i965: Add _CACHE_ in brw_cache_id enum names.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26 #include "main/renderbuffer.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_blorp_blit_eu.h"
33 #include "brw_state.h"
34 #include "brw_meta_util.h"
35
36 #define FILE_DEBUG_FLAG DEBUG_BLORP
37
38 static struct intel_mipmap_tree *
39 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
40 {
41 struct intel_mipmap_tree *mt = irb->mt;
42 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
43 mt = mt->stencil_mt;
44 return mt;
45 }
46
47
48 /**
49 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
50 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
51 * the physical layer holding sample 0. So, for example, if
52 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
53 * 4*n.
54 */
55 void
56 brw_blorp_blit_miptrees(struct brw_context *brw,
57 struct intel_mipmap_tree *src_mt,
58 unsigned src_level, unsigned src_layer,
59 mesa_format src_format,
60 struct intel_mipmap_tree *dst_mt,
61 unsigned dst_level, unsigned dst_layer,
62 mesa_format dst_format,
63 float src_x0, float src_y0,
64 float src_x1, float src_y1,
65 float dst_x0, float dst_y0,
66 float dst_x1, float dst_y1,
67 GLenum filter, bool mirror_x, bool mirror_y)
68 {
69 /* Get ready to blit. This includes depth resolving the src and dst
70 * buffers if necessary. Note: it's not necessary to do a color resolve on
71 * the destination buffer because we use the standard render path to render
72 * to destination color buffers, and the standard render path is
73 * fast-color-aware.
74 */
75 intel_miptree_resolve_color(brw, src_mt);
76 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
77 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
78
79 DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
80 "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
81 __FUNCTION__,
82 src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
83 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
84 dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
85 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
86 mirror_x, mirror_y);
87
88 brw_blorp_blit_params params(brw,
89 src_mt, src_level, src_layer, src_format,
90 dst_mt, dst_level, dst_layer, dst_format,
91 src_x0, src_y0,
92 src_x1, src_y1,
93 dst_x0, dst_y0,
94 dst_x1, dst_y1,
95 filter, mirror_x, mirror_y);
96 brw_blorp_exec(brw, &params);
97
98 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
99 }
100
101 static void
102 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
103 struct intel_renderbuffer *src_irb, mesa_format src_format,
104 struct intel_renderbuffer *dst_irb, mesa_format dst_format,
105 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
106 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
107 GLenum filter, bool mirror_x, bool mirror_y)
108 {
109 /* Find source/dst miptrees */
110 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
111 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
112
113 /* Do the blit */
114 brw_blorp_blit_miptrees(brw,
115 src_mt, src_irb->mt_level, src_irb->mt_layer,
116 src_format,
117 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
118 dst_format,
119 srcX0, srcY0, srcX1, srcY1,
120 dstX0, dstY0, dstX1, dstY1,
121 filter, mirror_x, mirror_y);
122
123 dst_irb->need_downsample = true;
124 }
125
126 static bool
127 try_blorp_blit(struct brw_context *brw,
128 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
129 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
130 GLenum filter, GLbitfield buffer_bit)
131 {
132 struct gl_context *ctx = &brw->ctx;
133
134 /* Sync up the state of window system buffers. We need to do this before
135 * we go looking for the buffers.
136 */
137 intel_prepare_render(brw);
138
139 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
140 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
141
142 bool mirror_x, mirror_y;
143 if (brw_meta_mirror_clip_and_scissor(ctx,
144 &srcX0, &srcY0, &srcX1, &srcY1,
145 &dstX0, &dstY0, &dstX1, &dstY1,
146 &mirror_x, &mirror_y))
147 return true;
148
149 /* Find buffers */
150 struct intel_renderbuffer *src_irb;
151 struct intel_renderbuffer *dst_irb;
152 struct intel_mipmap_tree *src_mt;
153 struct intel_mipmap_tree *dst_mt;
154 switch (buffer_bit) {
155 case GL_COLOR_BUFFER_BIT:
156 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
157 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
158 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
159 if (dst_irb)
160 do_blorp_blit(brw, buffer_bit,
161 src_irb, src_irb->Base.Base.Format,
162 dst_irb, dst_irb->Base.Base.Format,
163 srcX0, srcY0, srcX1, srcY1,
164 dstX0, dstY0, dstX1, dstY1,
165 filter, mirror_x, mirror_y);
166 }
167 break;
168 case GL_DEPTH_BUFFER_BIT:
169 src_irb =
170 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
171 dst_irb =
172 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
173 src_mt = find_miptree(buffer_bit, src_irb);
174 dst_mt = find_miptree(buffer_bit, dst_irb);
175
176 /* We can't handle format conversions between Z24 and other formats
177 * since we have to lie about the surface format. See the comments in
178 * brw_blorp_surface_info::set().
179 */
180 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
181 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT))
182 return false;
183
184 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
185 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
186 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
187 filter, mirror_x, mirror_y);
188 break;
189 case GL_STENCIL_BUFFER_BIT:
190 src_irb =
191 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
192 dst_irb =
193 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
194 do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE,
195 dst_irb, MESA_FORMAT_NONE, srcX0, srcY0,
196 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
197 filter, mirror_x, mirror_y);
198 break;
199 default:
200 unreachable("not reached");
201 }
202
203 return true;
204 }
205
206 bool
207 brw_blorp_copytexsubimage(struct brw_context *brw,
208 struct gl_renderbuffer *src_rb,
209 struct gl_texture_image *dst_image,
210 int slice,
211 int srcX0, int srcY0,
212 int dstX0, int dstY0,
213 int width, int height)
214 {
215 struct gl_context *ctx = &brw->ctx;
216 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
217 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
218
219 /* Sync up the state of window system buffers. We need to do this before
220 * we go looking at the src renderbuffer's miptree.
221 */
222 intel_prepare_render(brw);
223
224 struct intel_mipmap_tree *src_mt = src_irb->mt;
225 struct intel_mipmap_tree *dst_mt = intel_image->mt;
226
227 /* BLORP is not supported before Gen6. */
228 if (brw->gen < 6 || brw->gen >= 8)
229 return false;
230
231 if (_mesa_get_format_base_format(src_rb->Format) !=
232 _mesa_get_format_base_format(dst_image->TexFormat)) {
233 return false;
234 }
235
236 /* We can't handle format conversions between Z24 and other formats since
237 * we have to lie about the surface format. See the comments in
238 * brw_blorp_surface_info::set().
239 */
240 if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
241 (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
242 return false;
243 }
244
245 if (!brw->format_supported_as_render_target[dst_image->TexFormat])
246 return false;
247
248 /* Source clipping shouldn't be necessary, since copytexsubimage (in
249 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
250 * takes care of it.
251 *
252 * Destination clipping shouldn't be necessary since the restrictions on
253 * glCopyTexSubImage prevent the user from specifying a destination rectangle
254 * that falls outside the bounds of the destination texture.
255 * See error_check_subtexture_dimensions().
256 */
257
258 int srcY1 = srcY0 + height;
259 int srcX1 = srcX0 + width;
260 int dstX1 = dstX0 + width;
261 int dstY1 = dstY0 + height;
262
263 /* Account for the fact that in the system framebuffer, the origin is at
264 * the lower left.
265 */
266 bool mirror_y = false;
267 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
268 GLint tmp = src_rb->Height - srcY0;
269 srcY0 = src_rb->Height - srcY1;
270 srcY1 = tmp;
271 mirror_y = true;
272 }
273
274 /* Account for face selection and texture view MinLayer */
275 int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
276 int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
277
278 brw_blorp_blit_miptrees(brw,
279 src_mt, src_irb->mt_level, src_irb->mt_layer,
280 src_rb->Format,
281 dst_mt, dst_level, dst_slice,
282 dst_image->TexFormat,
283 srcX0, srcY0, srcX1, srcY1,
284 dstX0, dstY0, dstX1, dstY1,
285 GL_NEAREST, false, mirror_y);
286
287 /* If we're copying to a packed depth stencil texture and the source
288 * framebuffer has separate stencil, we need to also copy the stencil data
289 * over.
290 */
291 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
292 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
293 src_rb != NULL) {
294 src_irb = intel_renderbuffer(src_rb);
295 src_mt = src_irb->mt;
296
297 if (src_mt->stencil_mt)
298 src_mt = src_mt->stencil_mt;
299 if (dst_mt->stencil_mt)
300 dst_mt = dst_mt->stencil_mt;
301
302 if (src_mt != dst_mt) {
303 brw_blorp_blit_miptrees(brw,
304 src_mt, src_irb->mt_level, src_irb->mt_layer,
305 src_mt->format,
306 dst_mt, dst_level, dst_slice,
307 dst_mt->format,
308 srcX0, srcY0, srcX1, srcY1,
309 dstX0, dstY0, dstX1, dstY1,
310 GL_NEAREST, false, mirror_y);
311 }
312 }
313
314 return true;
315 }
316
317
318 GLbitfield
319 brw_blorp_framebuffer(struct brw_context *brw,
320 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
321 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
322 GLbitfield mask, GLenum filter)
323 {
324 /* BLORP is not supported before Gen6. */
325 if (brw->gen < 6 || brw->gen >= 8)
326 return mask;
327
328 static GLbitfield buffer_bits[] = {
329 GL_COLOR_BUFFER_BIT,
330 GL_DEPTH_BUFFER_BIT,
331 GL_STENCIL_BUFFER_BIT,
332 };
333
334 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
335 if ((mask & buffer_bits[i]) &&
336 try_blorp_blit(brw,
337 srcX0, srcY0, srcX1, srcY1,
338 dstX0, dstY0, dstX1, dstY1,
339 filter, buffer_bits[i])) {
340 mask &= ~buffer_bits[i];
341 }
342 }
343
344 return mask;
345 }
346
347
348 /**
349 * Enum to specify the order of arguments in a sampler message
350 */
351 enum sampler_message_arg
352 {
353 SAMPLER_MESSAGE_ARG_U_FLOAT,
354 SAMPLER_MESSAGE_ARG_V_FLOAT,
355 SAMPLER_MESSAGE_ARG_U_INT,
356 SAMPLER_MESSAGE_ARG_V_INT,
357 SAMPLER_MESSAGE_ARG_SI_INT,
358 SAMPLER_MESSAGE_ARG_MCS_INT,
359 SAMPLER_MESSAGE_ARG_ZERO_INT,
360 };
361
362 /**
363 * Generator for WM programs used in BLORP blits.
364 *
365 * The bulk of the work done by the WM program is to wrap and unwrap the
366 * coordinate transformations used by the hardware to store surfaces in
367 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
368 * sample index for a multisampled surface) to a memory offset by the
369 * following formulas:
370 *
371 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
372 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
373 *
374 * For a single-sampled surface, or for a multisampled surface using
375 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
376 * function:
377 *
378 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
379 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
380 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
381 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
382 *
383 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
384 * embeds the sample number into bit 1 of the X and Y coordinates:
385 *
386 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
387 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
388 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
389 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
390 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
391 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
392 * S = (Y & 0b10) | (X & 0b10) >> 1
393 *
394 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
395 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
396 * the Y coordinate:
397 *
398 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
399 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
400 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
401 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
402 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
403 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
404 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
405 *
406 * For X tiling, tile() combines together the low-order bits of the X and Y
407 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
408 * bytes wide and 8 rows high:
409 *
410 * tile(x_tiled, X, Y, S) = A
411 * where A = tile_num << 12 | offset
412 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
413 * offset = (Y' & 0b111) << 9
414 * | (X & 0b111111111)
415 * X' = X * cpp
416 * Y' = Y + S * qpitch
417 * detile(x_tiled, A) = (X, Y, S)
418 * where X = X' / cpp
419 * Y = Y' % qpitch
420 * S = Y' / qpitch
421 * Y' = (tile_num / tile_pitch) << 3
422 * | (A & 0b111000000000) >> 9
423 * X' = (tile_num % tile_pitch) << 9
424 * | (A & 0b111111111)
425 *
426 * (In all tiling formulas, cpp is the number of bytes occupied by a single
427 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
428 * to fill the width of the surface, and qpitch is the spacing (in rows)
429 * between array slices).
430 *
431 * For Y tiling, tile() combines together the low-order bits of the X and Y
432 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
433 * bytes wide and 32 rows high:
434 *
435 * tile(y_tiled, X, Y, S) = A
436 * where A = tile_num << 12 | offset
437 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
438 * offset = (X' & 0b1110000) << 5
439 * | (Y' & 0b11111) << 4
440 * | (X' & 0b1111)
441 * X' = X * cpp
442 * Y' = Y + S * qpitch
443 * detile(y_tiled, A) = (X, Y, S)
444 * where X = X' / cpp
445 * Y = Y' % qpitch
446 * S = Y' / qpitch
447 * Y' = (tile_num / tile_pitch) << 5
448 * | (A & 0b111110000) >> 4
449 * X' = (tile_num % tile_pitch) << 7
450 * | (A & 0b111000000000) >> 5
451 * | (A & 0b1111)
452 *
453 * For W tiling, tile() combines together the low-order bits of the X and Y
454 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
455 * bytes wide and 64 rows high (note that W tiling is only used for stencil
456 * buffers, which always have cpp = 1 and S=0):
457 *
458 * tile(w_tiled, X, Y, S) = A
459 * where A = tile_num << 12 | offset
460 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
461 * offset = (X' & 0b111000) << 6
462 * | (Y' & 0b111100) << 3
463 * | (X' & 0b100) << 2
464 * | (Y' & 0b10) << 2
465 * | (X' & 0b10) << 1
466 * | (Y' & 0b1) << 1
467 * | (X' & 0b1)
468 * X' = X * cpp = X
469 * Y' = Y + S * qpitch
470 * detile(w_tiled, A) = (X, Y, S)
471 * where X = X' / cpp = X'
472 * Y = Y' % qpitch = Y'
473 * S = Y / qpitch = 0
474 * Y' = (tile_num / tile_pitch) << 6
475 * | (A & 0b111100000) >> 3
476 * | (A & 0b1000) >> 2
477 * | (A & 0b10) >> 1
478 * X' = (tile_num % tile_pitch) << 6
479 * | (A & 0b111000000000) >> 6
480 * | (A & 0b10000) >> 2
481 * | (A & 0b100) >> 1
482 * | (A & 0b1)
483 *
484 * Finally, for a non-tiled surface, tile() simply combines together the X and
485 * Y coordinates in the natural way:
486 *
487 * tile(untiled, X, Y, S) = A
488 * where A = Y * pitch + X'
489 * X' = X * cpp
490 * Y' = Y + S * qpitch
491 * detile(untiled, A) = (X, Y, S)
492 * where X = X' / cpp
493 * Y = Y' % qpitch
494 * S = Y' / qpitch
495 * X' = A % pitch
496 * Y' = A / pitch
497 *
498 * (In these formulas, pitch is the number of bytes occupied by a single row
499 * of samples).
500 */
501 class brw_blorp_blit_program : public brw_blorp_eu_emitter
502 {
503 public:
504 brw_blorp_blit_program(struct brw_context *brw,
505 const brw_blorp_blit_prog_key *key, bool debug_flag);
506
507 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
508
509 brw_blorp_prog_data prog_data;
510
511 private:
512 void alloc_regs();
513 void alloc_push_const_regs(int base_reg);
514 void compute_frag_coords();
515 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
516 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
517 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
518 void translate_dst_to_src();
519 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
520 struct brw_reg clampX0, struct brw_reg clampY0,
521 struct brw_reg clampX1, struct brw_reg clampY1);
522 void single_to_blend();
523 void manual_blend_average(unsigned num_samples);
524 void manual_blend_bilinear(unsigned num_samples);
525 void sample(struct brw_reg dst);
526 void texel_fetch(struct brw_reg dst);
527 void mcs_fetch();
528 void texture_lookup(struct brw_reg dst, enum opcode op,
529 const sampler_message_arg *args, int num_args);
530 void render_target_write();
531
532 /**
533 * Base-2 logarithm of the maximum number of samples that can be blended.
534 */
535 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
536
537 struct brw_context *brw;
538 const brw_blorp_blit_prog_key *key;
539
540 /* Thread dispatch header */
541 struct brw_reg R0;
542
543 /* Pixel X/Y coordinates (always in R1). */
544 struct brw_reg R1;
545
546 /* Push constants */
547 struct brw_reg dst_x0;
548 struct brw_reg dst_x1;
549 struct brw_reg dst_y0;
550 struct brw_reg dst_y1;
551 /* Top right coordinates of the rectangular grid used for scaled blitting */
552 struct brw_reg rect_grid_x1;
553 struct brw_reg rect_grid_y1;
554 struct {
555 struct brw_reg multiplier;
556 struct brw_reg offset;
557 } x_transform, y_transform;
558
559 /* Data read from texture (4 vec16's per array element) */
560 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
561
562 /* Auxiliary storage for the contents of the MCS surface.
563 *
564 * Since the sampler always returns 8 registers worth of data, this is 8
565 * registers wide, even though we only use the first 2 registers of it.
566 */
567 struct brw_reg mcs_data;
568
569 /* X coordinates. We have two of them so that we can perform coordinate
570 * transformations easily.
571 */
572 struct brw_reg x_coords[2];
573
574 /* Y coordinates. We have two of them so that we can perform coordinate
575 * transformations easily.
576 */
577 struct brw_reg y_coords[2];
578
579 /* X, Y coordinates of the pixel from which we need to fetch the specific
580 * sample. These are used for multisample scaled blitting.
581 */
582 struct brw_reg x_sample_coords;
583 struct brw_reg y_sample_coords;
584
585 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
586 struct brw_reg x_frac;
587 struct brw_reg y_frac;
588
589 /* Which element of x_coords and y_coords is currently in use.
590 */
591 int xy_coord_index;
592
593 /* True if, at the point in the program currently being compiled, the
594 * sample index is known to be zero.
595 */
596 bool s_is_zero;
597
598 /* Register storing the sample index when s_is_zero is false. */
599 struct brw_reg sample_index;
600
601 /* Temporaries */
602 struct brw_reg t1;
603 struct brw_reg t2;
604
605 /* MRF used for sampling and render target writes */
606 GLuint base_mrf;
607 };
608
609 brw_blorp_blit_program::brw_blorp_blit_program(
610 struct brw_context *brw,
611 const brw_blorp_blit_prog_key *key,
612 bool debug_flag)
613 : brw_blorp_eu_emitter(brw, debug_flag),
614 brw(brw),
615 key(key)
616 {
617 }
618
619 const GLuint *
620 brw_blorp_blit_program::compile(struct brw_context *brw,
621 GLuint *program_size)
622 {
623 /* Sanity checks */
624 if (key->dst_tiled_w && key->rt_samples > 0) {
625 /* If the destination image is W tiled and multisampled, then the thread
626 * must be dispatched once per sample, not once per pixel. This is
627 * necessary because after conversion between W and Y tiling, there's no
628 * guarantee that all samples corresponding to a single pixel will still
629 * be together.
630 */
631 assert(key->persample_msaa_dispatch);
632 }
633
634 if (key->blend) {
635 /* We are blending, which means we won't have an opportunity to
636 * translate the tiling and sample count for the texture surface. So
637 * the surface state for the texture must be configured with the correct
638 * tiling and sample count.
639 */
640 assert(!key->src_tiled_w);
641 assert(key->tex_samples == key->src_samples);
642 assert(key->tex_layout == key->src_layout);
643 assert(key->tex_samples > 0);
644 }
645
646 if (key->persample_msaa_dispatch) {
647 /* It only makes sense to do persample dispatch if the render target is
648 * configured as multisampled.
649 */
650 assert(key->rt_samples > 0);
651 }
652
653 /* Make sure layout is consistent with sample count */
654 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
655 (key->tex_samples == 0));
656 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
657 (key->rt_samples == 0));
658 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
659 (key->src_samples == 0));
660 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
661 (key->dst_samples == 0));
662
663 /* Set up prog_data */
664 memset(&prog_data, 0, sizeof(prog_data));
665 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
666
667 alloc_regs();
668 compute_frag_coords();
669
670 /* Render target and texture hardware don't support W tiling. */
671 const bool rt_tiled_w = false;
672 const bool tex_tiled_w = false;
673
674 /* The address that data will be written to is determined by the
675 * coordinates supplied to the WM thread and the tiling and sample count of
676 * the render target, according to the formula:
677 *
678 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
679 *
680 * If the actual tiling and sample count of the destination surface are not
681 * the same as the configuration of the render target, then these
682 * coordinates are wrong and we have to adjust them to compensate for the
683 * difference.
684 */
685 if (rt_tiled_w != key->dst_tiled_w ||
686 key->rt_samples != key->dst_samples ||
687 key->rt_layout != key->dst_layout) {
688 encode_msaa(key->rt_samples, key->rt_layout);
689 /* Now (X, Y, S) = detile(rt_tiling, offset) */
690 translate_tiling(rt_tiled_w, key->dst_tiled_w);
691 /* Now (X, Y, S) = detile(dst_tiling, offset) */
692 decode_msaa(key->dst_samples, key->dst_layout);
693 }
694
695 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
696 *
697 * That is: X, Y and S now contain the true coordinates and sample index of
698 * the data that the WM thread should output.
699 *
700 * If we need to kill pixels that are outside the destination rectangle,
701 * now is the time to do it.
702 */
703
704 if (key->use_kill)
705 emit_kill_if_outside_rect(x_coords[xy_coord_index],
706 y_coords[xy_coord_index],
707 dst_x0, dst_x1, dst_y0, dst_y1);
708
709 /* Next, apply a translation to obtain coordinates in the source image. */
710 translate_dst_to_src();
711
712 /* If the source image is not multisampled, then we want to fetch sample
713 * number 0, because that's the only sample there is.
714 */
715 if (key->src_samples == 0)
716 s_is_zero = true;
717
718 /* X, Y, and S are now the coordinates of the pixel in the source image
719 * that we want to texture from. Exception: if we are blending, then S is
720 * irrelevant, because we are going to fetch all samples.
721 */
722 if (key->blend && !key->blit_scaled) {
723 if (brw->gen == 6) {
724 /* Gen6 hardware an automatically blend using the SAMPLE message */
725 single_to_blend();
726 sample(texture_data[0]);
727 } else {
728 /* Gen7+ hardware doesn't automaticaly blend. */
729 manual_blend_average(key->src_samples);
730 }
731 } else if(key->blend && key->blit_scaled) {
732 manual_blend_bilinear(key->src_samples);
733 } else {
734 /* We aren't blending, which means we just want to fetch a single sample
735 * from the source surface. The address that we want to fetch from is
736 * related to the X, Y and S values according to the formula:
737 *
738 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
739 *
740 * If the actual tiling and sample count of the source surface are not
741 * the same as the configuration of the texture, then we need to adjust
742 * the coordinates to compensate for the difference.
743 */
744 if ((tex_tiled_w != key->src_tiled_w ||
745 key->tex_samples != key->src_samples ||
746 key->tex_layout != key->src_layout) &&
747 !key->bilinear_filter) {
748 encode_msaa(key->src_samples, key->src_layout);
749 /* Now (X, Y, S) = detile(src_tiling, offset) */
750 translate_tiling(key->src_tiled_w, tex_tiled_w);
751 /* Now (X, Y, S) = detile(tex_tiling, offset) */
752 decode_msaa(key->tex_samples, key->tex_layout);
753 }
754
755 if (key->bilinear_filter) {
756 sample(texture_data[0]);
757 }
758 else {
759 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
760 *
761 * In other words: X, Y, and S now contain values which, when passed to
762 * the texturing unit, will cause data to be read from the correct
763 * memory location. So we can fetch the texel now.
764 */
765 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
766 mcs_fetch();
767 texel_fetch(texture_data[0]);
768 }
769 }
770
771 /* Finally, write the fetched (or blended) value to the render target and
772 * terminate the thread.
773 */
774 render_target_write();
775
776 return get_program(program_size);
777 }
778
779 void
780 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
781 {
782 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
783 #define ALLOC_REG(name, type) \
784 this->name = \
785 retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
786 base_reg + CONST_LOC(name) / 32, \
787 (CONST_LOC(name) % 32) / 4), type)
788
789 ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
790 ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
791 ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
792 ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
793 ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
794 ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
795 ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
796 ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
797 ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
798 ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
799 #undef CONST_LOC
800 #undef ALLOC_REG
801 }
802
803 void
804 brw_blorp_blit_program::alloc_regs()
805 {
806 int reg = 0;
807 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
808 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
809 prog_data.first_curbe_grf = reg;
810 alloc_push_const_regs(reg);
811 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
812 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
813 this->texture_data[i] =
814 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
815 reg += 8;
816 }
817 this->mcs_data =
818 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
819
820 for (int i = 0; i < 2; ++i) {
821 this->x_coords[i]
822 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
823 reg += 2;
824 this->y_coords[i]
825 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
826 reg += 2;
827 }
828
829 if (key->blit_scaled && key->blend) {
830 this->x_sample_coords = brw_vec8_grf(reg, 0);
831 reg += 2;
832 this->y_sample_coords = brw_vec8_grf(reg, 0);
833 reg += 2;
834 this->x_frac = brw_vec8_grf(reg, 0);
835 reg += 2;
836 this->y_frac = brw_vec8_grf(reg, 0);
837 reg += 2;
838 }
839
840 this->xy_coord_index = 0;
841 this->sample_index
842 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
843 reg += 2;
844 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
845 reg += 2;
846 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
847 reg += 2;
848
849 /* Make sure we didn't run out of registers */
850 assert(reg <= GEN7_MRF_HACK_START);
851
852 int mrf = 2;
853 this->base_mrf = mrf;
854 }
855
856 /* In the code that follows, X and Y can be used to quickly refer to the
857 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
858 * prime") to the inactive elements.
859 *
860 * S can be used to quickly refer to sample_index.
861 */
862 #define X x_coords[xy_coord_index]
863 #define Y y_coords[xy_coord_index]
864 #define Xp x_coords[!xy_coord_index]
865 #define Yp y_coords[!xy_coord_index]
866 #define S sample_index
867
868 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
869 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
870 */
871 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
872
873 /**
874 * Emit code to compute the X and Y coordinates of the pixels being rendered
875 * by this WM invocation.
876 *
877 * Assuming the render target is set up for Y tiling, these (X, Y) values are
878 * related to the address offset where outputs will be written by the formula:
879 *
880 * (X, Y, S) = decode_msaa(detile(offset)).
881 *
882 * (See brw_blorp_blit_program).
883 */
884 void
885 brw_blorp_blit_program::compute_frag_coords()
886 {
887 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
888 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
889 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
890 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
891 *
892 * Pixels within a subspan are laid out in this arrangement:
893 * 0 1
894 * 2 3
895 *
896 * So, to compute the coordinates of each pixel, we need to read every 2nd
897 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
898 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
899 * In other words, the data we want to access is R1.4<2;4,0>UW.
900 *
901 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
902 * result, since pixels n+1 and n+3 are in the right half of the subspan.
903 */
904 emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
905 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
906
907 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
908 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
909 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
910 * R1.4<2;4,0>UW).
911 *
912 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
913 * pixels n+2 and n+3 are in the bottom half of the subspan.
914 */
915 emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
916 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
917
918 /* Move the coordinates to UD registers. */
919 emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
920 emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
921 SWAP_XY_AND_XPYP();
922
923 if (key->persample_msaa_dispatch) {
924 switch (key->rt_samples) {
925 case 4: {
926 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
927 * Therefore, subspan 0 will represent sample 0, subspan 1 will
928 * represent sample 1, and so on.
929 *
930 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
931 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
932 * populate a temporary variable with the sequence (0, 1, 2, 3), and
933 * then copy from it using vstride=1, width=4, hstride=0.
934 */
935 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
936 emit_mov(vec16(t1_uw1), brw_imm_v(0x3210));
937 /* Move to UD sample_index register. */
938 emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
939 emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
940 break;
941 }
942 case 8: {
943 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
944 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
945 * subspan 1 will represent sample 1, and so on. We can find the
946 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
947 * Index") and multiplying by two (since samples are always delivered
948 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
949 * 0xc0) >> 5.
950 *
951 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
952 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
953 * variable with the sequence (0, 1, 2, 3), and then reading from it
954 * using vstride=1, width=4, hstride=0.
955 */
956 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
957 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
958 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
959 emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
960 emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
961 emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
962 emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
963 stride(t2_uw1, 1, 4, 0));
964 emit_add_8(offset(S, 1),
965 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
966 suboffset(stride(t2_uw1, 1, 4, 0), 2));
967 break;
968 }
969 default:
970 unreachable("Unrecognized sample count in "
971 "brw_blorp_blit_program::compute_frag_coords()");
972 }
973 s_is_zero = false;
974 } else {
975 /* Either the destination surface is single-sampled, or the WM will be
976 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
977 * per pixel). In either case, it's not meaningful to compute a sample
978 * value. Just set it to 0.
979 */
980 s_is_zero = true;
981 }
982 }
983
984 /**
985 * Emit code to compensate for the difference between Y and W tiling.
986 *
987 * This code modifies the X and Y coordinates according to the formula:
988 *
989 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
990 *
991 * (See brw_blorp_blit_program).
992 *
993 * It can only translate between W and Y tiling, so new_tiling and old_tiling
994 * are booleans where true represents W tiling and false represents Y tiling.
995 */
996 void
997 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
998 {
999 if (old_tiled_w == new_tiled_w)
1000 return;
1001
1002 /* In the code that follows, we can safely assume that S = 0, because W
1003 * tiling formats always use IMS layout.
1004 */
1005 assert(s_is_zero);
1006
1007 if (new_tiled_w) {
1008 /* Given X and Y coordinates that describe an address using Y tiling,
1009 * translate to the X and Y coordinates that describe the same address
1010 * using W tiling.
1011 *
1012 * If we break down the low order bits of X and Y, using a
1013 * single letter to represent each low-order bit:
1014 *
1015 * X = A << 7 | 0bBCDEFGH
1016 * Y = J << 5 | 0bKLMNP (1)
1017 *
1018 * Then we can apply the Y tiling formula to see the memory offset being
1019 * addressed:
1020 *
1021 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1022 *
1023 * If we apply the W detiling formula to this memory location, that the
1024 * corresponding X' and Y' coordinates are:
1025 *
1026 * X' = A << 6 | 0bBCDPFH (3)
1027 * Y' = J << 6 | 0bKLMNEG
1028 *
1029 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1030 * we need to make the following computation:
1031 *
1032 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1033 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1034 */
1035 emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1036 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1037 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1038 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1039 emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1040 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1041 emit_or(Xp, t1, t2);
1042 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1043 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1044 emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1045 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1046 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1047 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1048 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1049 emit_or(Yp, t1, t2);
1050 SWAP_XY_AND_XPYP();
1051 } else {
1052 /* Applying the same logic as above, but in reverse, we obtain the
1053 * formulas:
1054 *
1055 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1056 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1057 */
1058 emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1059 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1060 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1061 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1062 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1063 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1064 emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1065 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1066 | (Y & 0b1) << 1 */
1067 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1068 emit_or(Xp, t1, t2);
1069 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1070 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1071 emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
1072 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1073 emit_or(Yp, t1, t2);
1074 SWAP_XY_AND_XPYP();
1075 }
1076 }
1077
1078 /**
1079 * Emit code to compensate for the difference between MSAA and non-MSAA
1080 * surfaces.
1081 *
1082 * This code modifies the X and Y coordinates according to the formula:
1083 *
1084 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1085 *
1086 * (See brw_blorp_blit_program).
1087 */
1088 void
1089 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1090 intel_msaa_layout layout)
1091 {
1092 switch (layout) {
1093 case INTEL_MSAA_LAYOUT_NONE:
1094 /* No translation necessary, and S should already be zero. */
1095 assert(s_is_zero);
1096 break;
1097 case INTEL_MSAA_LAYOUT_CMS:
1098 /* We can't compensate for compressed layout since at this point in the
1099 * program we haven't read from the MCS buffer.
1100 */
1101 unreachable("Bad layout in encode_msaa");
1102 case INTEL_MSAA_LAYOUT_UMS:
1103 /* No translation necessary. */
1104 break;
1105 case INTEL_MSAA_LAYOUT_IMS:
1106 switch (num_samples) {
1107 case 4:
1108 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1109 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1110 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1111 */
1112 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1113 if (!s_is_zero) {
1114 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1115 emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1116 }
1117 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1118 | (S & 0b1) << 1 */
1119 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1120 emit_or(Xp, t1, t2);
1121 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1122 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1123 if (!s_is_zero) {
1124 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1125 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1126 }
1127 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1128 emit_or(Yp, t1, t2);
1129 break;
1130 case 8:
1131 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1132 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1133 * | (X & 0b1)
1134 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1135 */
1136 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1137 emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1138 if (!s_is_zero) {
1139 emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
1140 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1141 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1142 emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1143 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1144 | (S & 0b1) << 1 */
1145 }
1146 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1147 emit_or(Xp, t1, t2);
1148 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1149 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1150 if (!s_is_zero) {
1151 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1152 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1153 }
1154 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1155 emit_or(Yp, t1, t2);
1156 break;
1157 }
1158 SWAP_XY_AND_XPYP();
1159 s_is_zero = true;
1160 break;
1161 }
1162 }
1163
1164 /**
1165 * Emit code to compensate for the difference between MSAA and non-MSAA
1166 * surfaces.
1167 *
1168 * This code modifies the X and Y coordinates according to the formula:
1169 *
1170 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1171 *
1172 * (See brw_blorp_blit_program).
1173 */
1174 void
1175 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1176 intel_msaa_layout layout)
1177 {
1178 switch (layout) {
1179 case INTEL_MSAA_LAYOUT_NONE:
1180 /* No translation necessary, and S should already be zero. */
1181 assert(s_is_zero);
1182 break;
1183 case INTEL_MSAA_LAYOUT_CMS:
1184 /* We can't compensate for compressed layout since at this point in the
1185 * program we don't have access to the MCS buffer.
1186 */
1187 unreachable("Bad layout in encode_msaa");
1188 case INTEL_MSAA_LAYOUT_UMS:
1189 /* No translation necessary. */
1190 break;
1191 case INTEL_MSAA_LAYOUT_IMS:
1192 assert(s_is_zero);
1193 switch (num_samples) {
1194 case 4:
1195 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1196 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1197 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1198 * S = (Y & 0b10) | (X & 0b10) >> 1
1199 */
1200 emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1201 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1202 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1203 emit_or(Xp, t1, t2);
1204 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1205 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1206 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1207 emit_or(Yp, t1, t2);
1208 emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1209 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1210 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1211 emit_or(S, t1, t2);
1212 break;
1213 case 8:
1214 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1215 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1216 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1217 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1218 */
1219 emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1220 emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1221 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1222 emit_or(Xp, t1, t2);
1223 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1224 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1225 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1226 emit_or(Yp, t1, t2);
1227 emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
1228 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1229 emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1230 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1231 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1232 emit_or(S, t1, t2);
1233 break;
1234 }
1235 s_is_zero = false;
1236 SWAP_XY_AND_XPYP();
1237 break;
1238 }
1239 }
1240
1241 /**
1242 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1243 * coordinates.
1244 */
1245 void
1246 brw_blorp_blit_program::translate_dst_to_src()
1247 {
1248 struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
1249 struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
1250 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1251 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1252
1253 /* Move the UD coordinates to float registers. */
1254 emit_mov(Xp_f, X);
1255 emit_mov(Yp_f, Y);
1256 /* Scale and offset */
1257 emit_mul(X_f, Xp_f, x_transform.multiplier);
1258 emit_mul(Y_f, Yp_f, y_transform.multiplier);
1259 emit_add(X_f, X_f, x_transform.offset);
1260 emit_add(Y_f, Y_f, y_transform.offset);
1261 if (key->blit_scaled && key->blend) {
1262 /* Translate coordinates to lay out the samples in a rectangular grid
1263 * roughly corresponding to sample locations.
1264 */
1265 emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
1266 emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
1267 /* Adjust coordinates so that integers represent pixel centers rather
1268 * than pixel edges.
1269 */
1270 emit_add(X_f, X_f, brw_imm_f(-0.5));
1271 emit_add(Y_f, Y_f, brw_imm_f(-0.5));
1272
1273 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1274 * texels on texture edges.
1275 */
1276 clamp_tex_coords(X_f, Y_f,
1277 brw_imm_f(0.0), brw_imm_f(0.0),
1278 rect_grid_x1, rect_grid_y1);
1279
1280 /* Store the fractional parts to be used as bilinear interpolation
1281 * coefficients.
1282 */
1283 emit_frc(x_frac, X_f);
1284 emit_frc(y_frac, Y_f);
1285
1286 /* Round the float coordinates down to nearest integer */
1287 emit_rndd(Xp_f, X_f);
1288 emit_rndd(Yp_f, Y_f);
1289 emit_mul(X_f, Xp_f, brw_imm_f(1 / key->x_scale));
1290 emit_mul(Y_f, Yp_f, brw_imm_f(1 / key->y_scale));
1291 SWAP_XY_AND_XPYP();
1292 } else if (!key->bilinear_filter) {
1293 /* Round the float coordinates down to nearest integer by moving to
1294 * UD registers.
1295 */
1296 emit_mov(Xp, X_f);
1297 emit_mov(Yp, Y_f);
1298 SWAP_XY_AND_XPYP();
1299 }
1300 }
1301
1302 void
1303 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1304 struct brw_reg regY,
1305 struct brw_reg clampX0,
1306 struct brw_reg clampY0,
1307 struct brw_reg clampX1,
1308 struct brw_reg clampY1)
1309 {
1310 emit_cond_mov(regX, clampX0, BRW_CONDITIONAL_L, regX, clampX0);
1311 emit_cond_mov(regX, clampX1, BRW_CONDITIONAL_G, regX, clampX1);
1312 emit_cond_mov(regY, clampY0, BRW_CONDITIONAL_L, regY, clampY0);
1313 emit_cond_mov(regY, clampY1, BRW_CONDITIONAL_G, regY, clampY1);
1314 }
1315
1316 /**
1317 * Emit code to transform the X and Y coordinates as needed for blending
1318 * together the different samples in an MSAA texture.
1319 */
1320 void
1321 brw_blorp_blit_program::single_to_blend()
1322 {
1323 /* When looking up samples in an MSAA texture using the SAMPLE message,
1324 * Gen6 requires the texture coordinates to be odd integers (so that they
1325 * correspond to the center of a 2x2 block representing the four samples
1326 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1327 * each by 2 and then add 1.
1328 */
1329 emit_shl(t1, X, brw_imm_w(1));
1330 emit_shl(t2, Y, brw_imm_w(1));
1331 emit_add(Xp, t1, brw_imm_w(1));
1332 emit_add(Yp, t2, brw_imm_w(1));
1333 SWAP_XY_AND_XPYP();
1334 }
1335
1336
1337 /**
1338 * Count the number of trailing 1 bits in the given value. For example:
1339 *
1340 * count_trailing_one_bits(0) == 0
1341 * count_trailing_one_bits(7) == 3
1342 * count_trailing_one_bits(11) == 2
1343 */
1344 inline int count_trailing_one_bits(unsigned value)
1345 {
1346 #ifdef HAVE___BUILTIN_CTZ
1347 return __builtin_ctz(~value);
1348 #else
1349 return _mesa_bitcount(value & ~(value + 1));
1350 #endif
1351 }
1352
1353
1354 void
1355 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1356 {
1357 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1358 mcs_fetch();
1359
1360 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1361 *
1362 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1363 *
1364 * This ensures that when all samples have the same value, no numerical
1365 * precision is lost, since each addition operation always adds two equal
1366 * values, and summing two equal floating point values does not lose
1367 * precision.
1368 *
1369 * We perform this computation by treating the texture_data array as a
1370 * stack and performing the following operations:
1371 *
1372 * - push sample 0 onto stack
1373 * - push sample 1 onto stack
1374 * - add top two stack entries
1375 * - push sample 2 onto stack
1376 * - push sample 3 onto stack
1377 * - add top two stack entries
1378 * - add top two stack entries
1379 * - divide top stack entry by 4
1380 *
1381 * Note that after pushing sample i onto the stack, the number of add
1382 * operations we do is equal to the number of trailing 1 bits in i. This
1383 * works provided the total number of samples is a power of two, which it
1384 * always is for i965.
1385 *
1386 * For integer formats, we replace the add operations with average
1387 * operations and skip the final division.
1388 */
1389 unsigned stack_depth = 0;
1390 for (unsigned i = 0; i < num_samples; ++i) {
1391 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1392
1393 /* Push sample i onto the stack */
1394 assert(stack_depth < ARRAY_SIZE(texture_data));
1395 if (i == 0) {
1396 s_is_zero = true;
1397 } else {
1398 s_is_zero = false;
1399 emit_mov(vec16(S), brw_imm_ud(i));
1400 }
1401 texel_fetch(texture_data[stack_depth++]);
1402
1403 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1404 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1405 * suggests an optimization:
1406 *
1407 * "A simple optimization with probable large return in
1408 * performance is to compare the MCS value to zero (indicating
1409 * all samples are on sample slice 0), and sample only from
1410 * sample slice 0 using ld2dss if MCS is zero."
1411 *
1412 * Note that in the case where the MCS value is zero, sampling from
1413 * sample slice 0 using ld2dss and sampling from sample 0 using
1414 * ld2dms are equivalent (since all samples are on sample slice 0).
1415 * Since we have already sampled from sample 0, all we need to do is
1416 * skip the remaining fetches and averaging if MCS is zero.
1417 */
1418 emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0));
1419 }
1420
1421 /* Do count_trailing_one_bits(i) times */
1422 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1423 assert(stack_depth >= 2);
1424 --stack_depth;
1425
1426 /* TODO: should use a smaller loop bound for non_RGBA formats */
1427 for (int k = 0; k < 4; ++k) {
1428 emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ?
1429 BRW_OPCODE_ADD : BRW_OPCODE_AVG,
1430 offset(texture_data[stack_depth - 1], 2*k),
1431 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1432 offset(vec8(texture_data[stack_depth]), 2*k));
1433 }
1434 }
1435 }
1436
1437 /* We should have just 1 sample on the stack now. */
1438 assert(stack_depth == 1);
1439
1440 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1441 /* Scale the result down by a factor of num_samples */
1442 /* TODO: should use a smaller loop bound for non-RGBA formats */
1443 for (int j = 0; j < 4; ++j) {
1444 emit_mul(offset(texture_data[0], 2*j),
1445 offset(vec8(texture_data[0]), 2*j),
1446 brw_imm_f(1.0/num_samples));
1447 }
1448 }
1449
1450 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1451 emit_endif();
1452 }
1453
1454 void
1455 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1456 {
1457 /* We do this computation by performing the following operations:
1458 *
1459 * In case of 4x, 8x MSAA:
1460 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1461 * which are later used for interpolation
1462 * - linearly interpolate samples a and b in X
1463 * - linearly interpolate samples c and d in X
1464 * - linearly interpolate the results of last two operations in Y
1465 *
1466 * result = lrp(lrp(a + b) + lrp(c + d))
1467 */
1468 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1469 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1470 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1471 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1472
1473 for (unsigned i = 0; i < 4; ++i) {
1474 assert(i < ARRAY_SIZE(texture_data));
1475 s_is_zero = false;
1476
1477 /* Compute pixel coordinates */
1478 emit_add(vec16(x_sample_coords), Xp_f,
1479 brw_imm_f((float)(i & 0x1) * (1.0 / key->x_scale)));
1480 emit_add(vec16(y_sample_coords), Yp_f,
1481 brw_imm_f((float)((i >> 1) & 0x1) * (1.0 / key->y_scale)));
1482 emit_mov(vec16(X), x_sample_coords);
1483 emit_mov(vec16(Y), y_sample_coords);
1484
1485 /* The MCS value we fetch has to match up with the pixel that we're
1486 * sampling from. Since we sample from different pixels in each
1487 * iteration of this "for" loop, the call to mcs_fetch() should be
1488 * here inside the loop after computing the pixel coordinates.
1489 */
1490 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1491 mcs_fetch();
1492
1493 /* Compute sample index and map the sample index to a sample number.
1494 * Sample index layout shows the numbering of slots in a rectangular
1495 * grid of samples with in a pixel. Sample number layout shows the
1496 * rectangular grid of samples roughly corresponding to the real sample
1497 * locations with in a pixel.
1498 * In case of 4x MSAA, layout of sample indices matches the layout of
1499 * sample numbers:
1500 * ---------
1501 * | 0 | 1 |
1502 * ---------
1503 * | 2 | 3 |
1504 * ---------
1505 *
1506 * In case of 8x MSAA the two layouts don't match.
1507 * sample index layout : --------- sample number layout : ---------
1508 * | 0 | 1 | | 5 | 2 |
1509 * --------- ---------
1510 * | 2 | 3 | | 4 | 6 |
1511 * --------- ---------
1512 * | 4 | 5 | | 0 | 3 |
1513 * --------- ---------
1514 * | 6 | 7 | | 7 | 1 |
1515 * --------- ---------
1516 */
1517 emit_frc(vec16(t1_f), x_sample_coords);
1518 emit_frc(vec16(t2_f), y_sample_coords);
1519 emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1520 emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1521 emit_add(vec16(t1_f), t1_f, t2_f);
1522 emit_mov(vec16(S), t1_f);
1523
1524 if (num_samples == 8) {
1525 /* Map the sample index to a sample number */
1526 emit_cmp_if(BRW_CONDITIONAL_L, S, brw_imm_d(4));
1527 {
1528 emit_mov(vec16(t2), brw_imm_d(5));
1529 emit_if_eq_mov(S, 1, vec16(t2), 2);
1530 emit_if_eq_mov(S, 2, vec16(t2), 4);
1531 emit_if_eq_mov(S, 3, vec16(t2), 6);
1532 }
1533 emit_else();
1534 {
1535 emit_mov(vec16(t2), brw_imm_d(0));
1536 emit_if_eq_mov(S, 5, vec16(t2), 3);
1537 emit_if_eq_mov(S, 6, vec16(t2), 7);
1538 emit_if_eq_mov(S, 7, vec16(t2), 1);
1539 }
1540 emit_endif();
1541 emit_mov(vec16(S), t2);
1542 }
1543 texel_fetch(texture_data[i]);
1544 }
1545
1546 #define SAMPLE(x, y) offset(texture_data[x], y)
1547 for (int index = 3; index > 0; ) {
1548 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1549 * Counter value of 8 in 'for' loop below is used to interpolate all
1550 * the color components.
1551 */
1552 for (int k = 0; k < 8; k += 2)
1553 emit_lrp(vec8(SAMPLE(index - 1, k)),
1554 x_frac,
1555 vec8(SAMPLE(index, k)),
1556 vec8(SAMPLE(index - 1, k)));
1557 index -= 2;
1558 }
1559 for (int k = 0; k < 8; k += 2)
1560 emit_lrp(vec8(SAMPLE(0, k)),
1561 y_frac,
1562 vec8(SAMPLE(2, k)),
1563 vec8(SAMPLE(0, k)));
1564 #undef SAMPLE
1565 }
1566
1567 /**
1568 * Emit code to look up a value in the texture using the SAMPLE message (which
1569 * does blending of MSAA surfaces).
1570 */
1571 void
1572 brw_blorp_blit_program::sample(struct brw_reg dst)
1573 {
1574 static const sampler_message_arg args[2] = {
1575 SAMPLER_MESSAGE_ARG_U_FLOAT,
1576 SAMPLER_MESSAGE_ARG_V_FLOAT
1577 };
1578
1579 texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
1580 }
1581
1582 /**
1583 * Emit code to look up a value in the texture using the SAMPLE_LD message
1584 * (which does a simple texel fetch).
1585 */
1586 void
1587 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1588 {
1589 static const sampler_message_arg gen6_args[5] = {
1590 SAMPLER_MESSAGE_ARG_U_INT,
1591 SAMPLER_MESSAGE_ARG_V_INT,
1592 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1593 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1594 SAMPLER_MESSAGE_ARG_SI_INT
1595 };
1596 static const sampler_message_arg gen7_ld_args[3] = {
1597 SAMPLER_MESSAGE_ARG_U_INT,
1598 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1599 SAMPLER_MESSAGE_ARG_V_INT
1600 };
1601 static const sampler_message_arg gen7_ld2dss_args[3] = {
1602 SAMPLER_MESSAGE_ARG_SI_INT,
1603 SAMPLER_MESSAGE_ARG_U_INT,
1604 SAMPLER_MESSAGE_ARG_V_INT
1605 };
1606 static const sampler_message_arg gen7_ld2dms_args[4] = {
1607 SAMPLER_MESSAGE_ARG_SI_INT,
1608 SAMPLER_MESSAGE_ARG_MCS_INT,
1609 SAMPLER_MESSAGE_ARG_U_INT,
1610 SAMPLER_MESSAGE_ARG_V_INT
1611 };
1612
1613 switch (brw->gen) {
1614 case 6:
1615 texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
1616 break;
1617 case 7:
1618 switch (key->tex_layout) {
1619 case INTEL_MSAA_LAYOUT_IMS:
1620 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1621 * Format):
1622 *
1623 * If this field is MSFMT_DEPTH_STENCIL
1624 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1625 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1626 *
1627 * So fall through to emit the same message as we use for
1628 * INTEL_MSAA_LAYOUT_CMS.
1629 */
1630 case INTEL_MSAA_LAYOUT_CMS:
1631 texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
1632 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1633 break;
1634 case INTEL_MSAA_LAYOUT_UMS:
1635 texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
1636 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1637 break;
1638 case INTEL_MSAA_LAYOUT_NONE:
1639 assert(s_is_zero);
1640 texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
1641 ARRAY_SIZE(gen7_ld_args));
1642 break;
1643 }
1644 break;
1645 default:
1646 unreachable("Should not get here.");
1647 };
1648 }
1649
1650 void
1651 brw_blorp_blit_program::mcs_fetch()
1652 {
1653 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1654 SAMPLER_MESSAGE_ARG_U_INT,
1655 SAMPLER_MESSAGE_ARG_V_INT
1656 };
1657 texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
1658 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1659 }
1660
1661 void
1662 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1663 enum opcode op,
1664 const sampler_message_arg *args,
1665 int num_args)
1666 {
1667 struct brw_reg mrf =
1668 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1669 for (int arg = 0; arg < num_args; ++arg) {
1670 switch (args[arg]) {
1671 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1672 if (key->bilinear_filter)
1673 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1674 retype(X, BRW_REGISTER_TYPE_F));
1675 else
1676 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
1677 break;
1678 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1679 if (key->bilinear_filter)
1680 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1681 retype(Y, BRW_REGISTER_TYPE_F));
1682 else
1683 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
1684 break;
1685 case SAMPLER_MESSAGE_ARG_U_INT:
1686 emit_mov(mrf, X);
1687 break;
1688 case SAMPLER_MESSAGE_ARG_V_INT:
1689 emit_mov(mrf, Y);
1690 break;
1691 case SAMPLER_MESSAGE_ARG_SI_INT:
1692 /* Note: on Gen7, this code may be reached with s_is_zero==true
1693 * because in Gen7's ld2dss message, the sample index is the first
1694 * argument. When this happens, we need to move a 0 into the
1695 * appropriate message register.
1696 */
1697 if (s_is_zero)
1698 emit_mov(mrf, brw_imm_ud(0));
1699 else
1700 emit_mov(mrf, S);
1701 break;
1702 case SAMPLER_MESSAGE_ARG_MCS_INT:
1703 switch (key->tex_layout) {
1704 case INTEL_MSAA_LAYOUT_CMS:
1705 emit_mov(mrf, mcs_data);
1706 break;
1707 case INTEL_MSAA_LAYOUT_IMS:
1708 /* When sampling from an IMS surface, MCS data is not relevant,
1709 * and the hardware ignores it. So don't bother populating it.
1710 */
1711 break;
1712 default:
1713 /* We shouldn't be trying to send MCS data with any other
1714 * layouts.
1715 */
1716 assert (!"Unsupported layout for MCS data");
1717 break;
1718 }
1719 break;
1720 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1721 emit_mov(mrf, brw_imm_ud(0));
1722 break;
1723 }
1724 mrf.nr += 2;
1725 }
1726
1727 emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1728 op,
1729 base_mrf,
1730 mrf.nr - base_mrf /* msg_length */);
1731 }
1732
1733 #undef X
1734 #undef Y
1735 #undef U
1736 #undef V
1737 #undef S
1738 #undef SWAP_XY_AND_XPYP
1739
1740 void
1741 brw_blorp_blit_program::render_target_write()
1742 {
1743 struct brw_reg mrf_rt_write =
1744 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1745 int mrf_offset = 0;
1746
1747 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1748 * so that the render target knows which pixels we killed.
1749 */
1750 bool use_header = key->use_kill;
1751 if (use_header) {
1752 /* Copy R0/1 to MRF */
1753 emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1754 retype(R0, BRW_REGISTER_TYPE_UD));
1755 mrf_offset += 2;
1756 }
1757
1758 /* Copy texture data to MRFs */
1759 for (int i = 0; i < 4; ++i) {
1760 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1761 emit_mov(offset(mrf_rt_write, mrf_offset),
1762 offset(vec8(texture_data[0]), 2*i));
1763 mrf_offset += 2;
1764 }
1765
1766 /* Now write to the render target and terminate the thread */
1767 emit_render_target_write(
1768 mrf_rt_write,
1769 base_mrf,
1770 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1771 use_header);
1772 }
1773
1774
1775 void
1776 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
1777 GLfloat dst0, GLfloat dst1,
1778 bool mirror)
1779 {
1780 float scale = (src1 - src0) / (dst1 - dst0);
1781 if (!mirror) {
1782 /* When not mirroring a coordinate (say, X), we need:
1783 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1784 * Therefore:
1785 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1786 *
1787 * blorp program uses "round toward zero" to convert the
1788 * transformed floating point coordinates to integer coordinates,
1789 * whereas the behaviour we actually want is "round to nearest",
1790 * so 0.5 provides the necessary correction.
1791 */
1792 multiplier = scale;
1793 offset = src0 + (-dst0 + 0.5) * scale;
1794 } else {
1795 /* When mirroring X we need:
1796 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1797 * Therefore:
1798 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1799 */
1800 multiplier = -scale;
1801 offset = src0 + (dst1 - 0.5) * scale;
1802 }
1803 }
1804
1805
1806 /**
1807 * Determine which MSAA layout the GPU pipeline should be configured for,
1808 * based on the chip generation, the number of samples, and the true layout of
1809 * the image in memory.
1810 */
1811 inline intel_msaa_layout
1812 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1813 intel_msaa_layout true_layout)
1814 {
1815 if (num_samples <= 1) {
1816 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1817 * format buffers, by transforming coordinates appropriately.
1818 */
1819 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1820 true_layout == INTEL_MSAA_LAYOUT_IMS);
1821 return INTEL_MSAA_LAYOUT_NONE;
1822 } else {
1823 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1824 }
1825
1826 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1827 if (brw->gen == 6) {
1828 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1829 }
1830
1831 return true_layout;
1832 }
1833
1834
1835 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1836 struct intel_mipmap_tree *src_mt,
1837 unsigned src_level, unsigned src_layer,
1838 mesa_format src_format,
1839 struct intel_mipmap_tree *dst_mt,
1840 unsigned dst_level, unsigned dst_layer,
1841 mesa_format dst_format,
1842 GLfloat src_x0, GLfloat src_y0,
1843 GLfloat src_x1, GLfloat src_y1,
1844 GLfloat dst_x0, GLfloat dst_y0,
1845 GLfloat dst_x1, GLfloat dst_y1,
1846 GLenum filter,
1847 bool mirror_x, bool mirror_y)
1848 {
1849 src.set(brw, src_mt, src_level, src_layer, src_format, false);
1850 dst.set(brw, dst_mt, dst_level, dst_layer, dst_format, true);
1851
1852 /* Even though we do multisample resolves at the time of the blit, OpenGL
1853 * specification defines them as if they happen at the time of rendering,
1854 * which means that the type of averaging we do during the resolve should
1855 * only depend on the source format; the destination format should be
1856 * ignored. But, specification doesn't seem to be strict about it.
1857 *
1858 * It has been observed that mulitisample resolves produce slightly better
1859 * looking images when averaging is done using destination format. NVIDIA's
1860 * proprietary OpenGL driver also follow this approach. So, we choose to
1861 * follow it in our driver.
1862 *
1863 * When multisampling, if the source and destination formats are equal
1864 * (aside from the color space), we choose to blit in sRGB space to get
1865 * this higher quality image.
1866 */
1867 if (src.num_samples > 1 &&
1868 _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
1869 _mesa_get_srgb_format_linear(src_mt->format) ==
1870 _mesa_get_srgb_format_linear(dst_mt->format)) {
1871 dst.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
1872 src.brw_surfaceformat = dst.brw_surfaceformat;
1873 }
1874
1875 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
1876 * texture, the above code configures the source format for L32_FLOAT or
1877 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
1878 * the SAMPLE message appears to handle multisampled L32_FLOAT and
1879 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
1880 * around the problem by using a source format of R32_FLOAT. This
1881 * shouldn't affect rendering correctness, since the destination format is
1882 * R32_FLOAT, so only the contents of the red channel matters.
1883 */
1884 if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
1885 src_mt->format == dst_mt->format &&
1886 dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
1887 src.brw_surfaceformat = dst.brw_surfaceformat;
1888 }
1889
1890 use_wm_prog = true;
1891 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1892
1893 /* texture_data_type indicates the register type that should be used to
1894 * manipulate texture data.
1895 */
1896 switch (_mesa_get_format_datatype(src_mt->format)) {
1897 case GL_UNSIGNED_NORMALIZED:
1898 case GL_SIGNED_NORMALIZED:
1899 case GL_FLOAT:
1900 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1901 break;
1902 case GL_UNSIGNED_INT:
1903 if (src_mt->format == MESA_FORMAT_S_UINT8) {
1904 /* We process stencil as though it's an unsigned normalized color */
1905 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1906 } else {
1907 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1908 }
1909 break;
1910 case GL_INT:
1911 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1912 break;
1913 default:
1914 unreachable("Unrecognized blorp format");
1915 }
1916
1917 if (brw->gen > 6) {
1918 /* Gen7's rendering hardware only supports the IMS layout for depth and
1919 * stencil render targets. Blorp always maps its destination surface as
1920 * a color render target (even if it's actually a depth or stencil
1921 * buffer). So if the destination is IMS, we'll have to map it as a
1922 * single-sampled texture and interleave the samples ourselves.
1923 */
1924 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1925 dst.num_samples = 0;
1926 }
1927
1928 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
1929 /* If the destination surface is a W-tiled multisampled stencil buffer
1930 * that we're mapping as Y tiled, then we need to arrange for the WM
1931 * program to run once per sample rather than once per pixel, because
1932 * the memory layout of related samples doesn't match between W and Y
1933 * tiling.
1934 */
1935 wm_prog_key.persample_msaa_dispatch = true;
1936 }
1937
1938 if (src.num_samples > 0 && dst.num_samples > 1) {
1939 /* We are blitting from a multisample buffer to a multisample buffer, so
1940 * we must preserve samples within a pixel. This means we have to
1941 * arrange for the WM program to run once per sample rather than once
1942 * per pixel.
1943 */
1944 wm_prog_key.persample_msaa_dispatch = true;
1945 }
1946
1947 /* Scaled blitting or not. */
1948 wm_prog_key.blit_scaled =
1949 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
1950 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
1951
1952 /* Scaling factors used for bilinear filtering in multisample scaled
1953 * blits.
1954 */
1955 wm_prog_key.x_scale = 2.0;
1956 wm_prog_key.y_scale = src_mt->num_samples / 2.0;
1957
1958 if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
1959 wm_prog_key.bilinear_filter = true;
1960
1961 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1962 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1963 base_format != GL_STENCIL_INDEX &&
1964 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
1965 /* We are downsampling a color buffer, so blend. */
1966 wm_prog_key.blend = true;
1967 }
1968
1969 /* src_samples and dst_samples are the true sample counts */
1970 wm_prog_key.src_samples = src_mt->num_samples;
1971 wm_prog_key.dst_samples = dst_mt->num_samples;
1972
1973 /* tex_samples and rt_samples are the sample counts that are set up in
1974 * SURFACE_STATE.
1975 */
1976 wm_prog_key.tex_samples = src.num_samples;
1977 wm_prog_key.rt_samples = dst.num_samples;
1978
1979 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1980 * use to access the source and destination surfaces.
1981 */
1982 wm_prog_key.tex_layout =
1983 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1984 wm_prog_key.rt_layout =
1985 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1986
1987 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1988 * dst.
1989 */
1990 wm_prog_key.src_layout = src_mt->msaa_layout;
1991 wm_prog_key.dst_layout = dst_mt->msaa_layout;
1992
1993 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1994 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1995 x0 = wm_push_consts.dst_x0 = dst_x0;
1996 y0 = wm_push_consts.dst_y0 = dst_y0;
1997 x1 = wm_push_consts.dst_x1 = dst_x1;
1998 y1 = wm_push_consts.dst_y1 = dst_y1;
1999 wm_push_consts.rect_grid_x1 = (minify(src_mt->logical_width0, src_level) *
2000 wm_prog_key.x_scale - 1.0);
2001 wm_push_consts.rect_grid_y1 = (minify(src_mt->logical_height0, src_level) *
2002 wm_prog_key.y_scale - 1.0);
2003
2004 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
2005 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
2006
2007 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
2008 /* We must expand the rectangle we send through the rendering pipeline,
2009 * to account for the fact that we are mapping the destination region as
2010 * single-sampled when it is in fact multisampled. We must also align
2011 * it to a multiple of the multisampling pattern, because the
2012 * differences between multisampled and single-sampled surface formats
2013 * will mean that pixels are scrambled within the multisampling pattern.
2014 * TODO: what if this makes the coordinates too large?
2015 *
2016 * Note: this only works if the destination surface uses the IMS layout.
2017 * If it's UMS, then we have no choice but to set up the rendering
2018 * pipeline as multisampled.
2019 */
2020 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2021 switch (dst_mt->num_samples) {
2022 case 4:
2023 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2024 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2025 x1 = ALIGN(x1 * 2, 4);
2026 y1 = ALIGN(y1 * 2, 4);
2027 break;
2028 case 8:
2029 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2030 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2031 x1 = ALIGN(x1 * 4, 8);
2032 y1 = ALIGN(y1 * 2, 4);
2033 break;
2034 default:
2035 unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
2036 }
2037 wm_prog_key.use_kill = true;
2038 }
2039
2040 if (dst.map_stencil_as_y_tiled) {
2041 /* We must modify the rectangle we send through the rendering pipeline
2042 * (and the size and x/y offset of the destination surface), to account
2043 * for the fact that we are mapping it as Y-tiled when it is in fact
2044 * W-tiled.
2045 *
2046 * Both Y tiling and W tiling can be understood as organizations of
2047 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2048 * is different, but the layout of the 32-byte sub-tiles within the 4k
2049 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2050 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2051 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2052 *
2053 * Therefore, to account for the layout differences within the 32-byte
2054 * sub-tiles, we must expand the rectangle so the X coordinates of its
2055 * edges are multiples of 8 (the W sub-tile width), and its Y
2056 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2057 * Then we need to scale the X and Y coordinates of the rectangle to
2058 * account for the differences in aspect ratio between the Y and W
2059 * sub-tiles. We need to modify the layer width and height similarly.
2060 *
2061 * A correction needs to be applied when MSAA is in use: since
2062 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2063 * we need to align the Y coordinates to multiples of 8, so that when
2064 * they are divided by two they are still multiples of 4.
2065 *
2066 * Note: Since the x/y offset of the surface will be applied using the
2067 * SURFACE_STATE command packet, it will be invisible to the swizzling
2068 * code in the shader; therefore it needs to be in a multiple of the
2069 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2070 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2071 * buffer), and the miplevel alignment used for stencil buffers is 8
2072 * pixels horizontally and either 4 or 8 pixels vertically (see
2073 * intel_horizontal_texture_alignment_unit() and
2074 * intel_vertical_texture_alignment_unit()).
2075 *
2076 * Note: Also, since the SURFACE_STATE command packet can only apply
2077 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2078 * vertically, it is important that the offsets will be multiples of
2079 * these sizes after they are converted into Y-tiled coordinates.
2080 * Fortunately they will be, since we know from above that the offsets
2081 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2082 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2083 *
2084 * TODO: what if this makes the coordinates (or the texture size) too
2085 * large?
2086 */
2087 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2088 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2089 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2090 x1 = ALIGN(x1, x_align) * 2;
2091 y1 = ALIGN(y1, y_align) / 2;
2092 dst.width = ALIGN(dst.width, x_align) * 2;
2093 dst.height = ALIGN(dst.height, y_align) / 2;
2094 dst.x_offset *= 2;
2095 dst.y_offset /= 2;
2096 wm_prog_key.use_kill = true;
2097 }
2098
2099 if (src.map_stencil_as_y_tiled) {
2100 /* We must modify the size and x/y offset of the source surface to
2101 * account for the fact that we are mapping it as Y-tiled when it is in
2102 * fact W tiled.
2103 *
2104 * See the comments above concerning x/y offset alignment for the
2105 * destination surface.
2106 *
2107 * TODO: what if this makes the texture size too large?
2108 */
2109 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2110 src.width = ALIGN(src.width, x_align) * 2;
2111 src.height = ALIGN(src.height, y_align) / 2;
2112 src.x_offset *= 2;
2113 src.y_offset /= 2;
2114 }
2115 }
2116
2117 uint32_t
2118 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2119 brw_blorp_prog_data **prog_data) const
2120 {
2121 uint32_t prog_offset = 0;
2122 if (!brw_search_cache(&brw->cache, BRW_CACHE_BLORP_BLIT_PROG,
2123 &this->wm_prog_key, sizeof(this->wm_prog_key),
2124 &prog_offset, prog_data)) {
2125 brw_blorp_blit_program prog(brw, &this->wm_prog_key,
2126 INTEL_DEBUG & DEBUG_BLORP);
2127 GLuint program_size;
2128 const GLuint *program = prog.compile(brw, &program_size);
2129 brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_BLIT_PROG,
2130 &this->wm_prog_key, sizeof(this->wm_prog_key),
2131 program, program_size,
2132 &prog.prog_data, sizeof(prog.prog_data),
2133 &prog_offset, prog_data);
2134 }
2135 return prog_offset;
2136 }