_key *key;
526
527 /* Thread dispatch header */
528 struct brw_reg R0;
529
530 /* Pixel X/Y coordinates (always in R1). */
531 struct brw_reg R1;
532
533 /* Push constants */
534 struct brw_reg dst_x0;
535 struct brw_reg dst_x1;
536 struct brw_reg dst_y0;
537 struct brw_reg dst_y1;
538 /* Top right coordinates of the rectangular grid used for scaled blitting */
539 struct brw_reg rect_grid_x1;
540 struct brw_reg rect_grid_y1;
541 struct {
542 struct brw_reg multiplier;
543 struct brw_reg offset;
544 } x_transform, y_transform;
545
546 /* Data read from texture (4 vec16's per array element) */
547 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
548
549 /* Auxiliary storage for the contents of the MCS surface.
550 *
551 * Since the sampler always returns 8 registers worth of data, this is 8
552 * registers wide, even though we only use the first 2 registers of it.
553 */
554 struct brw_reg mcs_data;
555
556 /* X coordinates. We have two of them so that we can perform coordinate
557 * transformations easily.
558 */
559 struct brw_reg x_coords[2];
560
561 /* Y coordinates. We have two of them so that we can perform coordinate
562 * transformations easily.
563 */
564 struct brw_reg y_coords[2];
565
566 /* X, Y coordinates of the pixel from which we need to fetch the specific
567 * sample. These are used for multisample scaled blitting.
568 */
569 struct brw_reg x_sample_coords;
570 struct brw_reg y_sample_coords;
571
572 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
573 struct brw_reg x_frac;
574 struct brw_reg y_frac;
575
576 /* Which element of x_coords and y_coords is currently in use.
577 */
578 int xy_coord_index;
579
580 /* True if, at the point in the program currently being compiled, the
581 * sample index is known to be zero.
582 */
583 bool s_is_zero;
584
585 /* Register storing the sample index when s_is_zero is false. */
586 struct brw_reg sample_index;
587
588 /* Temporaries */
589 struct brw_reg t1;
590 struct brw_reg t2;
591
592 /* MRF used for sampling and render target writes */
593 GLuint base_mrf;
594 };
595
596 brw_blorp_blit_program::brw_blorp_blit_program(
597 struct brw_context *brw,
598 const brw_blorp_blit_prog_key *key,
599 bool debug_flag)
600 : brw_blorp_eu_emitter(brw, debug_flag),
601 brw(brw),
602 key(key)
603 {
604 }
605
606 const GLuint *
607 brw_blorp_blit_program::compile(struct brw_context *brw,
608 GLuint *program_size)
609 {
610 /* Sanity checks */
611 if (key->dst_tiled_w && key->rt_samples > 0) {
612 /* If the destination image is W tiled and multisampled, then the thread
613 * must be dispatched once per sample, not once per pixel. This is
614 * necessary because after conversion between W and Y tiling, there's no
615 * guarantee that all samples corresponding to a single pixel will still
616 * be together.
617 */
618 assert(key->persample_msaa_dispatch);
619 }
620
621 if (key->blend) {
622 /* We are blending, which means we won't have an opportunity to
623 * translate the tiling and sample count for the texture surface. So
624 * the surface state for the texture must be configured with the correct
625 * tiling and sample count.
626 */
627 assert(!key->src_tiled_w);
628 assert(key->tex_samples == key->src_samples);
629 assert(key->tex_layout == key->src_layout);
630 assert(key->tex_samples > 0);
631 }
632
633 if (key->persample_msaa_dispatch) {
634 /* It only makes sense to do persample dispatch if the render target is
635 * configured as multisampled.
636 */
637 assert(key->rt_samples > 0);
638 }
639
640 /* Make sure layout is consistent with sample count */
641 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
642 (key->tex_samples == 0));
643 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
644 (key->rt_samples == 0));
645 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
646 (key->src_samples == 0));
647 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
648 (key->dst_samples == 0));
649
650 /* Set up prog_data */
651 memset(&prog_data, 0, sizeof(prog_data));
652 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
653
654 alloc_regs();
655 compute_frag_coords();
656
657 /* Render target and texture hardware don't support W tiling. */
658 const bool rt_tiled_w = false;
659 const bool tex_tiled_w = false;
660
661 /* The address that data will be written to is determined by the
662 * coordinates supplied to the WM thread and the tiling and sample count of
663 * the render target, according to the formula:
664 *
665 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
666 *
667 * If the actual tiling and sample count of the destination surface are not
668 * the same as the configuration of the render target, then these
669 * coordinates are wrong and we have to adjust them to compensate for the
670 * difference.
671 */
672 if (rt_tiled_w != key->dst_tiled_w ||
673 key->rt_samples != key->dst_samples ||
674 key->rt_layout != key->dst_layout) {
675 encode_msaa(key->rt_samples, key->rt_layout);
676 /* Now (X, Y, S) = detile(rt_tiling, offset) */
677 translate_tiling(rt_tiled_w, key->dst_tiled_w);
678 /* Now (X, Y, S) = detile(dst_tiling, offset) */
679 decode_msaa(key->dst_samples, key->dst_layout);
680 }
681
682 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
683 *
684 * That is: X, Y and S now contain the true coordinates and sample index of
685 * the data that the WM thread should output.
686 *
687 * If we need to kill pixels that are outside the destination rectangle,
688 * now is the time to do it.
689 */
690
691 if (key->use_kill)
692 emit_kill_if_outside_rect(x_coords[xy_coord_index],
693 y_coords[xy_coord_index],
694 dst_x0, dst_x1, dst_y0, dst_y1);
695
696 /* Next, apply a translation to obtain coordinates in the source image. */
697 translate_dst_to_src();
698
699 /* If the source image is not multisampled, then we want to fetch sample
700 * number 0, because that's the only sample there is.
701 */
702 if (key->src_samples == 0)
703 s_is_zero = true;
704
705 /* X, Y, and S are now the coordinates of the pixel in the source image
706 * that we want to texture from. Exception: if we are blending, then S is
707 * irrelevant, because we are going to fetch all samples.
708 */
709 if (key->blend && !key->blit_scaled) {
710 if (brw->gen == 6) {
711 /* Gen6 hardware an automatically blend using the SAMPLE message */
712 single_to_blend();
713 sample(texture_data[0]);
714 } else {
715 /* Gen7+ hardware doesn't automaticaly blend. */
716 manual_blend_average(key->src_samples);
717 }
718 } else if(key->blend && key->blit_scaled) {
719 manual_blend_bilinear(key->src_samples);
720 } else {
721 /* We aren't blending, which means we just want to fetch a single sample
722 * from the source surface. The address that we want to fetch from is
723 * related to the X, Y and S values according to the formula:
724 *
725 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
726 *
727 * If the actual tiling and sample count of the source surface are not
728 * the same as the configuration of the texture, then we need to adjust
729 * the coordinates to compensate for the difference.
730 */
731 if ((tex_tiled_w != key->src_tiled_w ||
732 key->tex_samples != key->src_samples ||
733 key->tex_layout != key->src_layout) &&
734 !key->bilinear_filter) {
735 encode_msaa(key->src_samples, key->src_layout);
736 /* Now (X, Y, S) = detile(src_tiling, offset) */
737 translate_tiling(key->src_tiled_w, tex_tiled_w);
738 /* Now (X, Y, S) = detile(tex_tiling, offset) */
739 decode_msaa(key->tex_samples, key->tex_layout);
740 }
741
742 if (key->bilinear_filter) {
743 sample(texture_data[0]);
744 }
745 else {
746 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
747 *
748 * In other words: X, Y, and S now contain values which, when passed to
749 * the texturing unit, will cause data to be read from the correct
750 * memory location. So we can fetch the texel now.
751 */
752 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
753 mcs_fetch();
754 texel_fetch(texture_data[0]);
755 }
756 }
757
758 /* Finally, write the fetched (or blended) value to the render target and
759 * terminate the thread.
760 */
761 render_target_write();
762
763 return get_program(program_size);
764 }
765
766 void
767 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
768 {
769 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
770 #define ALLOC_REG(name, type) \
771 this->name = \
772 retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
773 base_reg + CONST_LOC(name) / 32, \
774 (CONST_LOC(name) % 32) / 4), type)
775
776 ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
777 ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
778 ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
779 ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
780 ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
781 ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
782 ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
783 ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
784 ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
785 ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
786 #undef CONST_LOC
787 #undef ALLOC_REG
788 }
789
790 void
791 brw_blorp_blit_program::alloc_regs()
792 {
793 int reg = 0;
794 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
795 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
796 prog_data.first_curbe_grf = reg;
797 alloc_push_const_regs(reg);
798 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
799 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
800 this->texture_data[i] =
801 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
802 reg += 8;
803 }
804 this->mcs_data =
805 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
806
807 for (int i = 0; i < 2; ++i) {
808 this->x_coords[i]
809 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
810 reg += 2;
811 this->y_coords[i]
812 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
813 reg += 2;
814 }
815
816 if (key->blit_scaled && key->blend) {
817 this->x_sample_coords = brw_vec8_grf(reg, 0);
818 reg += 2;
819 this->y_sample_coords = brw_vec8_grf(reg, 0);
820 reg += 2;
821 this->x_frac = brw_vec8_grf(reg, 0);
822 reg += 2;
823 this->y_frac = brw_vec8_grf(reg, 0);
824 reg += 2;
825 }
826
827 this->xy_coord_index = 0;
828 this->sample_index
829 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
830 reg += 2;
831 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
832 reg += 2;
833 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
834 reg += 2;
835
836 /* Make sure we didn't run out of registers */
837 assert(reg <= GEN7_MRF_HACK_START);
838
839 int mrf = 2;
840 this->base_mrf = mrf;
841 }
842
843 /* In the code that follows, X and Y can be used to quickly refer to the
844 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
845 * prime") to the inactive elements.
846 *
847 * S can be used to quickly refer to sample_index.
848 */
849 #define X x_coords[xy_coord_index]
850 #define Y y_coords[xy_coord_index]
851 #define Xp x_coords[!xy_coord_index]
852 #define Yp y_coords[!xy_coord_index]
853 #define S sample_index
854
855 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
856 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
857 */
858 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
859
860 /**
861 * Emit code to compute the X and Y coordinates of the pixels being rendered
862 * by this WM invocation.
863 *
864 * Assuming the render target is set up for Y tiling, these (X, Y) values are
865 * related to the address offset where outputs will be written by the formula:
866 *
867 * (X, Y, S) = decode_msaa(detile(offset)).
868 *
869 * (See brw_blorp_blit_program).
870 */
871 void
872 brw_blorp_blit_program::compute_frag_coords()
873 {
874 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
875 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
876 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
877 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
878 *
879 * Pixels within a subspan are laid out in this arrangement:
880 * 0 1
881 * 2 3
882 *
883 * So, to compute the coordinates of each pixel, we need to read every 2nd
884 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
885 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
886 * In other words, the data we want to access is R1.4<2;4,0>UW.
887 *
888 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
889 * result, since pixels n+1 and n+3 are in the right half of the subspan.
890 */
891 emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
892 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
893
894 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
895 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
896 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
897 * R1.4<2;4,0>UW).
898 *
899 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
900 * pixels n+2 and n+3 are in the bottom half of the subspan.
901 */
902 emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
903 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
904
905 /* Move the coordinates to UD registers. */
906 emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
907 emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
908 SWAP_XY_AND_XPYP();
909
910 if (key->persample_msaa_dispatch) {
911 switch (key->rt_samples) {
912 case 4: {
913 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
914 * Therefore, subspan 0 will represent sample 0, subspan 1 will
915 * represent sample 1, and so on.
916 *
917 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
918 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
919 * populate a temporary variable with the sequence (0, 1, 2, 3), and
920 * then copy from it using vstride=1, width=4, hstride=0.
921 */
922 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
923 emit_mov(vec16(t1_uw1), brw_imm_v(0x3210));
924 /* Move to UD sample_index register. */
925 emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
926 emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
927 break;
928 }
929 case 8: {
930 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
931 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
932 * subspan 1 will represent sample 1, and so on. We can find the
933 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
934 * Index") and multiplying by two (since samples are always delivered
935 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
936 * 0xc0) >> 5.
937 *
938 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
939 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
940 * variable with the sequence (0, 1, 2, 3), and then reading from it
941 * using vstride=1, width=4, hstride=0.
942 */
943 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
944 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
945 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
946 emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
947 emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
948 emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
949 emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
950 stride(t2_uw1, 1, 4, 0));
951 emit_add_8(offset(S, 1),
952 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
953 suboffset(stride(t2_uw1, 1, 4, 0), 2));
954 break;
955 }
956 default:
957 unreachable("Unrecognized sample count in "
958 "brw_blorp_blit_program::compute_frag_coords()");
959 }
960 s_is_zero = false;
961 } else {
962 /* Either the destination surface is single-sampled, or the WM will be
963 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
964 * per pixel). In either case, it's not meaningful to compute a sample
965 * value. Just set it to 0.
966 */
967 s_is_zero = true;
968 }
969 }
970
971 /**
972 * Emit code to compensate for the difference between Y and W tiling.
973 *
974 * This code modifies the X and Y coordinates according to the formula:
975 *
976 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
977 *
978 * (See brw_blorp_blit_program).
979 *
980 * It can only translate between W and Y tiling, so new_tiling and old_tiling
981 * are booleans where true represents W tiling and false represents Y tiling.
982 */
983 void
984 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
985 {
986 if (old_tiled_w == new_tiled_w)
987 return;
988
989 /* In the code that follows, we can safely assume that S = 0, because W
990 * tiling formats always use IMS layout.
991 */
992 assert(s_is_zero);
993
994 if (new_tiled_w) {
995 /* Given X and Y coordinates that describe an address using Y tiling,
996 * translate to the X and Y coordinates that describe the same address
997 * using W tiling.
998 *
999 * If we break down the low order bits of X and Y, using a
1000 * single letter to represent each low-order bit:
1001 *
1002 * X = A << 7 | 0bBCDEFGH
1003 * Y = J << 5 | 0bKLMNP (1)
1004 *
1005 * Then we can apply the Y tiling formula to see the memory offset being
1006 * addressed:
1007 *
1008 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1009 *
1010 * If we apply the W detiling formula to this memory location, that the
1011 * corresponding X' and Y' coordinates are:
1012 *
1013 * X' = A << 6 | 0bBCDPFH (3)
1014 * Y' = J << 6 | 0bKLMNEG
1015 *
1016 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1017 * we need to make the following computation:
1018 *
1019 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1020 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1021 */
1022 emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1023 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1024 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1025 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1026 emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1027 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1028 emit_or(Xp, t1, t2);
1029 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1030 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1031 emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1032 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1033 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1034 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1035 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1036 emit_or(Yp, t1, t2);
1037 SWAP_XY_AND_XPYP();
1038 } else {
1039 /* Applying the same logic as above, but in reverse, we obtain the
1040 * formulas:
1041 *
1042 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1043 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1044 */
1045 emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1046 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1047 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1048 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1049 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1050 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1051 emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1052 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1053 | (Y & 0b1) << 1 */
1054 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1055 emit_or(Xp, t1, t2);
1056 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1057 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1058 emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
1059 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1060 emit_or(Yp, t1, t2);
1061 SWAP_XY_AND_XPYP();
1062 }
1063 }
1064
1065 /**
1066 * Emit code to compensate for the difference between MSAA and non-MSAA
1067 * surfaces.
1068 *
1069 * This code modifies the X and Y coordinates according to the formula:
1070 *
1071 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1072 *
1073 * (See brw_blorp_blit_program).
1074 */
1075 void
1076 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1077 intel_msaa_layout layout)
1078 {
1079 switch (layout) {
1080 case INTEL_MSAA_LAYOUT_NONE:
1081 /* No translation necessary, and S should already be zero. */
1082 assert(s_is_zero);
1083 break;
1084 case INTEL_MSAA_LAYOUT_CMS:
1085 /* We can't compensate for compressed layout since at this point in the
1086 * program we haven't read from the MCS buffer.
1087 */
1088 unreachable("Bad layout in encode_msaa");
1089 case INTEL_MSAA_LAYOUT_UMS:
1090 /* No translation necessary. */
1091 break;
1092 case INTEL_MSAA_LAYOUT_IMS:
1093 switch (num_samples) {
1094 case 4:
1095 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1096 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1097 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1098 */
1099 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1100 if (!s_is_zero) {
1101 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1102 emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1103 }
1104 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1105 | (S & 0b1) << 1 */
1106 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1107 emit_or(Xp, t1, t2);
1108 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1109 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1110 if (!s_is_zero) {
1111 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1112 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1113 }
1114 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1115 emit_or(Yp, t1, t2);
1116 break;
1117 case 8:
1118 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1119 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1120 * | (X & 0b1)
1121 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1122 */
1123 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1124 emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1125 if (!s_is_zero) {
1126 emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
1127 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1128 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1129 emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1130 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1131 | (S & 0b1) << 1 */
1132 }
1133 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1134 emit_or(Xp, t1, t2);
1135 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1136 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1137 if (!s_is_zero) {
1138 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1139 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1140 }
1141 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1142 emit_or(Yp, t1, t2);
1143 break;
1144 }
1145 SWAP_XY_AND_XPYP();
1146 s_is_zero = true;
1147 break;
1148 }
1149 }
1150
1151 /**
1152 * Emit code to compensate for the difference between MSAA and non-MSAA
1153 * surfaces.
1154 *
1155 * This code modifies the X and Y coordinates according to the formula:
1156 *
1157 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1158 *
1159 * (See brw_blorp_blit_program).
1160 */
1161 void
1162 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1163 intel_msaa_layout layout)
1164 {
1165 switch (layout) {
1166 case INTEL_MSAA_LAYOUT_NONE:
1167 /* No translation necessary, and S should already be zero. */
1168 assert(s_is_zero);
1169 break;
1170 case INTEL_MSAA_LAYOUT_CMS:
1171 /* We can't compensate for compressed layout since at this point in the
1172 * program we don't have access to the MCS buffer.
1173 */
1174 unreachable("Bad layout in encode_msaa");
1175 case INTEL_MSAA_LAYOUT_UMS:
1176 /* No translation necessary. */
1177 break;
1178 case INTEL_MSAA_LAYOUT_IMS:
1179 assert(s_is_zero);
1180 switch (num_samples) {
1181 case 4:
1182 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1183 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1184 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1185 * S = (Y & 0b10) | (X & 0b10) >> 1
1186 */
1187 emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1188 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1189 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1190 emit_or(Xp, t1, t2);
1191 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1192 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1193 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1194 emit_or(Yp, t1, t2);
1195 emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1196 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1197 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1198 emit_or(S, t1, t2);
1199 break;
1200 case 8:
1201 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1202 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1203 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1204 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1205 */
1206 emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1207 emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1208 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1209 emit_or(Xp, t1, t2);
1210 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1211 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1212 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1213 emit_or(Yp, t1, t2);
1214 emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
1215 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1216 emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1217 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1218 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1219 emit_or(S, t1, t2);
1220 break;
1221 }
1222 s_is_zero = false;
1223 SWAP_XY_AND_XPYP();
1224 break;
1225 }
1226 }
1227
1228 /**
1229 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1230 * coordinates.
1231 */
1232 void
1233 brw_blorp_blit_program::translate_dst_to_src()
1234 {
1235 struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
1236 struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
1237 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1238 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1239
1240 /* Move the UD coordinates to float registers. */
1241 emit_mov(Xp_f, X);
1242 emit_mov(Yp_f, Y);
1243 /* Scale and offset */
1244 emit_mul(X_f, Xp_f, x_transform.multiplier);
1245 emit_mul(Y_f, Yp_f, y_transform.multiplier);
1246 emit_add(X_f, X_f, x_transform.offset);
1247 emit_add(Y_f, Y_f, y_transform.offset);
1248 if (key->blit_scaled && key->blend) {
1249 /* Translate coordinates to lay out the samples in a rectangular grid
1250 * roughly corresponding to sample locations.
1251 */
1252 emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
1253 emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
1254 /* Adjust coordinates so that integers represent pixel centers rather
1255 * than pixel edges.
1256 */
1257 emit_add(X_f, X_f, brw_imm_f(-0.5));
1258 emit_add(Y_f, Y_f, brw_imm_f(-0.5));
1259
1260 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1261 * texels on texture edges.
1262 */
1263 clamp_tex_coords(X_f, Y_f,
1264 brw_imm_f(0.0), brw_imm_f(0.0),
1265 rect_grid_x1, rect_grid_y1);
1266
1267 /* Store the fractional parts to be used as bilinear interpolation
1268 * coefficients.
1269 */
1270 emit_frc(x_frac, X_f);
1271 emit_frc(y_frac, Y_f);
1272
1273 /* Round the float coordinates down to nearest integer */
1274 emit_rndd(Xp_f, X_f);
1275 emit_rndd(Yp_f, Y_f);
1276 emit_mul(X_f, Xp_f, brw_imm_f(1 / key->x_scale));
1277 emit_mul(Y_f, Yp_f, brw_imm_f(1 / key->y_scale));
1278 SWAP_XY_AND_XPYP();
1279 } else if (!key->bilinear_filter) {
1280 /* Round the float coordinates down to nearest integer by moving to
1281 * UD registers.
1282 */
1283 emit_mov(Xp, X_f);
1284 emit_mov(Yp, Y_f);
1285 SWAP_XY_AND_XPYP();
1286 }
1287 }
1288
1289 void
1290 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1291 struct brw_reg regY,
1292 struct brw_reg clampX0,
1293 struct brw_reg clampY0,
1294 struct brw_reg clampX1,
1295 struct brw_reg clampY1)
1296 {
1297 emit_cond_mov(regX, clampX0, BRW_CONDITIONAL_L, regX, clampX0);
1298 emit_cond_mov(regX, clampX1, BRW_CONDITIONAL_G, regX, clampX1);
1299 emit_cond_mov(regY, clampY0, BRW_CONDITIONAL_L, regY, clampY0);
1300 emit_cond_mov(regY, clampY1, BRW_CONDITIONAL_G, regY, clampY1);
1301 }
1302
1303 /**
1304 * Emit code to transform the X and Y coordinates as needed for blending
1305 * together the different samples in an MSAA texture.
1306 */
1307 void
1308 brw_blorp_blit_program::single_to_blend()
1309 {
1310 /* When looking up samples in an MSAA texture using the SAMPLE message,
1311 * Gen6 requires the texture coordinates to be odd integers (so that they
1312 * correspond to the center of a 2x2 block representing the four samples
1313 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1314 * each by 2 and then add 1.
1315 */
1316 emit_shl(t1, X, brw_imm_w(1));
1317 emit_shl(t2, Y, brw_imm_w(1));
1318 emit_add(Xp, t1, brw_imm_w(1));
1319 emit_add(Yp, t2, brw_imm_w(1));
1320 SWAP_XY_AND_XPYP();
1321 }
1322
1323
1324 /**
1325 * Count the number of trailing 1 bits in the given value. For example:
1326 *
1327 * count_trailing_one_bits(0) == 0
1328 * count_trailing_one_bits(7) == 3
1329 * count_trailing_one_bits(11) == 2
1330 */
1331 inline int count_trailing_one_bits(unsigned value)
1332 {
1333 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1334 return __builtin_ctz(~value);
1335 #else
1336 return _mesa_bitcount(value & ~(value + 1));
1337 #endif
1338 }
1339
1340
1341 void
1342 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1343 {
1344 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1345 mcs_fetch();
1346
1347 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1348 *
1349 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1350 *
1351 * This ensures that when all samples have the same value, no numerical
1352 * precision is lost, since each addition operation always adds two equal
1353 * values, and summing two equal floating point values does not lose
1354 * precision.
1355 *
1356 * We perform this computation by treating the texture_data array as a
1357 * stack and performing the following operations:
1358 *
1359 * - push sample 0 onto stack
1360 * - push sample 1 onto stack
1361 * - add top two stack entries
1362 * - push sample 2 onto stack
1363 * - push sample 3 onto stack
1364 * - add top two stack entries
1365 * - add top two stack entries
1366 * - divide top stack entry by 4
1367 *
1368 * Note that after pushing sample i onto the stack, the number of add
1369 * operations we do is equal to the number of trailing 1 bits in i. This
1370 * works provided the total number of samples is a power of two, which it
1371 * always is for i965.
1372 *
1373 * For integer formats, we replace the add operations with average
1374 * operations and skip the final division.
1375 */
1376 unsigned stack_depth = 0;
1377 for (unsigned i = 0; i < num_samples; ++i) {
1378 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1379
1380 /* Push sample i onto the stack */
1381 assert(stack_depth < ARRAY_SIZE(texture_data));
1382 if (i == 0) {
1383 s_is_zero = true;
1384 } else {
1385 s_is_zero = false;
1386 emit_mov(vec16(S), brw_imm_ud(i));
1387 }
1388 texel_fetch(texture_data[stack_depth++]);
1389
1390 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1391 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1392 * suggests an optimization:
1393 *
1394 * "A simple optimization with probable large return in
1395 * performance is to compare the MCS value to zero (indicating
1396 * all samples are on sample slice 0), and sample only from
1397 * sample slice 0 using ld2dss if MCS is zero."
1398 *
1399 * Note that in the case where the MCS value is zero, sampling from
1400 * sample slice 0 using ld2dss and sampling from sample 0 using
1401 * ld2dms are equivalent (since all samples are on sample slice 0).
1402 * Since we have already sampled from sample 0, all we need to do is
1403 * skip the remaining fetches and averaging if MCS is zero.
1404 */
1405 emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0));
1406 }
1407
1408 /* Do count_trailing_one_bits(i) times */
1409 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1410 assert(stack_depth >= 2);
1411 --stack_depth;
1412
1413 /* TODO: should use a smaller loop bound for non_RGBA formats */
1414 for (int k = 0; k < 4; ++k) {
1415 emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ?
1416 BRW_OPCODE_ADD : BRW_OPCODE_AVG,
1417 offset(texture_data[stack_depth - 1], 2*k),
1418 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1419 offset(vec8(texture_data[stack_depth]), 2*k));
1420 }
1421 }
1422 }
1423
1424 /* We should have just 1 sample on the stack now. */
1425 assert(stack_depth == 1);
1426
1427 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1428 /* Scale the result down by a factor of num_samples */
1429 /* TODO: should use a smaller loop bound for non-RGBA formats */
1430 for (int j = 0; j < 4; ++j) {
1431 emit_mul(offset(texture_data[0], 2*j),
1432 offset(vec8(texture_data[0]), 2*j),
1433 brw_imm_f(1.0/num_samples));
1434 }
1435 }
1436
1437 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1438 emit_endif();
1439 }
1440
1441 void
1442 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1443 {
1444 /* We do this computation by performing the following operations:
1445 *
1446 * In case of 4x, 8x MSAA:
1447 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1448 * which are later used for interpolation
1449 * - linearly interpolate samples a and b in X
1450 * - linearly interpolate samples c and d in X
1451 * - linearly interpolate the results of last two operations in Y
1452 *
1453 * result = lrp(lrp(a + b) + lrp(c + d))
1454 */
1455 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1456 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1457 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1458 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1459
1460 for (unsigned i = 0; i < 4; ++i) {
1461 assert(i < ARRAY_SIZE(texture_data));
1462 s_is_zero = false;
1463
1464 /* Compute pixel coordinates */
1465 emit_add(vec16(x_sample_coords), Xp_f,
1466 brw_imm_f((float)(i & 0x1) * (1.0 / key->x_scale)));
1467 emit_add(vec16(y_sample_coords), Yp_f,
1468 brw_imm_f((float)((i >> 1) & 0x1) * (1.0 / key->y_scale)));
1469 emit_mov(vec16(X), x_sample_coords);
1470 emit_mov(vec16(Y), y_sample_coords);
1471
1472 /* The MCS value we fetch has to match up with the pixel that we're
1473 * sampling from. Since we sample from different pixels in each
1474 * iteration of this "for" loop, the call to mcs_fetch() should be
1475 * here inside the loop after computing the pixel coordinates.
1476 */
1477 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1478 mcs_fetch();
1479
1480 /* Compute sample index and map the sample index to a sample number.
1481 * Sample index layout shows the numbering of slots in a rectangular
1482 * grid of samples with in a pixel. Sample number layout shows the
1483 * rectangular grid of samples roughly corresponding to the real sample
1484 * locations with in a pixel.
1485 * In case of 4x MSAA, layout of sample indices matches the layout of
1486 * sample numbers:
1487 * ---------
1488 * | 0 | 1 |
1489 * ---------
1490 * | 2 | 3 |
1491 * ---------
1492 *
1493 * In case of 8x MSAA the two layouts don't match.
1494 * sample index layout : --------- sample number layout : ---------
1495 * | 0 | 1 | | 5 | 2 |
1496 * --------- ---------
1497 * | 2 | 3 | | 4 | 6 |
1498 * --------- ---------
1499 * | 4 | 5 | | 0 | 3 |
1500 * --------- ---------
1501 * | 6 | 7 | | 7 | 1 |
1502 * --------- ---------
1503 */
1504 emit_frc(vec16(t1_f), x_sample_coords);
1505 emit_frc(vec16(t2_f), y_sample_coords);
1506 emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1507 emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1508 emit_add(vec16(t1_f), t1_f, t2_f);
1509 emit_mov(vec16(S), t1_f);
1510
1511 if (num_samples == 8) {
1512 /* Map the sample index to a sample number */
1513 emit_cmp_if(BRW_CONDITIONAL_L, S, brw_imm_d(4));
1514 {
1515 emit_mov(vec16(t2), brw_imm_d(5));
1516 emit_if_eq_mov(S, 1, vec16(t2), 2);
1517 emit_if_eq_mov(S, 2, vec16(t2), 4);
1518 emit_if_eq_mov(S, 3, vec16(t2), 6);
1519 }
1520 emit_else();
1521 {
1522 emit_mov(vec16(t2), brw_imm_d(0));
1523 emit_if_eq_mov(S, 5, vec16(t2), 3);
1524 emit_if_eq_mov(S, 6, vec16(t2), 7);
1525 emit_if_eq_mov(S, 7, vec16(t2), 1);
1526 }
1527 emit_endif();
1528 emit_mov(vec16(S), t2);
1529 }
1530 texel_fetch(texture_data[i]);
1531 }
1532
1533 #define SAMPLE(x, y) offset(texture_data[x], y)
1534 for (int index = 3; index > 0; ) {
1535 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1536 * Counter value of 8 in 'for' loop below is used to interpolate all
1537 * the color components.
1538 */
1539 for (int k = 0; k < 8; k += 2)
1540 emit_lrp(vec8(SAMPLE(index - 1, k)),
1541 x_frac,
1542 vec8(SAMPLE(index, k)),
1543 vec8(SAMPLE(index - 1, k)));
1544 index -= 2;
1545 }
1546 for (int k = 0; k < 8; k += 2)
1547 emit_lrp(vec8(SAMPLE(0, k)),
1548 y_frac,
1549 vec8(SAMPLE(2, k)),
1550 vec8(SAMPLE(0, k)));
1551 #undef SAMPLE
1552 }
1553
1554 /**
1555 * Emit code to look up a value in the texture using the SAMPLE message (which
1556 * does blending of MSAA surfaces).
1557 */
1558 void
1559 brw_blorp_blit_program::sample(struct brw_reg dst)
1560 {
1561 static const sampler_message_arg args[2] = {
1562 SAMPLER_MESSAGE_ARG_U_FLOAT,
1563 SAMPLER_MESSAGE_ARG_V_FLOAT
1564 };
1565
1566 texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
1567 }
1568
1569 /**
1570 * Emit code to look up a value in the texture using the SAMPLE_LD message
1571 * (which does a simple texel fetch).
1572 */
1573 void
1574 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1575 {
1576 static const sampler_message_arg gen6_args[5] = {
1577 SAMPLER_MESSAGE_ARG_U_INT,
1578 SAMPLER_MESSAGE_ARG_V_INT,
1579 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1580 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1581 SAMPLER_MESSAGE_ARG_SI_INT
1582 };
1583 static const sampler_message_arg gen7_ld_args[3] = {
1584 SAMPLER_MESSAGE_ARG_U_INT,
1585 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1586 SAMPLER_MESSAGE_ARG_V_INT
1587 };
1588 static const sampler_message_arg gen7_ld2dss_args[3] = {
1589 SAMPLER_MESSAGE_ARG_SI_INT,
1590 SAMPLER_MESSAGE_ARG_U_INT,
1591 SAMPLER_MESSAGE_ARG_V_INT
1592 };
1593 static const sampler_message_arg gen7_ld2dms_args[4] = {
1594 SAMPLER_MESSAGE_ARG_SI_INT,
1595 SAMPLER_MESSAGE_ARG_MCS_INT,
1596 SAMPLER_MESSAGE_ARG_U_INT,
1597 SAMPLER_MESSAGE_ARG_V_INT
1598 };
1599
1600 switch (brw->gen) {
1601 case 6:
1602 texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
1603 break;
1604 case 7:
1605 switch (key->tex_layout) {
1606 case INTEL_MSAA_LAYOUT_IMS:
1607 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1608 * Format):
1609 *
1610 * If this field is MSFMT_DEPTH_STENCIL
1611 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1612 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1613 *
1614 * So fall through to emit the same message as we use for
1615 * INTEL_MSAA_LAYOUT_CMS.
1616 */
1617 case INTEL_MSAA_LAYOUT_CMS:
1618 texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
1619 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1620 break;
1621 case INTEL_MSAA_LAYOUT_UMS:
1622 texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
1623 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1624 break;
1625 case INTEL_MSAA_LAYOUT_NONE:
1626 assert(s_is_zero);
1627 texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
1628 ARRAY_SIZE(gen7_ld_args));
1629 break;
1630 }
1631 break;
1632 default:
1633 unreachable("Should not get here.");
1634 };
1635 }
1636
1637 void
1638 brw_blorp_blit_program::mcs_fetch()
1639 {
1640 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1641 SAMPLER_MESSAGE_ARG_U_INT,
1642 SAMPLER_MESSAGE_ARG_V_INT
1643 };
1644 texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
1645 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1646 }
1647
1648 void
1649 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1650 enum opcode op,
1651 const sampler_message_arg *args,
1652 int num_args)
1653 {
1654 struct brw_reg mrf =
1655 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1656 for (int arg = 0; arg < num_args; ++arg) {
1657 switch (args[arg]) {
1658 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1659 if (key->bilinear_filter)
1660 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1661 retype(X, BRW_REGISTER_TYPE_F));
1662 else
1663 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
1664 break;
1665 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1666 if (key->bilinear_filter)
1667 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1668 retype(Y, BRW_REGISTER_TYPE_F));
1669 else
1670 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
1671 break;
1672 case SAMPLER_MESSAGE_ARG_U_INT:
1673 emit_mov(mrf, X);
1674 break;
1675 case SAMPLER_MESSAGE_ARG_V_INT:
1676 emit_mov(mrf, Y);
1677 break;
1678 case SAMPLER_MESSAGE_ARG_SI_INT:
1679 /* Note: on Gen7, this code may be reached with s_is_zero==true
1680 * because in Gen7's ld2dss message, the sample index is the first
1681 * argument. When this happens, we need to move a 0 into the
1682 * appropriate message register.
1683 */
1684 if (s_is_zero)
1685 emit_mov(mrf, brw_imm_ud(0));
1686 else
1687 emit_mov(mrf, S);
1688 break;
1689 case SAMPLER_MESSAGE_ARG_MCS_INT:
1690 switch (key->tex_layout) {
1691 case INTEL_MSAA_LAYOUT_CMS:
1692 emit_mov(mrf, mcs_data);
1693 break;
1694 case INTEL_MSAA_LAYOUT_IMS:
1695 /* When sampling from an IMS surface, MCS data is not relevant,
1696 * and the hardware ignores it. So don't bother populating it.
1697 */
1698 break;
1699 default:
1700 /* We shouldn't be trying to send MCS data with any other
1701 * layouts.
1702 */
1703 assert (!"Unsupported layout for MCS data");
1704 break;
1705 }
1706 break;
1707 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1708 emit_mov(mrf, brw_imm_ud(0));
1709 break;
1710 }
1711 mrf.nr += 2;
1712 }
1713
1714 emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1715 op,
1716 base_mrf,
1717 mrf.nr - base_mrf /* msg_length */);
1718 }
1719
1720 #undef X
1721 #undef Y
1722 #undef U
1723 #undef V
1724 #undef S
1725 #undef SWAP_XY_AND_XPYP
1726
1727 void
1728 brw_blorp_blit_program::render_target_write()
1729 {
1730 struct brw_reg mrf_rt_write =
1731 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1732 int mrf_offset = 0;
1733
1734 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1735 * so that the render target knows which pixels we killed.
1736 */
1737 bool use_header = key->use_kill;
1738 if (use_header) {
1739 /* Copy R0/1 to MRF */
1740 emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1741 retype(R0, BRW_REGISTER_TYPE_UD));
1742 mrf_offset += 2;
1743 }
1744
1745 /* Copy texture data to MRFs */
1746 for (int i = 0; i < 4; ++i) {
1747 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1748 emit_mov(offset(mrf_rt_write, mrf_offset),
1749 offset(vec8(texture_data[0]), 2*i));
1750 mrf_offset += 2;
1751 }
1752
1753 /* Now write to the render target and terminate the thread */
1754 emit_render_target_write(
1755 mrf_rt_write,
1756 base_mrf,
1757 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1758 use_header);
1759 }
1760
1761
1762 void
1763 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
1764 GLfloat dst0, GLfloat dst1,
1765 bool mirror)
1766 {
1767 float scale = (src1 - src0) / (dst1 - dst0);
1768 if (!mirror) {
1769 /* When not mirroring a coordinate (say, X), we need:
1770 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1771 * Therefore:
1772 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1773 *
1774 * blorp program uses "round toward zero" to convert the
1775 * transformed floating point coordinates to integer coordinates,
1776 * whereas the behaviour we actually want is "round to nearest",
1777 * so 0.5 provides the necessary correction.
1778 */
1779 multiplier = scale;
1780 offset = src0 + (-dst0 + 0.5) * scale;
1781 } else {
1782 /* When mirroring X we need:
1783 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1784 * Therefore:
1785 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1786 */
1787 multiplier = -scale;
1788 offset = src0 + (dst1 - 0.5) * scale;
1789 }
1790 }
1791
1792
1793 /**
1794 * Determine which MSAA layout the GPU pipeline should be configured for,
1795 * based on the chip generation, the number of samples, and the true layout of
1796 * the image in memory.
1797 */
1798 inline intel_msaa_layout
1799 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1800 intel_msaa_layout true_layout)
1801 {
1802 if (num_samples <= 1) {
1803 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1804 * format buffers, by transforming coordinates appropriately.
1805 */
1806 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1807 true_layout == INTEL_MSAA_LAYOUT_IMS);
1808 return INTEL_MSAA_LAYOUT_NONE;
1809 } else {
1810 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1811 }
1812
1813 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1814 if (brw->gen == 6) {
1815 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1816 }
1817
1818 return true_layout;
1819 }
1820
1821
1822 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1823 struct intel_mipmap_tree *src_mt,
1824 unsigned src_level, unsigned src_layer,
1825 struct intel_mipmap_tree *dst_mt,
1826 unsigned dst_level, unsigned dst_layer,
1827 GLfloat src_x0, GLfloat src_y0,
1828 GLfloat src_x1, GLfloat src_y1,
1829 GLfloat dst_x0, GLfloat dst_y0,
1830 GLfloat dst_x1, GLfloat dst_y1,
1831 GLenum filter,
1832 bool mirror_x, bool mirror_y)
1833 {
1834 src.set(brw, src_mt, src_level, src_layer, false);
1835 dst.set(brw, dst_mt, dst_level, dst_layer, true);
1836
1837 /* Even though we do multisample resolves at the time of the blit, OpenGL
1838 * specification defines them as if they happen at the time of rendering,
1839 * which means that the type of averaging we do during the resolve should
1840 * only depend on the source format; the destination format should be
1841 * ignored. But, specification doesn't seem to be strict about it.
1842 *
1843 * It has been observed that mulitisample resolves produce slightly better
1844 * looking images when averaging is done using destination format. NVIDIA's
1845 * proprietary OpenGL driver also follow this approach. So, we choose to
1846 * follow it in our driver.
1847 *
1848 * When multisampling, if the source and destination formats are equal
1849 * (aside from the color space), we choose to blit in sRGB space to get
1850 * this higher quality image.
1851 */
1852 if (src.num_samples > 1 &&
1853 _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
1854 _mesa_get_srgb_format_linear(src_mt->format) ==
1855 _mesa_get_srgb_format_linear(dst_mt->format)) {
1856 dst.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
1857 src.brw_surfaceformat = dst.brw_surfaceformat;
1858 }
1859
1860 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
1861 * texture, the above code configures the source format for L32_FLOAT or
1862 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
1863 * the SAMPLE message appears to handle multisampled L32_FLOAT and
1864 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
1865 * around the problem by using a source format of R32_FLOAT. This
1866 * shouldn't affect rendering correctness, since the destination format is
1867 * R32_FLOAT, so only the contents of the red channel matters.
1868 */
1869 if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
1870 src_mt->format == dst_mt->format &&
1871 dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
1872 src.brw_surfaceformat = dst.brw_surfaceformat;
1873 }
1874
1875 use_wm_prog = true;
1876 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1877
1878 /* texture_data_type indicates the register type that should be used to
1879 * manipulate texture data.
1880 */
1881 switch (_mesa_get_format_datatype(src_mt->format)) {
1882 case GL_UNSIGNED_NORMALIZED:
1883 case GL_SIGNED_NORMALIZED:
1884 case GL_FLOAT:
1885 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1886 break;
1887 case GL_UNSIGNED_INT:
1888 if (src_mt->format == MESA_FORMAT_S_UINT8) {
1889 /* We process stencil as though it's an unsigned normalized color */
1890 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1891 } else {
1892 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1893 }
1894 break;
1895 case GL_INT:
1896 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1897 break;
1898 default:
1899 unreachable("Unrecognized blorp format");
1900 }
1901
1902 if (brw->gen > 6) {
1903 /* Gen7's rendering hardware only supports the IMS layout for depth and
1904 * stencil render targets. Blorp always maps its destination surface as
1905 * a color render target (even if it's actually a depth or stencil
1906 * buffer). So if the destination is IMS, we'll have to map it as a
1907 * single-sampled texture and interleave the samples ourselves.
1908 */
1909 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1910 dst.num_samples = 0;
1911 }
1912
1913 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
1914 /* If the destination surface is a W-tiled multisampled stencil buffer
1915 * that we're mapping as Y tiled, then we need to arrange for the WM
1916 * program to run once per sample rather than once per pixel, because
1917 * the memory layout of related samples doesn't match between W and Y
1918 * tiling.
1919 */
1920 wm_prog_key.persample_msaa_dispatch = true;
1921 }
1922
1923 if (src.num_samples > 0 && dst.num_samples > 1) {
1924 /* We are blitting from a multisample buffer to a multisample buffer, so
1925 * we must preserve samples within a pixel. This means we have to
1926 * arrange for the WM program to run once per sample rather than once
1927 * per pixel.
1928 */
1929 wm_prog_key.persample_msaa_dispatch = true;
1930 }
1931
1932 /* Scaled blitting or not. */
1933 wm_prog_key.blit_scaled =
1934 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
1935 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
1936
1937 /* Scaling factors used for bilinear filtering in multisample scaled
1938 * blits.
1939 */
1940 wm_prog_key.x_scale = 2.0;
1941 wm_prog_key.y_scale = src_mt->num_samples / 2.0;
1942
1943 if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
1944 wm_prog_key.bilinear_filter = true;
1945
1946 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1947 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1948 base_format != GL_STENCIL_INDEX &&
1949 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
1950 /* We are downsampling a color buffer, so blend. */
1951 wm_prog_key.blend = true;
1952 }
1953
1954 /* src_samples and dst_samples are the true sample counts */
1955 wm_prog_key.src_samples = src_mt->num_samples;
1956 wm_prog_key.dst_samples = dst_mt->num_samples;
1957
1958 /* tex_samples and rt_samples are the sample counts that are set up in
1959 * SURFACE_STATE.
1960 */
1961 wm_prog_key.tex_samples = src.num_samples;
1962 wm_prog_key.rt_samples = dst.num_samples;
1963
1964 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1965 * use to access the source and destination surfaces.
1966 */
1967 wm_prog_key.tex_layout =
1968 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1969 wm_prog_key.rt_layout =
1970 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1971
1972 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1973 * dst.
1974 */
1975 wm_prog_key.src_layout = src_mt->msaa_layout;
1976 wm_prog_key.dst_layout = dst_mt->msaa_layout;
1977
1978 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1979 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1980 x0 = wm_push_consts.dst_x0 = dst_x0;
1981 y0 = wm_push_consts.dst_y0 = dst_y0;
1982 x1 = wm_push_consts.dst_x1 = dst_x1;
1983 y1 = wm_push_consts.dst_y1 = dst_y1;
1984 wm_push_consts.rect_grid_x1 = (minify(src_mt->logical_width0, src_level) *
1985 wm_prog_key.x_scale - 1.0);
1986 wm_push_consts.rect_grid_y1 = (minify(src_mt->logical_height0, src_level) *
1987 wm_prog_key.y_scale - 1.0);
1988
1989 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
1990 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
1991
1992 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
1993 /* We must expand the rectangle we send through the rendering pipeline,
1994 * to account for the fact that we are mapping the destination region as
1995 * single-sampled when it is in fact multisampled. We must also align
1996 * it to a multiple of the multisampling pattern, because the
1997 * differences between multisampled and single-sampled surface formats
1998 * will mean that pixels are scrambled within the multisampling pattern.
1999 * TODO: what if this makes the coordinates too large?
2000 *
2001 * Note: this only works if the destination surface uses the IMS layout.
2002 * If it's UMS, then we have no choice but to set up the rendering
2003 * pipeline as multisampled.
2004 */
2005 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2006 switch (dst_mt->num_samples) {
2007 case 4:
2008 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2009 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2010 x1 = ALIGN(x1 * 2, 4);
2011 y1 = ALIGN(y1 * 2, 4);
2012 break;
2013 case 8:
2014 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2015 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2016 x1 = ALIGN(x1 * 4, 8);
2017 y1 = ALIGN(y1 * 2, 4);
2018 break;
2019 default:
2020 unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
2021 }
2022 wm_prog_key.use_kill = true;
2023 }
2024
2025 if (dst.map_stencil_as_y_tiled) {
2026 /* We must modify the rectangle we send through the rendering pipeline
2027 * (and the size and x/y offset of the destination surface), to account
2028 * for the fact that we are mapping it as Y-tiled when it is in fact
2029 * W-tiled.
2030 *
2031 * Both Y tiling and W tiling can be understood as organizations of
2032 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2033 * is different, but the layout of the 32-byte sub-tiles within the 4k
2034 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2035 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2036 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2037 *
2038 * Therefore, to account for the layout differences within the 32-byte
2039 * sub-tiles, we must expand the rectangle so the X coordinates of its
2040 * edges are multiples of 8 (the W sub-tile width), and its Y
2041 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2042 * Then we need to scale the X and Y coordinates of the rectangle to
2043 * account for the differences in aspect ratio between the Y and W
2044 * sub-tiles. We need to modify the layer width and height similarly.
2045 *
2046 * A correction needs to be applied when MSAA is in use: since
2047 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2048 * we need to align the Y coordinates to multiples of 8, so that when
2049 * they are divided by two they are still multiples of 4.
2050 *
2051 * Note: Since the x/y offset of the surface will be applied using the
2052 * SURFACE_STATE command packet, it will be invisible to the swizzling
2053 * code in the shader; therefore it needs to be in a multiple of the
2054 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2055 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2056 * buffer), and the miplevel alignment used for stencil buffers is 8
2057 * pixels horizontally and either 4 or 8 pixels vertically (see
2058 * intel_horizontal_texture_alignment_unit() and
2059 * intel_vertical_texture_alignment_unit()).
2060 *
2061 * Note: Also, since the SURFACE_STATE command packet can only apply
2062 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2063 * vertically, it is important that the offsets will be multiples of
2064 * these sizes after they are converted into Y-tiled coordinates.
2065 * Fortunately they will be, since we know from above that the offsets
2066 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2067 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2068 *
2069 * TODO: what if this makes the coordinates (or the texture size) too
2070 * large?
2071 */
2072 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2073 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2074 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2075 x1 = ALIGN(x1, x_align) * 2;
2076 y1 = ALIGN(y1, y_align) / 2;
2077 dst.width = ALIGN(dst.width, x_align) * 2;
2078 dst.height = ALIGN(dst.height, y_align) / 2;
2079 dst.x_offset *= 2;
2080 dst.y_offset /= 2;
2081 wm_prog_key.use_kill = true;
2082 }
2083
2084 if (src.map_stencil_as_y_tiled) {
2085 /* We must modify the size and x/y offset of the source surface to
2086 * account for the fact that we are mapping it as Y-tiled when it is in
2087 * fact W tiled.
2088 *
2089 * See the comments above concerning x/y offset alignment for the
2090 * destination surface.
2091 *
2092 * TODO: what if this makes the texture size too large?
2093 */
2094 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2095 src.width = ALIGN(src.width, x_align) * 2;
2096 src.height = ALIGN(src.height, y_align) / 2;
2097 src.x_offset *= 2;
2098 src.y_offset /= 2;
2099 }
2100 }
2101
2102 uint32_t
2103 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2104 brw_blorp_prog_data **prog_data) const
2105 {
2106 uint32_t prog_offset = 0;
2107 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2108 &this->wm_prog_key, sizeof(this->wm_prog_key),
2109 &prog_offset, prog_data)) {
2110 brw_blorp_blit_program prog(brw, &this->wm_prog_key,
2111 INTEL_DEBUG & DEBUG_BLORP);
2112 GLuint program_size;
2113 const GLuint *program = prog.compile(brw, &program_size);
2114 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2115 &this->wm_prog_key, sizeof(this->wm_prog_key),
2116 program, program_size,
2117 &prog.prog_data, sizeof(prog.prog_data),
2118 &prog_offset, prog_data);
2119 }
2120 return prog_offset;
2121 }