a266143cfe488db31093060877295716b0faa379
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26 #include "main/renderbuffer.h"
27
28 #include "glsl/ralloc.h"
29
30 #include "intel_fbo.h"
31
32 #include "brw_blorp.h"
33 #include "brw_context.h"
34 #include "brw_eu.h"
35 #include "brw_state.h"
36
37 #define FILE_DEBUG_FLAG DEBUG_BLORP
38
39 /**
40 * Helper function for handling mirror image blits.
41 *
42 * If coord0 > coord1, swap them and invert the "mirror" boolean.
43 */
44 static inline void
45 fixup_mirroring(bool &mirror, GLfloat &coord0, GLfloat &coord1)
46 {
47 if (coord0 > coord1) {
48 mirror = !mirror;
49 GLfloat tmp = coord0;
50 coord0 = coord1;
51 coord1 = tmp;
52 }
53 }
54
55
56 /**
57 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
58 * destination coordinates.
59 *
60 * Return true if there is still blitting to do, false if all pixels got
61 * rejected by the clip and/or scissor.
62 *
63 * For clarity, the nomenclature of this function assumes we are clipping and
64 * scissoring the X coordinate; the exact same logic applies for Y
65 * coordinates.
66 *
67 * Note: this function may also be used to account for clipping of source
68 * coordinates, by swapping the roles of src and dst.
69 */
70 static inline bool
71 clip_or_scissor(bool mirror, GLfloat &src_x0, GLfloat &src_x1, GLfloat &dst_x0,
72 GLfloat &dst_x1, GLfloat fb_xmin, GLfloat fb_xmax)
73 {
74 float scale = (float) (src_x1 - src_x0) / (dst_x1 - dst_x0);
75 /* If we are going to scissor everything away, stop. */
76 if (!(fb_xmin < fb_xmax &&
77 dst_x0 < fb_xmax &&
78 fb_xmin < dst_x1 &&
79 dst_x0 < dst_x1)) {
80 return false;
81 }
82
83 /* Clip the destination rectangle, and keep track of how many pixels we
84 * clipped off of the left and right sides of it.
85 */
86 GLint pixels_clipped_left = 0;
87 GLint pixels_clipped_right = 0;
88 if (dst_x0 < fb_xmin) {
89 pixels_clipped_left = fb_xmin - dst_x0;
90 dst_x0 = fb_xmin;
91 }
92 if (fb_xmax < dst_x1) {
93 pixels_clipped_right = dst_x1 - fb_xmax;
94 dst_x1 = fb_xmax;
95 }
96
97 /* If we are mirrored, then before applying pixels_clipped_{left,right} to
98 * the source coordinates, we need to flip them to account for the
99 * mirroring.
100 */
101 if (mirror) {
102 GLint tmp = pixels_clipped_left;
103 pixels_clipped_left = pixels_clipped_right;
104 pixels_clipped_right = tmp;
105 }
106
107 /* Adjust the source rectangle to remove the pixels corresponding to those
108 * that were clipped/scissored out of the destination rectangle.
109 */
110 src_x0 += pixels_clipped_left * scale;
111 src_x1 -= pixels_clipped_right * scale;
112
113 return true;
114 }
115
116
117 static struct intel_mipmap_tree *
118 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
119 {
120 struct intel_mipmap_tree *mt = irb->mt;
121 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
122 mt = mt->stencil_mt;
123 return mt;
124 }
125
126
127 /**
128 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
129 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
130 * the physical layer holding sample 0. So, for example, if
131 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
132 * 4*n.
133 */
134 void
135 brw_blorp_blit_miptrees(struct brw_context *brw,
136 struct intel_mipmap_tree *src_mt,
137 unsigned src_level, unsigned src_layer,
138 struct intel_mipmap_tree *dst_mt,
139 unsigned dst_level, unsigned dst_layer,
140 float src_x0, float src_y0,
141 float src_x1, float src_y1,
142 float dst_x0, float dst_y0,
143 float dst_x1, float dst_y1,
144 GLenum filter, bool mirror_x, bool mirror_y)
145 {
146 /* Get ready to blit. This includes depth resolving the src and dst
147 * buffers if necessary. Note: it's not necessary to do a color resolve on
148 * the destination buffer because we use the standard render path to render
149 * to destination color buffers, and the standard render path is
150 * fast-color-aware.
151 */
152 intel_miptree_resolve_color(brw, src_mt);
153 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
154 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
155
156 DBG("%s from %s mt %p %d %d (%f,%f) (%f,%f)"
157 "to %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
158 __FUNCTION__,
159 _mesa_get_format_name(src_mt->format), src_mt,
160 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
161 _mesa_get_format_name(dst_mt->format), dst_mt,
162 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
163 mirror_x, mirror_y);
164
165 brw_blorp_blit_params params(brw,
166 src_mt, src_level, src_layer,
167 dst_mt, dst_level, dst_layer,
168 src_x0, src_y0,
169 src_x1, src_y1,
170 dst_x0, dst_y0,
171 dst_x1, dst_y1,
172 filter, mirror_x, mirror_y);
173 brw_blorp_exec(brw, &params);
174
175 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
176 }
177
178 static void
179 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
180 struct intel_renderbuffer *src_irb,
181 struct intel_renderbuffer *dst_irb,
182 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
183 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
184 GLenum filter, bool mirror_x, bool mirror_y)
185 {
186 /* Find source/dst miptrees */
187 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
188 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
189
190 /* Do the blit */
191 brw_blorp_blit_miptrees(brw,
192 src_mt, src_irb->mt_level, src_irb->mt_layer,
193 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
194 srcX0, srcY0, srcX1, srcY1,
195 dstX0, dstY0, dstX1, dstY1,
196 filter, mirror_x, mirror_y);
197
198 intel_renderbuffer_set_needs_downsample(dst_irb);
199 }
200
201 static bool
202 color_formats_match(gl_format src_format, gl_format dst_format)
203 {
204 gl_format linear_src_format = _mesa_get_srgb_format_linear(src_format);
205 gl_format linear_dst_format = _mesa_get_srgb_format_linear(dst_format);
206
207 /* Normally, we require the formats to be equal. However, we also support
208 * blitting from ARGB to XRGB (discarding alpha), and from XRGB to ARGB
209 * (overriding alpha to 1.0 via blending).
210 */
211 return linear_src_format == linear_dst_format ||
212 (linear_src_format == MESA_FORMAT_XRGB8888 &&
213 linear_dst_format == MESA_FORMAT_ARGB8888) ||
214 (linear_src_format == MESA_FORMAT_ARGB8888 &&
215 linear_dst_format == MESA_FORMAT_XRGB8888);
216 }
217
218 static bool
219 formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
220 struct intel_renderbuffer *dst_irb)
221 {
222 /* Note: don't just check gl_renderbuffer::Format, because in some cases
223 * multiple gl_formats resolve to the same native type in the miptree (for
224 * example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit
225 * between those formats.
226 */
227 gl_format src_format = find_miptree(buffer_bit, src_irb)->format;
228 gl_format dst_format = find_miptree(buffer_bit, dst_irb)->format;
229
230 return color_formats_match(src_format, dst_format);
231 }
232
233 static bool
234 try_blorp_blit(struct brw_context *brw,
235 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
236 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
237 GLenum filter, GLbitfield buffer_bit)
238 {
239 struct gl_context *ctx = &brw->ctx;
240
241 /* Sync up the state of window system buffers. We need to do this before
242 * we go looking for the buffers.
243 */
244 intel_prepare_render(brw);
245
246 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
247 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
248
249 /* Detect if the blit needs to be mirrored */
250 bool mirror_x = false, mirror_y = false;
251 fixup_mirroring(mirror_x, srcX0, srcX1);
252 fixup_mirroring(mirror_x, dstX0, dstX1);
253 fixup_mirroring(mirror_y, srcY0, srcY1);
254 fixup_mirroring(mirror_y, dstY0, dstY1);
255
256 /* If the destination rectangle needs to be clipped or scissored, do so.
257 */
258 if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
259 draw_fb->_Xmin, draw_fb->_Xmax) &&
260 clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
261 draw_fb->_Ymin, draw_fb->_Ymax))) {
262 /* Everything got clipped/scissored away, so the blit was successful. */
263 return true;
264 }
265
266 /* If the source rectangle needs to be clipped or scissored, do so. */
267 if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
268 0, read_fb->Width) &&
269 clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
270 0, read_fb->Height))) {
271 /* Everything got clipped/scissored away, so the blit was successful. */
272 return true;
273 }
274
275 /* Account for the fact that in the system framebuffer, the origin is at
276 * the lower left.
277 */
278 if (_mesa_is_winsys_fbo(read_fb)) {
279 GLint tmp = read_fb->Height - srcY0;
280 srcY0 = read_fb->Height - srcY1;
281 srcY1 = tmp;
282 mirror_y = !mirror_y;
283 }
284 if (_mesa_is_winsys_fbo(draw_fb)) {
285 GLint tmp = draw_fb->Height - dstY0;
286 dstY0 = draw_fb->Height - dstY1;
287 dstY1 = tmp;
288 mirror_y = !mirror_y;
289 }
290
291 /* Find buffers */
292 struct intel_renderbuffer *src_irb;
293 struct intel_renderbuffer *dst_irb;
294 switch (buffer_bit) {
295 case GL_COLOR_BUFFER_BIT:
296 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
297 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
298 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
299 if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
300 return false;
301 }
302 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
303 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
304 if (dst_irb)
305 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
306 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
307 filter, mirror_x, mirror_y);
308 }
309 break;
310 case GL_DEPTH_BUFFER_BIT:
311 src_irb =
312 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
313 dst_irb =
314 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
315 if (!formats_match(buffer_bit, src_irb, dst_irb))
316 return false;
317 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
318 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
319 filter, mirror_x, mirror_y);
320 break;
321 case GL_STENCIL_BUFFER_BIT:
322 src_irb =
323 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
324 dst_irb =
325 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
326 if (!formats_match(buffer_bit, src_irb, dst_irb))
327 return false;
328 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
329 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
330 filter, mirror_x, mirror_y);
331 break;
332 default:
333 assert(false);
334 }
335
336 return true;
337 }
338
339 bool
340 brw_blorp_copytexsubimage(struct brw_context *brw,
341 struct gl_renderbuffer *src_rb,
342 struct gl_texture_image *dst_image,
343 int slice,
344 int srcX0, int srcY0,
345 int dstX0, int dstY0,
346 int width, int height)
347 {
348 struct gl_context *ctx = &brw->ctx;
349 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
350 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
351
352 /* Sync up the state of window system buffers. We need to do this before
353 * we go looking at the src renderbuffer's miptree.
354 */
355 intel_prepare_render(brw);
356
357 struct intel_mipmap_tree *src_mt = src_irb->mt;
358 struct intel_mipmap_tree *dst_mt = intel_image->mt;
359
360 /* BLORP is not supported before Gen6. */
361 if (brw->gen < 6 || brw->gen >= 8)
362 return false;
363
364 if (_mesa_get_format_base_format(src_mt->format) !=
365 _mesa_get_format_base_format(dst_mt->format)) {
366 return false;
367 }
368
369 /* We can't handle format conversions between Z24 and other formats since
370 * we have to lie about the surface format. See the comments in
371 * brw_blorp_surface_info::set().
372 */
373 if ((src_mt->format == MESA_FORMAT_X8_Z24) !=
374 (dst_mt->format == MESA_FORMAT_X8_Z24)) {
375 return false;
376 }
377
378 if (!brw->format_supported_as_render_target[dst_mt->format])
379 return false;
380
381 /* Source clipping shouldn't be necessary, since copytexsubimage (in
382 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
383 * takes care of it.
384 *
385 * Destination clipping shouldn't be necessary since the restrictions on
386 * glCopyTexSubImage prevent the user from specifying a destination rectangle
387 * that falls outside the bounds of the destination texture.
388 * See error_check_subtexture_dimensions().
389 */
390
391 int srcY1 = srcY0 + height;
392 int srcX1 = srcX0 + width;
393 int dstX1 = dstX0 + width;
394 int dstY1 = dstY0 + height;
395
396 /* Account for the fact that in the system framebuffer, the origin is at
397 * the lower left.
398 */
399 bool mirror_y = false;
400 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
401 GLint tmp = src_rb->Height - srcY0;
402 srcY0 = src_rb->Height - srcY1;
403 srcY1 = tmp;
404 mirror_y = true;
405 }
406
407 brw_blorp_blit_miptrees(brw,
408 src_mt, src_irb->mt_level, src_irb->mt_layer,
409 dst_mt, dst_image->Level, dst_image->Face + slice,
410 srcX0, srcY0, srcX1, srcY1,
411 dstX0, dstY0, dstX1, dstY1,
412 GL_NEAREST, false, mirror_y);
413
414 /* If we're copying to a packed depth stencil texture and the source
415 * framebuffer has separate stencil, we need to also copy the stencil data
416 * over.
417 */
418 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
419 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
420 src_rb != NULL) {
421 src_irb = intel_renderbuffer(src_rb);
422 src_mt = src_irb->mt;
423
424 if (src_mt->stencil_mt)
425 src_mt = src_mt->stencil_mt;
426 if (dst_mt->stencil_mt)
427 dst_mt = dst_mt->stencil_mt;
428
429 if (src_mt != dst_mt) {
430 brw_blorp_blit_miptrees(brw,
431 src_mt, src_irb->mt_level, src_irb->mt_layer,
432 dst_mt, dst_image->Level,
433 dst_image->Face + slice,
434 srcX0, srcY0, srcX1, srcY1,
435 dstX0, dstY0, dstX1, dstY1,
436 GL_NEAREST, false, mirror_y);
437 }
438 }
439
440 return true;
441 }
442
443
444 GLbitfield
445 brw_blorp_framebuffer(struct brw_context *brw,
446 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
447 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
448 GLbitfield mask, GLenum filter)
449 {
450 /* BLORP is not supported before Gen6. */
451 if (brw->gen < 6 || brw->gen >= 8)
452 return mask;
453
454 static GLbitfield buffer_bits[] = {
455 GL_COLOR_BUFFER_BIT,
456 GL_DEPTH_BUFFER_BIT,
457 GL_STENCIL_BUFFER_BIT,
458 };
459
460 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
461 if ((mask & buffer_bits[i]) &&
462 try_blorp_blit(brw,
463 srcX0, srcY0, srcX1, srcY1,
464 dstX0, dstY0, dstX1, dstY1,
465 filter, buffer_bits[i])) {
466 mask &= ~buffer_bits[i];
467 }
468 }
469
470 return mask;
471 }
472
473
474 /**
475 * Enum to specify the order of arguments in a sampler message
476 */
477 enum sampler_message_arg
478 {
479 SAMPLER_MESSAGE_ARG_U_FLOAT,
480 SAMPLER_MESSAGE_ARG_V_FLOAT,
481 SAMPLER_MESSAGE_ARG_U_INT,
482 SAMPLER_MESSAGE_ARG_V_INT,
483 SAMPLER_MESSAGE_ARG_SI_INT,
484 SAMPLER_MESSAGE_ARG_MCS_INT,
485 SAMPLER_MESSAGE_ARG_ZERO_INT,
486 };
487
488 /**
489 * Generator for WM programs used in BLORP blits.
490 *
491 * The bulk of the work done by the WM program is to wrap and unwrap the
492 * coordinate transformations used by the hardware to store surfaces in
493 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
494 * sample index for a multisampled surface) to a memory offset by the
495 * following formulas:
496 *
497 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
498 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
499 *
500 * For a single-sampled surface, or for a multisampled surface using
501 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
502 * function:
503 *
504 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
505 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
506 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
507 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
508 *
509 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
510 * embeds the sample number into bit 1 of the X and Y coordinates:
511 *
512 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
513 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
514 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
515 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
516 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
517 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
518 * S = (Y & 0b10) | (X & 0b10) >> 1
519 *
520 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
521 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
522 * the Y coordinate:
523 *
524 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
525 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
526 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
527 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
528 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
529 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
530 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
531 *
532 * For X tiling, tile() combines together the low-order bits of the X and Y
533 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
534 * bytes wide and 8 rows high:
535 *
536 * tile(x_tiled, X, Y, S) = A
537 * where A = tile_num << 12 | offset
538 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
539 * offset = (Y' & 0b111) << 9
540 * | (X & 0b111111111)
541 * X' = X * cpp
542 * Y' = Y + S * qpitch
543 * detile(x_tiled, A) = (X, Y, S)
544 * where X = X' / cpp
545 * Y = Y' % qpitch
546 * S = Y' / qpitch
547 * Y' = (tile_num / tile_pitch) << 3
548 * | (A & 0b111000000000) >> 9
549 * X' = (tile_num % tile_pitch) << 9
550 * | (A & 0b111111111)
551 *
552 * (In all tiling formulas, cpp is the number of bytes occupied by a single
553 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
554 * to fill the width of the surface, and qpitch is the spacing (in rows)
555 * between array slices).
556 *
557 * For Y tiling, tile() combines together the low-order bits of the X and Y
558 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
559 * bytes wide and 32 rows high:
560 *
561 * tile(y_tiled, X, Y, S) = A
562 * where A = tile_num << 12 | offset
563 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
564 * offset = (X' & 0b1110000) << 5
565 * | (Y' & 0b11111) << 4
566 * | (X' & 0b1111)
567 * X' = X * cpp
568 * Y' = Y + S * qpitch
569 * detile(y_tiled, A) = (X, Y, S)
570 * where X = X' / cpp
571 * Y = Y' % qpitch
572 * S = Y' / qpitch
573 * Y' = (tile_num / tile_pitch) << 5
574 * | (A & 0b111110000) >> 4
575 * X' = (tile_num % tile_pitch) << 7
576 * | (A & 0b111000000000) >> 5
577 * | (A & 0b1111)
578 *
579 * For W tiling, tile() combines together the low-order bits of the X and Y
580 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
581 * bytes wide and 64 rows high (note that W tiling is only used for stencil
582 * buffers, which always have cpp = 1 and S=0):
583 *
584 * tile(w_tiled, X, Y, S) = A
585 * where A = tile_num << 12 | offset
586 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
587 * offset = (X' & 0b111000) << 6
588 * | (Y' & 0b111100) << 3
589 * | (X' & 0b100) << 2
590 * | (Y' & 0b10) << 2
591 * | (X' & 0b10) << 1
592 * | (Y' & 0b1) << 1
593 * | (X' & 0b1)
594 * X' = X * cpp = X
595 * Y' = Y + S * qpitch
596 * detile(w_tiled, A) = (X, Y, S)
597 * where X = X' / cpp = X'
598 * Y = Y' % qpitch = Y'
599 * S = Y / qpitch = 0
600 * Y' = (tile_num / tile_pitch) << 6
601 * | (A & 0b111100000) >> 3
602 * | (A & 0b1000) >> 2
603 * | (A & 0b10) >> 1
604 * X' = (tile_num % tile_pitch) << 6
605 * | (A & 0b111000000000) >> 6
606 * | (A & 0b10000) >> 2
607 * | (A & 0b100) >> 1
608 * | (A & 0b1)
609 *
610 * Finally, for a non-tiled surface, tile() simply combines together the X and
611 * Y coordinates in the natural way:
612 *
613 * tile(untiled, X, Y, S) = A
614 * where A = Y * pitch + X'
615 * X' = X * cpp
616 * Y' = Y + S * qpitch
617 * detile(untiled, A) = (X, Y, S)
618 * where X = X' / cpp
619 * Y = Y' % qpitch
620 * S = Y' / qpitch
621 * X' = A % pitch
622 * Y' = A / pitch
623 *
624 * (In these formulas, pitch is the number of bytes occupied by a single row
625 * of samples).
626 */
627 class brw_blorp_blit_program
628 {
629 public:
630 brw_blorp_blit_program(struct brw_context *brw,
631 const brw_blorp_blit_prog_key *key);
632 ~brw_blorp_blit_program();
633
634 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
635
636 brw_blorp_prog_data prog_data;
637
638 private:
639 void alloc_regs();
640 void alloc_push_const_regs(int base_reg);
641 void compute_frag_coords();
642 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
643 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
644 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
645 void kill_if_outside_dst_rect();
646 void translate_dst_to_src();
647 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
648 struct brw_reg clampX0, struct brw_reg clampY0,
649 struct brw_reg clampX1, struct brw_reg clampY1);
650 void single_to_blend();
651 void manual_blend_average(unsigned num_samples);
652 void manual_blend_bilinear(unsigned num_samples);
653 void sample(struct brw_reg dst);
654 void texel_fetch(struct brw_reg dst);
655 void mcs_fetch();
656 void texture_lookup(struct brw_reg dst, GLuint msg_type,
657 const sampler_message_arg *args, int num_args);
658 void render_target_write();
659
660 /**
661 * Base-2 logarithm of the maximum number of samples that can be blended.
662 */
663 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
664
665 void *mem_ctx;
666 struct brw_context *brw;
667 const brw_blorp_blit_prog_key *key;
668 struct brw_compile func;
669
670 /* Thread dispatch header */
671 struct brw_reg R0;
672
673 /* Pixel X/Y coordinates (always in R1). */
674 struct brw_reg R1;
675
676 /* Push constants */
677 struct brw_reg dst_x0;
678 struct brw_reg dst_x1;
679 struct brw_reg dst_y0;
680 struct brw_reg dst_y1;
681 /* Top right coordinates of the rectangular grid used for scaled blitting */
682 struct brw_reg rect_grid_x1;
683 struct brw_reg rect_grid_y1;
684 struct {
685 struct brw_reg multiplier;
686 struct brw_reg offset;
687 } x_transform, y_transform;
688
689 /* Data read from texture (4 vec16's per array element) */
690 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
691
692 /* Auxiliary storage for the contents of the MCS surface.
693 *
694 * Since the sampler always returns 8 registers worth of data, this is 8
695 * registers wide, even though we only use the first 2 registers of it.
696 */
697 struct brw_reg mcs_data;
698
699 /* X coordinates. We have two of them so that we can perform coordinate
700 * transformations easily.
701 */
702 struct brw_reg x_coords[2];
703
704 /* Y coordinates. We have two of them so that we can perform coordinate
705 * transformations easily.
706 */
707 struct brw_reg y_coords[2];
708
709 /* X, Y coordinates of the pixel from which we need to fetch the specific
710 * sample. These are used for multisample scaled blitting.
711 */
712 struct brw_reg x_sample_coords;
713 struct brw_reg y_sample_coords;
714
715 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
716 struct brw_reg x_frac;
717 struct brw_reg y_frac;
718
719 /* Which element of x_coords and y_coords is currently in use.
720 */
721 int xy_coord_index;
722
723 /* True if, at the point in the program currently being compiled, the
724 * sample index is known to be zero.
725 */
726 bool s_is_zero;
727
728 /* Register storing the sample index when s_is_zero is false. */
729 struct brw_reg sample_index;
730
731 /* Temporaries */
732 struct brw_reg t1;
733 struct brw_reg t2;
734
735 /* MRF used for sampling and render target writes */
736 GLuint base_mrf;
737 };
738
739 brw_blorp_blit_program::brw_blorp_blit_program(
740 struct brw_context *brw,
741 const brw_blorp_blit_prog_key *key)
742 : mem_ctx(ralloc_context(NULL)),
743 brw(brw),
744 key(key)
745 {
746 brw_init_compile(brw, &func, mem_ctx);
747 }
748
749 brw_blorp_blit_program::~brw_blorp_blit_program()
750 {
751 ralloc_free(mem_ctx);
752 }
753
754 const GLuint *
755 brw_blorp_blit_program::compile(struct brw_context *brw,
756 GLuint *program_size)
757 {
758 /* Sanity checks */
759 if (key->dst_tiled_w && key->rt_samples > 0) {
760 /* If the destination image is W tiled and multisampled, then the thread
761 * must be dispatched once per sample, not once per pixel. This is
762 * necessary because after conversion between W and Y tiling, there's no
763 * guarantee that all samples corresponding to a single pixel will still
764 * be together.
765 */
766 assert(key->persample_msaa_dispatch);
767 }
768
769 if (key->blend) {
770 /* We are blending, which means we won't have an opportunity to
771 * translate the tiling and sample count for the texture surface. So
772 * the surface state for the texture must be configured with the correct
773 * tiling and sample count.
774 */
775 assert(!key->src_tiled_w);
776 assert(key->tex_samples == key->src_samples);
777 assert(key->tex_layout == key->src_layout);
778 assert(key->tex_samples > 0);
779 }
780
781 if (key->persample_msaa_dispatch) {
782 /* It only makes sense to do persample dispatch if the render target is
783 * configured as multisampled.
784 */
785 assert(key->rt_samples > 0);
786 }
787
788 /* Make sure layout is consistent with sample count */
789 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
790 (key->tex_samples == 0));
791 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
792 (key->rt_samples == 0));
793 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
794 (key->src_samples == 0));
795 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
796 (key->dst_samples == 0));
797
798 /* Set up prog_data */
799 memset(&prog_data, 0, sizeof(prog_data));
800 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
801
802 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
803
804 alloc_regs();
805 compute_frag_coords();
806
807 /* Render target and texture hardware don't support W tiling. */
808 const bool rt_tiled_w = false;
809 const bool tex_tiled_w = false;
810
811 /* The address that data will be written to is determined by the
812 * coordinates supplied to the WM thread and the tiling and sample count of
813 * the render target, according to the formula:
814 *
815 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
816 *
817 * If the actual tiling and sample count of the destination surface are not
818 * the same as the configuration of the render target, then these
819 * coordinates are wrong and we have to adjust them to compensate for the
820 * difference.
821 */
822 if (rt_tiled_w != key->dst_tiled_w ||
823 key->rt_samples != key->dst_samples ||
824 key->rt_layout != key->dst_layout) {
825 encode_msaa(key->rt_samples, key->rt_layout);
826 /* Now (X, Y, S) = detile(rt_tiling, offset) */
827 translate_tiling(rt_tiled_w, key->dst_tiled_w);
828 /* Now (X, Y, S) = detile(dst_tiling, offset) */
829 decode_msaa(key->dst_samples, key->dst_layout);
830 }
831
832 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
833 *
834 * That is: X, Y and S now contain the true coordinates and sample index of
835 * the data that the WM thread should output.
836 *
837 * If we need to kill pixels that are outside the destination rectangle,
838 * now is the time to do it.
839 */
840
841 if (key->use_kill)
842 kill_if_outside_dst_rect();
843
844 /* Next, apply a translation to obtain coordinates in the source image. */
845 translate_dst_to_src();
846
847 /* If the source image is not multisampled, then we want to fetch sample
848 * number 0, because that's the only sample there is.
849 */
850 if (key->src_samples == 0)
851 s_is_zero = true;
852
853 /* X, Y, and S are now the coordinates of the pixel in the source image
854 * that we want to texture from. Exception: if we are blending, then S is
855 * irrelevant, because we are going to fetch all samples.
856 */
857 if (key->blend && !key->blit_scaled) {
858 if (brw->gen == 6) {
859 /* Gen6 hardware an automatically blend using the SAMPLE message */
860 single_to_blend();
861 sample(texture_data[0]);
862 } else {
863 /* Gen7+ hardware doesn't automaticaly blend. */
864 manual_blend_average(key->src_samples);
865 }
866 } else if(key->blend && key->blit_scaled) {
867 manual_blend_bilinear(key->src_samples);
868 } else {
869 /* We aren't blending, which means we just want to fetch a single sample
870 * from the source surface. The address that we want to fetch from is
871 * related to the X, Y and S values according to the formula:
872 *
873 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
874 *
875 * If the actual tiling and sample count of the source surface are not
876 * the same as the configuration of the texture, then we need to adjust
877 * the coordinates to compensate for the difference.
878 */
879 if ((tex_tiled_w != key->src_tiled_w ||
880 key->tex_samples != key->src_samples ||
881 key->tex_layout != key->src_layout) &&
882 !key->bilinear_filter) {
883 encode_msaa(key->src_samples, key->src_layout);
884 /* Now (X, Y, S) = detile(src_tiling, offset) */
885 translate_tiling(key->src_tiled_w, tex_tiled_w);
886 /* Now (X, Y, S) = detile(tex_tiling, offset) */
887 decode_msaa(key->tex_samples, key->tex_layout);
888 }
889
890 if (key->bilinear_filter) {
891 sample(texture_data[0]);
892 }
893 else {
894 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
895 *
896 * In other words: X, Y, and S now contain values which, when passed to
897 * the texturing unit, will cause data to be read from the correct
898 * memory location. So we can fetch the texel now.
899 */
900 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
901 mcs_fetch();
902 texel_fetch(texture_data[0]);
903 }
904 }
905
906 /* Finally, write the fetched (or blended) value to the render target and
907 * terminate the thread.
908 */
909 render_target_write();
910
911 if (unlikely(INTEL_DEBUG & DEBUG_BLORP)) {
912 printf("Native code for BLORP blit:\n");
913 brw_dump_compile(&func, stdout, 0, func.next_insn_offset);
914 printf("\n");
915 }
916 return brw_get_program(&func, program_size);
917 }
918
919 void
920 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
921 {
922 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
923 #define ALLOC_REG(name, type) \
924 this->name = \
925 retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
926 base_reg + CONST_LOC(name) / 32, \
927 (CONST_LOC(name) % 32) / 4), type)
928
929 ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
930 ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
931 ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
932 ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
933 ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
934 ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
935 ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
936 ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
937 ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
938 ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
939 #undef CONST_LOC
940 #undef ALLOC_REG
941 }
942
943 void
944 brw_blorp_blit_program::alloc_regs()
945 {
946 int reg = 0;
947 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
948 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
949 prog_data.first_curbe_grf = reg;
950 alloc_push_const_regs(reg);
951 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
952 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
953 this->texture_data[i] =
954 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
955 reg += 8;
956 }
957 this->mcs_data =
958 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
959
960 for (int i = 0; i < 2; ++i) {
961 this->x_coords[i]
962 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
963 reg += 2;
964 this->y_coords[i]
965 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
966 reg += 2;
967 }
968
969 if (key->blit_scaled && key->blend) {
970 this->x_sample_coords = brw_vec8_grf(reg, 0);
971 reg += 2;
972 this->y_sample_coords = brw_vec8_grf(reg, 0);
973 reg += 2;
974 this->x_frac = brw_vec8_grf(reg, 0);
975 reg += 2;
976 this->y_frac = brw_vec8_grf(reg, 0);
977 reg += 2;
978 }
979
980 this->xy_coord_index = 0;
981 this->sample_index
982 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
983 reg += 2;
984 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
985 reg += 2;
986 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
987 reg += 2;
988
989 /* Make sure we didn't run out of registers */
990 assert(reg <= GEN7_MRF_HACK_START);
991
992 int mrf = 2;
993 this->base_mrf = mrf;
994 }
995
996 /* In the code that follows, X and Y can be used to quickly refer to the
997 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
998 * prime") to the inactive elements.
999 *
1000 * S can be used to quickly refer to sample_index.
1001 */
1002 #define X x_coords[xy_coord_index]
1003 #define Y y_coords[xy_coord_index]
1004 #define Xp x_coords[!xy_coord_index]
1005 #define Yp y_coords[!xy_coord_index]
1006 #define S sample_index
1007
1008 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
1009 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
1010 */
1011 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
1012
1013 /**
1014 * Emit code to compute the X and Y coordinates of the pixels being rendered
1015 * by this WM invocation.
1016 *
1017 * Assuming the render target is set up for Y tiling, these (X, Y) values are
1018 * related to the address offset where outputs will be written by the formula:
1019 *
1020 * (X, Y, S) = decode_msaa(detile(offset)).
1021 *
1022 * (See brw_blorp_blit_program).
1023 */
1024 void
1025 brw_blorp_blit_program::compute_frag_coords()
1026 {
1027 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
1028 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
1029 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
1030 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
1031 *
1032 * Pixels within a subspan are laid out in this arrangement:
1033 * 0 1
1034 * 2 3
1035 *
1036 * So, to compute the coordinates of each pixel, we need to read every 2nd
1037 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
1038 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
1039 * In other words, the data we want to access is R1.4<2;4,0>UW.
1040 *
1041 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
1042 * result, since pixels n+1 and n+3 are in the right half of the subspan.
1043 */
1044 brw_ADD(&func, vec16(retype(X, BRW_REGISTER_TYPE_UW)),
1045 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
1046
1047 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
1048 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
1049 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
1050 * R1.4<2;4,0>UW).
1051 *
1052 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
1053 * pixels n+2 and n+3 are in the bottom half of the subspan.
1054 */
1055 brw_ADD(&func, vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
1056 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
1057
1058 /* Move the coordinates to UD registers. */
1059 brw_MOV(&func, vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
1060 brw_MOV(&func, vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
1061 SWAP_XY_AND_XPYP();
1062
1063 if (key->persample_msaa_dispatch) {
1064 switch (key->rt_samples) {
1065 case 4: {
1066 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
1067 * Therefore, subspan 0 will represent sample 0, subspan 1 will
1068 * represent sample 1, and so on.
1069 *
1070 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
1071 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
1072 * populate a temporary variable with the sequence (0, 1, 2, 3), and
1073 * then copy from it using vstride=1, width=4, hstride=0.
1074 */
1075 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
1076 brw_MOV(&func, vec16(t1_uw1), brw_imm_v(0x3210));
1077 /* Move to UD sample_index register. */
1078 brw_MOV(&func, S, stride(t1_uw1, 1, 4, 0));
1079 brw_MOV(&func, offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
1080 break;
1081 }
1082 case 8: {
1083 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
1084 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
1085 * subspan 1 will represent sample 1, and so on. We can find the
1086 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
1087 * Index") and multiplying by two (since samples are always delivered
1088 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
1089 * 0xc0) >> 5.
1090 *
1091 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
1092 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
1093 * variable with the sequence (0, 1, 2, 3), and then reading from it
1094 * using vstride=1, width=4, hstride=0.
1095 */
1096 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
1097 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
1098 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
1099 brw_AND(&func, t1_ud1, r0_ud1, brw_imm_ud(0xc0));
1100 brw_SHR(&func, t1_ud1, t1_ud1, brw_imm_ud(5));
1101 brw_MOV(&func, vec16(t2_uw1), brw_imm_v(0x3210));
1102 brw_ADD(&func, vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
1103 stride(t2_uw1, 1, 4, 0));
1104 brw_ADD(&func, offset(S, 1),
1105 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
1106 suboffset(stride(t2_uw1, 1, 4, 0), 2));
1107 break;
1108 }
1109 default:
1110 assert(!"Unrecognized sample count in "
1111 "brw_blorp_blit_program::compute_frag_coords()");
1112 break;
1113 }
1114 s_is_zero = false;
1115 } else {
1116 /* Either the destination surface is single-sampled, or the WM will be
1117 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
1118 * per pixel). In either case, it's not meaningful to compute a sample
1119 * value. Just set it to 0.
1120 */
1121 s_is_zero = true;
1122 }
1123 }
1124
1125 /**
1126 * Emit code to compensate for the difference between Y and W tiling.
1127 *
1128 * This code modifies the X and Y coordinates according to the formula:
1129 *
1130 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
1131 *
1132 * (See brw_blorp_blit_program).
1133 *
1134 * It can only translate between W and Y tiling, so new_tiling and old_tiling
1135 * are booleans where true represents W tiling and false represents Y tiling.
1136 */
1137 void
1138 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
1139 {
1140 if (old_tiled_w == new_tiled_w)
1141 return;
1142
1143 /* In the code that follows, we can safely assume that S = 0, because W
1144 * tiling formats always use IMS layout.
1145 */
1146 assert(s_is_zero);
1147
1148 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1149 if (new_tiled_w) {
1150 /* Given X and Y coordinates that describe an address using Y tiling,
1151 * translate to the X and Y coordinates that describe the same address
1152 * using W tiling.
1153 *
1154 * If we break down the low order bits of X and Y, using a
1155 * single letter to represent each low-order bit:
1156 *
1157 * X = A << 7 | 0bBCDEFGH
1158 * Y = J << 5 | 0bKLMNP (1)
1159 *
1160 * Then we can apply the Y tiling formula to see the memory offset being
1161 * addressed:
1162 *
1163 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1164 *
1165 * If we apply the W detiling formula to this memory location, that the
1166 * corresponding X' and Y' coordinates are:
1167 *
1168 * X' = A << 6 | 0bBCDPFH (3)
1169 * Y' = J << 6 | 0bKLMNEG
1170 *
1171 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1172 * we need to make the following computation:
1173 *
1174 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1175 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1176 */
1177 brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1178 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1179 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1180 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1181 brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1182 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1183 brw_OR(&func, Xp, t1, t2);
1184 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1185 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1186 brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1187 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1188 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1189 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1190 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1191 brw_OR(&func, Yp, t1, t2);
1192 SWAP_XY_AND_XPYP();
1193 } else {
1194 /* Applying the same logic as above, but in reverse, we obtain the
1195 * formulas:
1196 *
1197 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1198 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1199 */
1200 brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1201 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1202 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1203 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1204 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1205 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1206 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1207 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1208 | (Y & 0b1) << 1 */
1209 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1210 brw_OR(&func, Xp, t1, t2);
1211 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1212 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1213 brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
1214 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1215 brw_OR(&func, Yp, t1, t2);
1216 SWAP_XY_AND_XPYP();
1217 }
1218 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1219 }
1220
1221 /**
1222 * Emit code to compensate for the difference between MSAA and non-MSAA
1223 * surfaces.
1224 *
1225 * This code modifies the X and Y coordinates according to the formula:
1226 *
1227 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1228 *
1229 * (See brw_blorp_blit_program).
1230 */
1231 void
1232 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1233 intel_msaa_layout layout)
1234 {
1235 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1236 switch (layout) {
1237 case INTEL_MSAA_LAYOUT_NONE:
1238 /* No translation necessary, and S should already be zero. */
1239 assert(s_is_zero);
1240 break;
1241 case INTEL_MSAA_LAYOUT_CMS:
1242 /* We can't compensate for compressed layout since at this point in the
1243 * program we haven't read from the MCS buffer.
1244 */
1245 assert(!"Bad layout in encode_msaa");
1246 break;
1247 case INTEL_MSAA_LAYOUT_UMS:
1248 /* No translation necessary. */
1249 break;
1250 case INTEL_MSAA_LAYOUT_IMS:
1251 switch (num_samples) {
1252 case 4:
1253 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1254 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1255 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1256 */
1257 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1258 if (!s_is_zero) {
1259 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
1260 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1261 }
1262 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1263 | (S & 0b1) << 1 */
1264 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1265 brw_OR(&func, Xp, t1, t2);
1266 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1267 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1268 if (!s_is_zero) {
1269 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
1270 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1271 }
1272 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1273 brw_OR(&func, Yp, t1, t2);
1274 break;
1275 case 8:
1276 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1277 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1278 * | (X & 0b1)
1279 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1280 */
1281 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1282 brw_SHL(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1283 if (!s_is_zero) {
1284 brw_AND(&func, t2, S, brw_imm_uw(4)); /* S & 0b100 */
1285 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1286 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
1287 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1288 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1289 | (S & 0b1) << 1 */
1290 }
1291 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1292 brw_OR(&func, Xp, t1, t2);
1293 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1294 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1295 if (!s_is_zero) {
1296 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
1297 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1298 }
1299 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1300 brw_OR(&func, Yp, t1, t2);
1301 break;
1302 }
1303 SWAP_XY_AND_XPYP();
1304 s_is_zero = true;
1305 break;
1306 }
1307 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1308 }
1309
1310 /**
1311 * Emit code to compensate for the difference between MSAA and non-MSAA
1312 * surfaces.
1313 *
1314 * This code modifies the X and Y coordinates according to the formula:
1315 *
1316 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1317 *
1318 * (See brw_blorp_blit_program).
1319 */
1320 void
1321 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1322 intel_msaa_layout layout)
1323 {
1324 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1325 switch (layout) {
1326 case INTEL_MSAA_LAYOUT_NONE:
1327 /* No translation necessary, and S should already be zero. */
1328 assert(s_is_zero);
1329 break;
1330 case INTEL_MSAA_LAYOUT_CMS:
1331 /* We can't compensate for compressed layout since at this point in the
1332 * program we don't have access to the MCS buffer.
1333 */
1334 assert(!"Bad layout in encode_msaa");
1335 break;
1336 case INTEL_MSAA_LAYOUT_UMS:
1337 /* No translation necessary. */
1338 break;
1339 case INTEL_MSAA_LAYOUT_IMS:
1340 assert(s_is_zero);
1341 switch (num_samples) {
1342 case 4:
1343 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1344 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1345 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1346 * S = (Y & 0b10) | (X & 0b10) >> 1
1347 */
1348 brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1349 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1350 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1351 brw_OR(&func, Xp, t1, t2);
1352 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1353 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1354 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1355 brw_OR(&func, Yp, t1, t2);
1356 brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1357 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1358 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1359 brw_OR(&func, S, t1, t2);
1360 break;
1361 case 8:
1362 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1363 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1364 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1365 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1366 */
1367 brw_AND(&func, t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1368 brw_SHR(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1369 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1370 brw_OR(&func, Xp, t1, t2);
1371 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1372 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1373 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1374 brw_OR(&func, Yp, t1, t2);
1375 brw_AND(&func, t1, X, brw_imm_uw(4)); /* X & 0b100 */
1376 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1377 brw_OR(&func, t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1378 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1379 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1380 brw_OR(&func, S, t1, t2);
1381 break;
1382 }
1383 s_is_zero = false;
1384 SWAP_XY_AND_XPYP();
1385 break;
1386 }
1387 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1388 }
1389
1390 /**
1391 * Emit code that kills pixels whose X and Y coordinates are outside the
1392 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
1393 * dst_x1, dst_y1).
1394 */
1395 void
1396 brw_blorp_blit_program::kill_if_outside_dst_rect()
1397 {
1398 struct brw_reg f0 = brw_flag_reg(0, 0);
1399 struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1400 struct brw_reg null32 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
1401
1402 brw_CMP(&func, null32, BRW_CONDITIONAL_GE, X, dst_x0);
1403 brw_CMP(&func, null32, BRW_CONDITIONAL_GE, Y, dst_y0);
1404 brw_CMP(&func, null32, BRW_CONDITIONAL_L, X, dst_x1);
1405 brw_CMP(&func, null32, BRW_CONDITIONAL_L, Y, dst_y1);
1406
1407 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1408 brw_push_insn_state(&func);
1409 brw_set_mask_control(&func, BRW_MASK_DISABLE);
1410 brw_AND(&func, g1, f0, g1);
1411 brw_pop_insn_state(&func);
1412 }
1413
1414 /**
1415 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1416 * coordinates.
1417 */
1418 void
1419 brw_blorp_blit_program::translate_dst_to_src()
1420 {
1421 struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
1422 struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
1423 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1424 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1425
1426 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1427 /* Move the UD coordinates to float registers. */
1428 brw_MOV(&func, Xp_f, X);
1429 brw_MOV(&func, Yp_f, Y);
1430 /* Scale and offset */
1431 brw_MUL(&func, X_f, Xp_f, x_transform.multiplier);
1432 brw_MUL(&func, Y_f, Yp_f, y_transform.multiplier);
1433 brw_ADD(&func, X_f, X_f, x_transform.offset);
1434 brw_ADD(&func, Y_f, Y_f, y_transform.offset);
1435 if (key->blit_scaled && key->blend) {
1436 /* Translate coordinates to lay out the samples in a rectangular grid
1437 * roughly corresponding to sample locations.
1438 */
1439 brw_MUL(&func, X_f, X_f, brw_imm_f(key->x_scale));
1440 brw_MUL(&func, Y_f, Y_f, brw_imm_f(key->y_scale));
1441 /* Adjust coordinates so that integers represent pixel centers rather
1442 * than pixel edges.
1443 */
1444 brw_ADD(&func, X_f, X_f, brw_imm_f(-0.5));
1445 brw_ADD(&func, Y_f, Y_f, brw_imm_f(-0.5));
1446
1447 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1448 * texels on texture edges.
1449 */
1450 clamp_tex_coords(X_f, Y_f,
1451 brw_imm_f(0.0), brw_imm_f(0.0),
1452 rect_grid_x1, rect_grid_y1);
1453
1454 /* Store the fractional parts to be used as bilinear interpolation
1455 * coefficients.
1456 */
1457 brw_FRC(&func, x_frac, X_f);
1458 brw_FRC(&func, y_frac, Y_f);
1459
1460 /* Round the float coordinates down to nearest integer */
1461 brw_RNDD(&func, Xp_f, X_f);
1462 brw_RNDD(&func, Yp_f, Y_f);
1463 brw_MUL(&func, X_f, Xp_f, brw_imm_f(1 / key->x_scale));
1464 brw_MUL(&func, Y_f, Yp_f, brw_imm_f(1 / key->y_scale));
1465 SWAP_XY_AND_XPYP();
1466 } else if (!key->bilinear_filter) {
1467 /* Round the float coordinates down to nearest integer by moving to
1468 * UD registers.
1469 */
1470 brw_MOV(&func, Xp, X_f);
1471 brw_MOV(&func, Yp, Y_f);
1472 SWAP_XY_AND_XPYP();
1473 }
1474 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1475 }
1476
1477 void
1478 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1479 struct brw_reg regY,
1480 struct brw_reg clampX0,
1481 struct brw_reg clampY0,
1482 struct brw_reg clampX1,
1483 struct brw_reg clampY1)
1484 {
1485 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_L, regX, clampX0);
1486 brw_MOV(&func, regX, clampX0);
1487 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1488
1489 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_G, regX, clampX1);
1490 brw_MOV(&func, regX, clampX1);
1491 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1492
1493 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_L, regY, clampY0);
1494 brw_MOV(&func, regY, clampY0);
1495 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1496
1497 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_G, regY, clampY1);
1498 brw_MOV(&func, regY, clampY1);
1499 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1500 }
1501
1502 /**
1503 * Emit code to transform the X and Y coordinates as needed for blending
1504 * together the different samples in an MSAA texture.
1505 */
1506 void
1507 brw_blorp_blit_program::single_to_blend()
1508 {
1509 /* When looking up samples in an MSAA texture using the SAMPLE message,
1510 * Gen6 requires the texture coordinates to be odd integers (so that they
1511 * correspond to the center of a 2x2 block representing the four samples
1512 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1513 * each by 2 and then add 1.
1514 */
1515 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1516 brw_SHL(&func, t1, X, brw_imm_w(1));
1517 brw_SHL(&func, t2, Y, brw_imm_w(1));
1518 brw_ADD(&func, Xp, t1, brw_imm_w(1));
1519 brw_ADD(&func, Yp, t2, brw_imm_w(1));
1520 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1521 SWAP_XY_AND_XPYP();
1522 }
1523
1524
1525 /**
1526 * Count the number of trailing 1 bits in the given value. For example:
1527 *
1528 * count_trailing_one_bits(0) == 0
1529 * count_trailing_one_bits(7) == 3
1530 * count_trailing_one_bits(11) == 2
1531 */
1532 inline int count_trailing_one_bits(unsigned value)
1533 {
1534 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1535 return __builtin_ctz(~value);
1536 #else
1537 return _mesa_bitcount(value & ~(value + 1));
1538 #endif
1539 }
1540
1541
1542 void
1543 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1544 {
1545 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1546 mcs_fetch();
1547
1548 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1549 *
1550 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1551 *
1552 * This ensures that when all samples have the same value, no numerical
1553 * precision is lost, since each addition operation always adds two equal
1554 * values, and summing two equal floating point values does not lose
1555 * precision.
1556 *
1557 * We perform this computation by treating the texture_data array as a
1558 * stack and performing the following operations:
1559 *
1560 * - push sample 0 onto stack
1561 * - push sample 1 onto stack
1562 * - add top two stack entries
1563 * - push sample 2 onto stack
1564 * - push sample 3 onto stack
1565 * - add top two stack entries
1566 * - add top two stack entries
1567 * - divide top stack entry by 4
1568 *
1569 * Note that after pushing sample i onto the stack, the number of add
1570 * operations we do is equal to the number of trailing 1 bits in i. This
1571 * works provided the total number of samples is a power of two, which it
1572 * always is for i965.
1573 *
1574 * For integer formats, we replace the add operations with average
1575 * operations and skip the final division.
1576 */
1577 typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *,
1578 struct brw_reg,
1579 struct brw_reg,
1580 struct brw_reg);
1581 brw_op2_ptr combine_op =
1582 key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG;
1583 unsigned stack_depth = 0;
1584 for (unsigned i = 0; i < num_samples; ++i) {
1585 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1586
1587 /* Push sample i onto the stack */
1588 assert(stack_depth < ARRAY_SIZE(texture_data));
1589 if (i == 0) {
1590 s_is_zero = true;
1591 } else {
1592 s_is_zero = false;
1593 brw_MOV(&func, vec16(S), brw_imm_ud(i));
1594 }
1595 texel_fetch(texture_data[stack_depth++]);
1596
1597 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1598 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1599 * suggests an optimization:
1600 *
1601 * "A simple optimization with probable large return in
1602 * performance is to compare the MCS value to zero (indicating
1603 * all samples are on sample slice 0), and sample only from
1604 * sample slice 0 using ld2dss if MCS is zero."
1605 *
1606 * Note that in the case where the MCS value is zero, sampling from
1607 * sample slice 0 using ld2dss and sampling from sample 0 using
1608 * ld2dms are equivalent (since all samples are on sample slice 0).
1609 * Since we have already sampled from sample 0, all we need to do is
1610 * skip the remaining fetches and averaging if MCS is zero.
1611 */
1612 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
1613 mcs_data, brw_imm_ud(0));
1614 brw_IF(&func, BRW_EXECUTE_16);
1615 }
1616
1617 /* Do count_trailing_one_bits(i) times */
1618 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1619 assert(stack_depth >= 2);
1620 --stack_depth;
1621
1622 /* TODO: should use a smaller loop bound for non_RGBA formats */
1623 for (int k = 0; k < 4; ++k) {
1624 combine_op(&func, offset(texture_data[stack_depth - 1], 2*k),
1625 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1626 offset(vec8(texture_data[stack_depth]), 2*k));
1627 }
1628 }
1629 }
1630
1631 /* We should have just 1 sample on the stack now. */
1632 assert(stack_depth == 1);
1633
1634 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1635 /* Scale the result down by a factor of num_samples */
1636 /* TODO: should use a smaller loop bound for non-RGBA formats */
1637 for (int j = 0; j < 4; ++j) {
1638 brw_MUL(&func, offset(texture_data[0], 2*j),
1639 offset(vec8(texture_data[0]), 2*j),
1640 brw_imm_f(1.0/num_samples));
1641 }
1642 }
1643
1644 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1645 brw_ENDIF(&func);
1646 }
1647
1648 void
1649 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1650 {
1651 /* We do this computation by performing the following operations:
1652 *
1653 * In case of 4x, 8x MSAA:
1654 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1655 * which are later used for interpolation
1656 * - linearly interpolate samples a and b in X
1657 * - linearly interpolate samples c and d in X
1658 * - linearly interpolate the results of last two operations in Y
1659 *
1660 * result = lrp(lrp(a + b) + lrp(c + d))
1661 */
1662 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1663 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1664 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1665 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1666
1667 for (unsigned i = 0; i < 4; ++i) {
1668 assert(i < ARRAY_SIZE(texture_data));
1669 s_is_zero = false;
1670
1671 /* Compute pixel coordinates */
1672 brw_ADD(&func, vec16(x_sample_coords), Xp_f,
1673 brw_imm_f((float)(i & 0x1) * (1.0 / key->x_scale)));
1674 brw_ADD(&func, vec16(y_sample_coords), Yp_f,
1675 brw_imm_f((float)((i >> 1) & 0x1) * (1.0 / key->y_scale)));
1676 brw_MOV(&func, vec16(X), x_sample_coords);
1677 brw_MOV(&func, vec16(Y), y_sample_coords);
1678
1679 /* The MCS value we fetch has to match up with the pixel that we're
1680 * sampling from. Since we sample from different pixels in each
1681 * iteration of this "for" loop, the call to mcs_fetch() should be
1682 * here inside the loop after computing the pixel coordinates.
1683 */
1684 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1685 mcs_fetch();
1686
1687 /* Compute sample index and map the sample index to a sample number.
1688 * Sample index layout shows the numbering of slots in a rectangular
1689 * grid of samples with in a pixel. Sample number layout shows the
1690 * rectangular grid of samples roughly corresponding to the real sample
1691 * locations with in a pixel.
1692 * In case of 4x MSAA, layout of sample indices matches the layout of
1693 * sample numbers:
1694 * ---------
1695 * | 0 | 1 |
1696 * ---------
1697 * | 2 | 3 |
1698 * ---------
1699 *
1700 * In case of 8x MSAA the two layouts don't match.
1701 * sample index layout : --------- sample number layout : ---------
1702 * | 0 | 1 | | 5 | 2 |
1703 * --------- ---------
1704 * | 2 | 3 | | 4 | 6 |
1705 * --------- ---------
1706 * | 4 | 5 | | 0 | 3 |
1707 * --------- ---------
1708 * | 6 | 7 | | 7 | 1 |
1709 * --------- ---------
1710 */
1711 brw_FRC(&func, vec16(t1_f), x_sample_coords);
1712 brw_FRC(&func, vec16(t2_f), y_sample_coords);
1713 brw_MUL(&func, vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1714 brw_MUL(&func, vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1715 brw_ADD(&func, vec16(t1_f), t1_f, t2_f);
1716 brw_MOV(&func, vec16(S), t1_f);
1717
1718 if (num_samples == 8) {
1719 /* Map the sample index to a sample number */
1720 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_L,
1721 S, brw_imm_d(4));
1722 brw_IF(&func, BRW_EXECUTE_16);
1723 {
1724 brw_MOV(&func, vec16(t2), brw_imm_d(5));
1725 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1726 S, brw_imm_d(1));
1727 brw_MOV(&func, vec16(t2), brw_imm_d(2));
1728 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1729 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1730 S, brw_imm_d(2));
1731 brw_MOV(&func, vec16(t2), brw_imm_d(4));
1732 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1733 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1734 S, brw_imm_d(3));
1735 brw_MOV(&func, vec16(t2), brw_imm_d(6));
1736 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1737 }
1738 brw_ELSE(&func);
1739 {
1740 brw_MOV(&func, vec16(t2), brw_imm_d(0));
1741 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1742 S, brw_imm_d(5));
1743 brw_MOV(&func, vec16(t2), brw_imm_d(3));
1744 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1745 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1746 S, brw_imm_d(6));
1747 brw_MOV(&func, vec16(t2), brw_imm_d(7));
1748 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1749 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_EQ,
1750 S, brw_imm_d(7));
1751 brw_MOV(&func, vec16(t2), brw_imm_d(1));
1752 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1753 }
1754 brw_ENDIF(&func);
1755 brw_MOV(&func, vec16(S), t2);
1756 }
1757 texel_fetch(texture_data[i]);
1758 }
1759
1760 #define SAMPLE(x, y) offset(texture_data[x], y)
1761 brw_set_access_mode(&func, BRW_ALIGN_16);
1762 for (int index = 3; index > 0; ) {
1763 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1764 * Counter value of 8 in 'for' loop below is used to interpolate all
1765 * the color components.
1766 */
1767 for (int k = 0; k < 8; ++k)
1768 brw_LRP(&func,
1769 vec8(SAMPLE(index - 1, k)),
1770 offset(x_frac, k & 1),
1771 SAMPLE(index, k),
1772 SAMPLE(index - 1, k));
1773 index -= 2;
1774 }
1775 for (int k = 0; k < 8; ++k)
1776 brw_LRP(&func,
1777 vec8(SAMPLE(0, k)),
1778 offset(y_frac, k & 1),
1779 vec8(SAMPLE(2, k)),
1780 vec8(SAMPLE(0, k)));
1781 brw_set_access_mode(&func, BRW_ALIGN_1);
1782 #undef SAMPLE
1783 }
1784
1785 /**
1786 * Emit code to look up a value in the texture using the SAMPLE message (which
1787 * does blending of MSAA surfaces).
1788 */
1789 void
1790 brw_blorp_blit_program::sample(struct brw_reg dst)
1791 {
1792 static const sampler_message_arg args[2] = {
1793 SAMPLER_MESSAGE_ARG_U_FLOAT,
1794 SAMPLER_MESSAGE_ARG_V_FLOAT
1795 };
1796
1797 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args,
1798 ARRAY_SIZE(args));
1799 }
1800
1801 /**
1802 * Emit code to look up a value in the texture using the SAMPLE_LD message
1803 * (which does a simple texel fetch).
1804 */
1805 void
1806 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1807 {
1808 static const sampler_message_arg gen6_args[5] = {
1809 SAMPLER_MESSAGE_ARG_U_INT,
1810 SAMPLER_MESSAGE_ARG_V_INT,
1811 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1812 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1813 SAMPLER_MESSAGE_ARG_SI_INT
1814 };
1815 static const sampler_message_arg gen7_ld_args[3] = {
1816 SAMPLER_MESSAGE_ARG_U_INT,
1817 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1818 SAMPLER_MESSAGE_ARG_V_INT
1819 };
1820 static const sampler_message_arg gen7_ld2dss_args[3] = {
1821 SAMPLER_MESSAGE_ARG_SI_INT,
1822 SAMPLER_MESSAGE_ARG_U_INT,
1823 SAMPLER_MESSAGE_ARG_V_INT
1824 };
1825 static const sampler_message_arg gen7_ld2dms_args[4] = {
1826 SAMPLER_MESSAGE_ARG_SI_INT,
1827 SAMPLER_MESSAGE_ARG_MCS_INT,
1828 SAMPLER_MESSAGE_ARG_U_INT,
1829 SAMPLER_MESSAGE_ARG_V_INT
1830 };
1831
1832 switch (brw->gen) {
1833 case 6:
1834 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1835 s_is_zero ? 2 : 5);
1836 break;
1837 case 7:
1838 switch (key->tex_layout) {
1839 case INTEL_MSAA_LAYOUT_IMS:
1840 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1841 * Format):
1842 *
1843 * If this field is MSFMT_DEPTH_STENCIL
1844 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1845 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1846 *
1847 * So fall through to emit the same message as we use for
1848 * INTEL_MSAA_LAYOUT_CMS.
1849 */
1850 case INTEL_MSAA_LAYOUT_CMS:
1851 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
1852 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1853 break;
1854 case INTEL_MSAA_LAYOUT_UMS:
1855 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1856 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1857 break;
1858 case INTEL_MSAA_LAYOUT_NONE:
1859 assert(s_is_zero);
1860 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1861 ARRAY_SIZE(gen7_ld_args));
1862 break;
1863 }
1864 break;
1865 default:
1866 assert(!"Should not get here.");
1867 break;
1868 };
1869 }
1870
1871 void
1872 brw_blorp_blit_program::mcs_fetch()
1873 {
1874 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1875 SAMPLER_MESSAGE_ARG_U_INT,
1876 SAMPLER_MESSAGE_ARG_V_INT
1877 };
1878 texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
1879 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1880 }
1881
1882 void
1883 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1884 GLuint msg_type,
1885 const sampler_message_arg *args,
1886 int num_args)
1887 {
1888 struct brw_reg mrf =
1889 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1890 for (int arg = 0; arg < num_args; ++arg) {
1891 switch (args[arg]) {
1892 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1893 if (key->bilinear_filter)
1894 brw_MOV(&func, retype(mrf, BRW_REGISTER_TYPE_F),
1895 retype(X, BRW_REGISTER_TYPE_F));
1896 else
1897 brw_MOV(&func, retype(mrf, BRW_REGISTER_TYPE_F), X);
1898 break;
1899 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1900 if (key->bilinear_filter)
1901 brw_MOV(&func, retype(mrf, BRW_REGISTER_TYPE_F),
1902 retype(Y, BRW_REGISTER_TYPE_F));
1903 else
1904 brw_MOV(&func, retype(mrf, BRW_REGISTER_TYPE_F), Y);
1905 break;
1906 case SAMPLER_MESSAGE_ARG_U_INT:
1907 brw_MOV(&func, mrf, X);
1908 break;
1909 case SAMPLER_MESSAGE_ARG_V_INT:
1910 brw_MOV(&func, mrf, Y);
1911 break;
1912 case SAMPLER_MESSAGE_ARG_SI_INT:
1913 /* Note: on Gen7, this code may be reached with s_is_zero==true
1914 * because in Gen7's ld2dss message, the sample index is the first
1915 * argument. When this happens, we need to move a 0 into the
1916 * appropriate message register.
1917 */
1918 if (s_is_zero)
1919 brw_MOV(&func, mrf, brw_imm_ud(0));
1920 else
1921 brw_MOV(&func, mrf, S);
1922 break;
1923 case SAMPLER_MESSAGE_ARG_MCS_INT:
1924 switch (key->tex_layout) {
1925 case INTEL_MSAA_LAYOUT_CMS:
1926 brw_MOV(&func, mrf, mcs_data);
1927 break;
1928 case INTEL_MSAA_LAYOUT_IMS:
1929 /* When sampling from an IMS surface, MCS data is not relevant,
1930 * and the hardware ignores it. So don't bother populating it.
1931 */
1932 break;
1933 default:
1934 /* We shouldn't be trying to send MCS data with any other
1935 * layouts.
1936 */
1937 assert (!"Unsupported layout for MCS data");
1938 break;
1939 }
1940 break;
1941 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1942 brw_MOV(&func, mrf, brw_imm_ud(0));
1943 break;
1944 }
1945 mrf.nr += 2;
1946 }
1947
1948 brw_SAMPLE(&func,
1949 retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1950 base_mrf /* msg_reg_nr */,
1951 brw_message_reg(base_mrf) /* src0 */,
1952 BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1953 0 /* sampler */,
1954 msg_type,
1955 8 /* response_length. TODO: should be smaller for non-RGBA formats? */,
1956 mrf.nr - base_mrf /* msg_length */,
1957 0 /* header_present */,
1958 BRW_SAMPLER_SIMD_MODE_SIMD16,
1959 BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1960 }
1961
1962 #undef X
1963 #undef Y
1964 #undef U
1965 #undef V
1966 #undef S
1967 #undef SWAP_XY_AND_XPYP
1968
1969 void
1970 brw_blorp_blit_program::render_target_write()
1971 {
1972 struct brw_reg mrf_rt_write =
1973 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1974 int mrf_offset = 0;
1975
1976 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1977 * so that the render target knows which pixels we killed.
1978 */
1979 bool use_header = key->use_kill;
1980 if (use_header) {
1981 /* Copy R0/1 to MRF */
1982 brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1983 retype(R0, BRW_REGISTER_TYPE_UD));
1984 mrf_offset += 2;
1985 }
1986
1987 /* Copy texture data to MRFs */
1988 for (int i = 0; i < 4; ++i) {
1989 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1990 brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1991 offset(vec8(texture_data[0]), 2*i));
1992 mrf_offset += 2;
1993 }
1994
1995 /* Now write to the render target and terminate the thread */
1996 brw_fb_WRITE(&func,
1997 16 /* dispatch_width */,
1998 base_mrf /* msg_reg_nr */,
1999 mrf_rt_write /* src0 */,
2000 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
2001 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
2002 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
2003 0 /* response_length */,
2004 true /* eot */,
2005 use_header);
2006 }
2007
2008
2009 void
2010 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
2011 GLfloat dst0, GLfloat dst1,
2012 bool mirror)
2013 {
2014 float scale = (src1 - src0) / (dst1 - dst0);
2015 if (!mirror) {
2016 /* When not mirroring a coordinate (say, X), we need:
2017 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
2018 * Therefore:
2019 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
2020 *
2021 * blorp program uses "round toward zero" to convert the
2022 * transformed floating point coordinates to integer coordinates,
2023 * whereas the behaviour we actually want is "round to nearest",
2024 * so 0.5 provides the necessary correction.
2025 */
2026 multiplier = scale;
2027 offset = src0 + (-dst0 + 0.5) * scale;
2028 } else {
2029 /* When mirroring X we need:
2030 * src_x - src_x0 = dst_x1 - dst_x - 0.5
2031 * Therefore:
2032 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
2033 */
2034 multiplier = -scale;
2035 offset = src0 + (dst1 - 0.5) * scale;
2036 }
2037 }
2038
2039
2040 /**
2041 * Determine which MSAA layout the GPU pipeline should be configured for,
2042 * based on the chip generation, the number of samples, and the true layout of
2043 * the image in memory.
2044 */
2045 inline intel_msaa_layout
2046 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
2047 intel_msaa_layout true_layout)
2048 {
2049 if (num_samples <= 1) {
2050 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
2051 * format buffers, by transforming coordinates appropriately.
2052 */
2053 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
2054 true_layout == INTEL_MSAA_LAYOUT_IMS);
2055 return INTEL_MSAA_LAYOUT_NONE;
2056 } else {
2057 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
2058 }
2059
2060 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
2061 if (brw->gen == 6) {
2062 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
2063 }
2064
2065 return true_layout;
2066 }
2067
2068
2069 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
2070 struct intel_mipmap_tree *src_mt,
2071 unsigned src_level, unsigned src_layer,
2072 struct intel_mipmap_tree *dst_mt,
2073 unsigned dst_level, unsigned dst_layer,
2074 GLfloat src_x0, GLfloat src_y0,
2075 GLfloat src_x1, GLfloat src_y1,
2076 GLfloat dst_x0, GLfloat dst_y0,
2077 GLfloat dst_x1, GLfloat dst_y1,
2078 GLenum filter,
2079 bool mirror_x, bool mirror_y)
2080 {
2081 struct gl_context *ctx = &brw->ctx;
2082 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
2083
2084 src.set(brw, src_mt, src_level, src_layer, false);
2085 dst.set(brw, dst_mt, dst_level, dst_layer, true);
2086
2087 /* Even though we do multisample resolves at the time of the blit, OpenGL
2088 * specification defines them as if they happen at the time of rendering,
2089 * which means that the type of averaging we do during the resolve should
2090 * only depend on the source format; the destination format should be
2091 * ignored. But, specification doesn't seem to be strict about it.
2092 *
2093 * It has been observed that mulitisample resolves produce slightly better
2094 * looking images when averaging is done using destination format. NVIDIA's
2095 * proprietary OpenGL driver also follow this approach. So, we choose to
2096 * follow it in our driver.
2097 *
2098 * When multisampling, if the source and destination formats are equal
2099 * (aside from the color space), we choose to blit in sRGB space to get
2100 * this higher quality image.
2101 */
2102 if (src.num_samples > 1 &&
2103 _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
2104 _mesa_get_srgb_format_linear(src_mt->format) ==
2105 _mesa_get_srgb_format_linear(dst_mt->format)) {
2106 dst.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
2107 src.brw_surfaceformat = dst.brw_surfaceformat;
2108 }
2109
2110 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
2111 * texture, the above code configures the source format for L32_FLOAT or
2112 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
2113 * the SAMPLE message appears to handle multisampled L32_FLOAT and
2114 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
2115 * around the problem by using a source format of R32_FLOAT. This
2116 * shouldn't affect rendering correctness, since the destination format is
2117 * R32_FLOAT, so only the contents of the red channel matters.
2118 */
2119 if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
2120 src_mt->format == dst_mt->format &&
2121 dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
2122 src.brw_surfaceformat = dst.brw_surfaceformat;
2123 }
2124
2125 use_wm_prog = true;
2126 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
2127
2128 /* texture_data_type indicates the register type that should be used to
2129 * manipulate texture data.
2130 */
2131 switch (_mesa_get_format_datatype(src_mt->format)) {
2132 case GL_UNSIGNED_NORMALIZED:
2133 case GL_SIGNED_NORMALIZED:
2134 case GL_FLOAT:
2135 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
2136 break;
2137 case GL_UNSIGNED_INT:
2138 if (src_mt->format == MESA_FORMAT_S8) {
2139 /* We process stencil as though it's an unsigned normalized color */
2140 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
2141 } else {
2142 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
2143 }
2144 break;
2145 case GL_INT:
2146 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
2147 break;
2148 default:
2149 assert(!"Unrecognized blorp format");
2150 break;
2151 }
2152
2153 if (brw->gen > 6) {
2154 /* Gen7's rendering hardware only supports the IMS layout for depth and
2155 * stencil render targets. Blorp always maps its destination surface as
2156 * a color render target (even if it's actually a depth or stencil
2157 * buffer). So if the destination is IMS, we'll have to map it as a
2158 * single-sampled texture and interleave the samples ourselves.
2159 */
2160 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
2161 dst.num_samples = 0;
2162 }
2163
2164 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
2165 /* If the destination surface is a W-tiled multisampled stencil buffer
2166 * that we're mapping as Y tiled, then we need to arrange for the WM
2167 * program to run once per sample rather than once per pixel, because
2168 * the memory layout of related samples doesn't match between W and Y
2169 * tiling.
2170 */
2171 wm_prog_key.persample_msaa_dispatch = true;
2172 }
2173
2174 if (src.num_samples > 0 && dst.num_samples > 1) {
2175 /* We are blitting from a multisample buffer to a multisample buffer, so
2176 * we must preserve samples within a pixel. This means we have to
2177 * arrange for the WM program to run once per sample rather than once
2178 * per pixel.
2179 */
2180 wm_prog_key.persample_msaa_dispatch = true;
2181 }
2182
2183 /* Scaled blitting or not. */
2184 wm_prog_key.blit_scaled =
2185 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2186 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2187
2188 /* Scaling factors used for bilinear filtering in multisample scaled
2189 * blits.
2190 */
2191 wm_prog_key.x_scale = 2.0;
2192 wm_prog_key.y_scale = src_mt->num_samples / 2.0;
2193
2194 if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
2195 wm_prog_key.bilinear_filter = true;
2196
2197 /* The render path must be configured to use the same number of samples as
2198 * the destination buffer.
2199 */
2200 num_samples = dst.num_samples;
2201
2202 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
2203 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
2204 base_format != GL_STENCIL_INDEX &&
2205 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
2206 /* We are downsampling a color buffer, so blend. */
2207 wm_prog_key.blend = true;
2208 }
2209
2210 /* src_samples and dst_samples are the true sample counts */
2211 wm_prog_key.src_samples = src_mt->num_samples;
2212 wm_prog_key.dst_samples = dst_mt->num_samples;
2213
2214 /* tex_samples and rt_samples are the sample counts that are set up in
2215 * SURFACE_STATE.
2216 */
2217 wm_prog_key.tex_samples = src.num_samples;
2218 wm_prog_key.rt_samples = dst.num_samples;
2219
2220 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
2221 * use to access the source and destination surfaces.
2222 */
2223 wm_prog_key.tex_layout =
2224 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
2225 wm_prog_key.rt_layout =
2226 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
2227
2228 /* src_layout and dst_layout indicate the true MSAA layout used by src and
2229 * dst.
2230 */
2231 wm_prog_key.src_layout = src_mt->msaa_layout;
2232 wm_prog_key.dst_layout = dst_mt->msaa_layout;
2233
2234 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
2235 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
2236 x0 = wm_push_consts.dst_x0 = dst_x0;
2237 y0 = wm_push_consts.dst_y0 = dst_y0;
2238 x1 = wm_push_consts.dst_x1 = dst_x1;
2239 y1 = wm_push_consts.dst_y1 = dst_y1;
2240 wm_push_consts.rect_grid_x1 = read_fb->Width * wm_prog_key.x_scale - 1.0;
2241 wm_push_consts.rect_grid_y1 = read_fb->Height * wm_prog_key.y_scale - 1.0;
2242
2243 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
2244 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
2245
2246 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
2247 /* We must expand the rectangle we send through the rendering pipeline,
2248 * to account for the fact that we are mapping the destination region as
2249 * single-sampled when it is in fact multisampled. We must also align
2250 * it to a multiple of the multisampling pattern, because the
2251 * differences between multisampled and single-sampled surface formats
2252 * will mean that pixels are scrambled within the multisampling pattern.
2253 * TODO: what if this makes the coordinates too large?
2254 *
2255 * Note: this only works if the destination surface uses the IMS layout.
2256 * If it's UMS, then we have no choice but to set up the rendering
2257 * pipeline as multisampled.
2258 */
2259 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2260 switch (dst_mt->num_samples) {
2261 case 4:
2262 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2263 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2264 x1 = ALIGN(x1 * 2, 4);
2265 y1 = ALIGN(y1 * 2, 4);
2266 break;
2267 case 8:
2268 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2269 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2270 x1 = ALIGN(x1 * 4, 8);
2271 y1 = ALIGN(y1 * 2, 4);
2272 break;
2273 default:
2274 assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
2275 break;
2276 }
2277 wm_prog_key.use_kill = true;
2278 }
2279
2280 if (dst.map_stencil_as_y_tiled) {
2281 /* We must modify the rectangle we send through the rendering pipeline
2282 * (and the size and x/y offset of the destination surface), to account
2283 * for the fact that we are mapping it as Y-tiled when it is in fact
2284 * W-tiled.
2285 *
2286 * Both Y tiling and W tiling can be understood as organizations of
2287 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2288 * is different, but the layout of the 32-byte sub-tiles within the 4k
2289 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2290 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2291 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2292 *
2293 * Therefore, to account for the layout differences within the 32-byte
2294 * sub-tiles, we must expand the rectangle so the X coordinates of its
2295 * edges are multiples of 8 (the W sub-tile width), and its Y
2296 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2297 * Then we need to scale the X and Y coordinates of the rectangle to
2298 * account for the differences in aspect ratio between the Y and W
2299 * sub-tiles. We need to modify the layer width and height similarly.
2300 *
2301 * A correction needs to be applied when MSAA is in use: since
2302 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2303 * we need to align the Y coordinates to multiples of 8, so that when
2304 * they are divided by two they are still multiples of 4.
2305 *
2306 * Note: Since the x/y offset of the surface will be applied using the
2307 * SURFACE_STATE command packet, it will be invisible to the swizzling
2308 * code in the shader; therefore it needs to be in a multiple of the
2309 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2310 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2311 * buffer), and the miplevel alignment used for stencil buffers is 8
2312 * pixels horizontally and either 4 or 8 pixels vertically (see
2313 * intel_horizontal_texture_alignment_unit() and
2314 * intel_vertical_texture_alignment_unit()).
2315 *
2316 * Note: Also, since the SURFACE_STATE command packet can only apply
2317 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2318 * vertically, it is important that the offsets will be multiples of
2319 * these sizes after they are converted into Y-tiled coordinates.
2320 * Fortunately they will be, since we know from above that the offsets
2321 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2322 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2323 *
2324 * TODO: what if this makes the coordinates (or the texture size) too
2325 * large?
2326 */
2327 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2328 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2329 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2330 x1 = ALIGN(x1, x_align) * 2;
2331 y1 = ALIGN(y1, y_align) / 2;
2332 dst.width = ALIGN(dst.width, x_align) * 2;
2333 dst.height = ALIGN(dst.height, y_align) / 2;
2334 dst.x_offset *= 2;
2335 dst.y_offset /= 2;
2336 wm_prog_key.use_kill = true;
2337 }
2338
2339 if (src.map_stencil_as_y_tiled) {
2340 /* We must modify the size and x/y offset of the source surface to
2341 * account for the fact that we are mapping it as Y-tiled when it is in
2342 * fact W tiled.
2343 *
2344 * See the comments above concerning x/y offset alignment for the
2345 * destination surface.
2346 *
2347 * TODO: what if this makes the texture size too large?
2348 */
2349 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2350 src.width = ALIGN(src.width, x_align) * 2;
2351 src.height = ALIGN(src.height, y_align) / 2;
2352 src.x_offset *= 2;
2353 src.y_offset /= 2;
2354 }
2355 }
2356
2357 uint32_t
2358 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2359 brw_blorp_prog_data **prog_data) const
2360 {
2361 uint32_t prog_offset = 0;
2362 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2363 &this->wm_prog_key, sizeof(this->wm_prog_key),
2364 &prog_offset, prog_data)) {
2365 brw_blorp_blit_program prog(brw, &this->wm_prog_key);
2366 GLuint program_size;
2367 const GLuint *program = prog.compile(brw, &program_size);
2368 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2369 &this->wm_prog_key, sizeof(this->wm_prog_key),
2370 program, program_size,
2371 &prog.prog_data, sizeof(prog.prog_data),
2372 &prog_offset, prog_data);
2373 }
2374 return prog_offset;
2375 }