i965/msaa: Add CMS support to blorp.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25
26 #include "glsl/ralloc.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_eu.h"
33 #include "brw_state.h"
34
35
36 /**
37 * Helper function for handling mirror image blits.
38 *
39 * If coord0 > coord1, swap them and invert the "mirror" boolean.
40 */
41 static inline void
42 fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
43 {
44 if (coord0 > coord1) {
45 mirror = !mirror;
46 GLint tmp = coord0;
47 coord0 = coord1;
48 coord1 = tmp;
49 }
50 }
51
52
53 /**
54 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
55 * destination coordinates.
56 *
57 * Return true if there is still blitting to do, false if all pixels got
58 * rejected by the clip and/or scissor.
59 *
60 * For clarity, the nomenclature of this function assumes we are clipping and
61 * scissoring the X coordinate; the exact same logic applies for Y
62 * coordinates.
63 *
64 * Note: this function may also be used to account for clipping of source
65 * coordinates, by swapping the roles of src and dst.
66 */
67 static inline bool
68 clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
69 GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
70 {
71 /* If we are going to scissor everything away, stop. */
72 if (!(fb_xmin < fb_xmax &&
73 dst_x0 < fb_xmax &&
74 fb_xmin < dst_x1 &&
75 dst_x0 < dst_x1)) {
76 return false;
77 }
78
79 /* Clip the destination rectangle, and keep track of how many pixels we
80 * clipped off of the left and right sides of it.
81 */
82 GLint pixels_clipped_left = 0;
83 GLint pixels_clipped_right = 0;
84 if (dst_x0 < fb_xmin) {
85 pixels_clipped_left = fb_xmin - dst_x0;
86 dst_x0 = fb_xmin;
87 }
88 if (fb_xmax < dst_x1) {
89 pixels_clipped_right = dst_x1 - fb_xmax;
90 dst_x1 = fb_xmax;
91 }
92
93 /* If we are mirrored, then before applying pixels_clipped_{left,right} to
94 * the source coordinates, we need to flip them to account for the
95 * mirroring.
96 */
97 if (mirror) {
98 GLint tmp = pixels_clipped_left;
99 pixels_clipped_left = pixels_clipped_right;
100 pixels_clipped_right = tmp;
101 }
102
103 /* Adjust the source rectangle to remove the pixels corresponding to those
104 * that were clipped/scissored out of the destination rectangle.
105 */
106 src_x0 += pixels_clipped_left;
107 src_x1 -= pixels_clipped_right;
108
109 return true;
110 }
111
112
113 static bool
114 try_blorp_blit(struct intel_context *intel,
115 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
116 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
117 GLenum filter, GLbitfield buffer_bit)
118 {
119 struct gl_context *ctx = &intel->ctx;
120
121 /* Sync up the state of window system buffers. We need to do this before
122 * we go looking for the buffers.
123 */
124 intel_prepare_render(intel);
125
126 /* Find buffers */
127 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
128 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
129 struct gl_renderbuffer *src_rb;
130 struct gl_renderbuffer *dst_rb;
131 switch (buffer_bit) {
132 case GL_COLOR_BUFFER_BIT:
133 src_rb = read_fb->_ColorReadBuffer;
134 dst_rb =
135 draw_fb->Attachment[
136 draw_fb->_ColorDrawBufferIndexes[0]].Renderbuffer;
137 break;
138 case GL_DEPTH_BUFFER_BIT:
139 src_rb = read_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
140 dst_rb = draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
141 break;
142 case GL_STENCIL_BUFFER_BIT:
143 src_rb = read_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
144 dst_rb = draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
145 break;
146 default:
147 assert(false);
148 }
149
150 /* Validate source */
151 if (!src_rb) return false;
152 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
153 struct intel_mipmap_tree *src_mt = src_irb->mt;
154 if (!src_mt) return false;
155 if (buffer_bit == GL_STENCIL_BUFFER_BIT && src_mt->stencil_mt)
156 src_mt = src_mt->stencil_mt;
157
158 /* Validate destination */
159 if (!dst_rb) return false;
160 struct intel_renderbuffer *dst_irb = intel_renderbuffer(dst_rb);
161 struct intel_mipmap_tree *dst_mt = dst_irb->mt;
162 if (!dst_mt) return false;
163 if (buffer_bit == GL_STENCIL_BUFFER_BIT && dst_mt->stencil_mt)
164 dst_mt = dst_mt->stencil_mt;
165
166 /* Blorp blits can't translate from one format to another. For that we'll
167 * have to fall back to the meta-op blit. Note: the meta-op blit doesn't
168 * support multisampled blits, but fortunately this is ok because
169 * multisampled blits require identical source and destination formats.
170 */
171 if (src_mt->format != dst_mt->format)
172 return false;
173
174 /* Account for the fact that in the system framebuffer, the origin is at
175 * the lower left.
176 */
177 if (read_fb->Name == 0) {
178 srcY0 = read_fb->Height - srcY0;
179 srcY1 = read_fb->Height - srcY1;
180 }
181 if (draw_fb->Name == 0) {
182 dstY0 = draw_fb->Height - dstY0;
183 dstY1 = draw_fb->Height - dstY1;
184 }
185
186 /* Detect if the blit needs to be mirrored */
187 bool mirror_x = false, mirror_y = false;
188 fixup_mirroring(mirror_x, srcX0, srcX1);
189 fixup_mirroring(mirror_x, dstX0, dstX1);
190 fixup_mirroring(mirror_y, srcY0, srcY1);
191 fixup_mirroring(mirror_y, dstY0, dstY1);
192
193 /* Make sure width and height match */
194 GLsizei width = srcX1 - srcX0;
195 GLsizei height = srcY1 - srcY0;
196 if (width != dstX1 - dstX0) return false;
197 if (height != dstY1 - dstY0) return false;
198
199 /* If the destination rectangle needs to be clipped or scissored, do so.
200 */
201 if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
202 draw_fb->_Xmin, draw_fb->_Xmax) &&
203 clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
204 draw_fb->_Ymin, draw_fb->_Ymax))) {
205 /* Everything got clipped/scissored away, so the blit was successful. */
206 return true;
207 }
208
209 /* If the source rectangle needs to be clipped or scissored, do so. */
210 if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
211 0, read_fb->Width) &&
212 clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
213 0, read_fb->Height))) {
214 /* Everything got clipped/scissored away, so the blit was successful. */
215 return true;
216 }
217
218 /* Get ready to blit. This includes depth resolving the src and dst
219 * buffers if necessary.
220 */
221 intel_renderbuffer_resolve_depth(intel, src_irb);
222 intel_renderbuffer_resolve_depth(intel, dst_irb);
223
224 /* Do the blit */
225 brw_blorp_blit_params params(brw_context(ctx), src_mt, dst_mt,
226 srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
227 mirror_x, mirror_y);
228 brw_blorp_exec(intel, &params);
229
230 /* Mark the dst buffer as needing a HiZ resolve if necessary. */
231 intel_renderbuffer_set_needs_hiz_resolve(dst_irb);
232
233 return true;
234 }
235
236 GLbitfield
237 brw_blorp_framebuffer(struct intel_context *intel,
238 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
239 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
240 GLbitfield mask, GLenum filter)
241 {
242 /* BLORP is not supported before Gen6. */
243 if (intel->gen < 6)
244 return mask;
245
246 static GLbitfield buffer_bits[] = {
247 GL_COLOR_BUFFER_BIT,
248 GL_DEPTH_BUFFER_BIT,
249 GL_STENCIL_BUFFER_BIT,
250 };
251
252 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
253 if ((mask & buffer_bits[i]) &&
254 try_blorp_blit(intel,
255 srcX0, srcY0, srcX1, srcY1,
256 dstX0, dstY0, dstX1, dstY1,
257 filter, buffer_bits[i])) {
258 mask &= ~buffer_bits[i];
259 }
260 }
261
262 return mask;
263 }
264
265
266 /**
267 * Enum to specify the order of arguments in a sampler message
268 */
269 enum sampler_message_arg
270 {
271 SAMPLER_MESSAGE_ARG_U_FLOAT,
272 SAMPLER_MESSAGE_ARG_V_FLOAT,
273 SAMPLER_MESSAGE_ARG_U_INT,
274 SAMPLER_MESSAGE_ARG_V_INT,
275 SAMPLER_MESSAGE_ARG_SI_INT,
276 SAMPLER_MESSAGE_ARG_MCS_INT,
277 SAMPLER_MESSAGE_ARG_ZERO_INT,
278 };
279
280 /**
281 * Generator for WM programs used in BLORP blits.
282 *
283 * The bulk of the work done by the WM program is to wrap and unwrap the
284 * coordinate transformations used by the hardware to store surfaces in
285 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
286 * sample index for a multisampled surface) to a memory offset by the
287 * following formulas:
288 *
289 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
290 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
291 *
292 * For a single-sampled surface, or for a multisampled surface using
293 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
294 * function:
295 *
296 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
297 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
298 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
299 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
300 *
301 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
302 * embeds the sample number into bit 1 of the X and Y coordinates:
303 *
304 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
305 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
306 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
307 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
308 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
309 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
310 * S = (Y & 0b10) | (X & 0b10) >> 1
311 *
312 * For X tiling, tile() combines together the low-order bits of the X and Y
313 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
314 * bytes wide and 8 rows high:
315 *
316 * tile(x_tiled, X, Y, S) = A
317 * where A = tile_num << 12 | offset
318 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
319 * offset = (Y' & 0b111) << 9
320 * | (X & 0b111111111)
321 * X' = X * cpp
322 * Y' = Y + S * qpitch
323 * detile(x_tiled, A) = (X, Y, S)
324 * where X = X' / cpp
325 * Y = Y' % qpitch
326 * S = Y' / qpitch
327 * Y' = (tile_num / tile_pitch) << 3
328 * | (A & 0b111000000000) >> 9
329 * X' = (tile_num % tile_pitch) << 9
330 * | (A & 0b111111111)
331 *
332 * (In all tiling formulas, cpp is the number of bytes occupied by a single
333 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
334 * to fill the width of the surface, and qpitch is the spacing (in rows)
335 * between array slices).
336 *
337 * For Y tiling, tile() combines together the low-order bits of the X and Y
338 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
339 * bytes wide and 32 rows high:
340 *
341 * tile(y_tiled, X, Y, S) = A
342 * where A = tile_num << 12 | offset
343 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
344 * offset = (X' & 0b1110000) << 5
345 * | (Y' & 0b11111) << 4
346 * | (X' & 0b1111)
347 * X' = X * cpp
348 * Y' = Y + S * qpitch
349 * detile(y_tiled, A) = (X, Y, S)
350 * where X = X' / cpp
351 * Y = Y' % qpitch
352 * S = Y' / qpitch
353 * Y' = (tile_num / tile_pitch) << 5
354 * | (A & 0b111110000) >> 4
355 * X' = (tile_num % tile_pitch) << 7
356 * | (A & 0b111000000000) >> 5
357 * | (A & 0b1111)
358 *
359 * For W tiling, tile() combines together the low-order bits of the X and Y
360 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
361 * bytes wide and 64 rows high (note that W tiling is only used for stencil
362 * buffers, which always have cpp = 1 and S=0):
363 *
364 * tile(w_tiled, X, Y, S) = A
365 * where A = tile_num << 12 | offset
366 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
367 * offset = (X' & 0b111000) << 6
368 * | (Y' & 0b111100) << 3
369 * | (X' & 0b100) << 2
370 * | (Y' & 0b10) << 2
371 * | (X' & 0b10) << 1
372 * | (Y' & 0b1) << 1
373 * | (X' & 0b1)
374 * X' = X * cpp = X
375 * Y' = Y + S * qpitch
376 * detile(w_tiled, A) = (X, Y, S)
377 * where X = X' / cpp = X'
378 * Y = Y' % qpitch = Y'
379 * S = Y / qpitch = 0
380 * Y' = (tile_num / tile_pitch) << 6
381 * | (A & 0b111100000) >> 3
382 * | (A & 0b1000) >> 2
383 * | (A & 0b10) >> 1
384 * X' = (tile_num % tile_pitch) << 6
385 * | (A & 0b111000000000) >> 6
386 * | (A & 0b10000) >> 2
387 * | (A & 0b100) >> 1
388 * | (A & 0b1)
389 *
390 * Finally, for a non-tiled surface, tile() simply combines together the X and
391 * Y coordinates in the natural way:
392 *
393 * tile(untiled, X, Y, S) = A
394 * where A = Y * pitch + X'
395 * X' = X * cpp
396 * Y' = Y + S * qpitch
397 * detile(untiled, A) = (X, Y, S)
398 * where X = X' / cpp
399 * Y = Y' % qpitch
400 * S = Y' / qpitch
401 * X' = A % pitch
402 * Y' = A / pitch
403 *
404 * (In these formulas, pitch is the number of bytes occupied by a single row
405 * of samples).
406 */
407 class brw_blorp_blit_program
408 {
409 public:
410 brw_blorp_blit_program(struct brw_context *brw,
411 const brw_blorp_blit_prog_key *key);
412 ~brw_blorp_blit_program();
413
414 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
415
416 brw_blorp_prog_data prog_data;
417
418 private:
419 void alloc_regs();
420 void alloc_push_const_regs(int base_reg);
421 void compute_frag_coords();
422 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
423 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
424 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
425 void kill_if_outside_dst_rect();
426 void translate_dst_to_src();
427 void single_to_blend();
428 void manual_blend();
429 void sample(struct brw_reg dst);
430 void texel_fetch(struct brw_reg dst);
431 void mcs_fetch();
432 void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
433 void texture_lookup(struct brw_reg dst, GLuint msg_type,
434 const sampler_message_arg *args, int num_args);
435 void render_target_write();
436
437 void *mem_ctx;
438 struct brw_context *brw;
439 const brw_blorp_blit_prog_key *key;
440 struct brw_compile func;
441
442 /* Thread dispatch header */
443 struct brw_reg R0;
444
445 /* Pixel X/Y coordinates (always in R1). */
446 struct brw_reg R1;
447
448 /* Push constants */
449 struct brw_reg dst_x0;
450 struct brw_reg dst_x1;
451 struct brw_reg dst_y0;
452 struct brw_reg dst_y1;
453 struct {
454 struct brw_reg multiplier;
455 struct brw_reg offset;
456 } x_transform, y_transform;
457
458 /* Data to be written to render target (4 vec16's) */
459 struct brw_reg result;
460
461 /* Auxiliary storage for data returned by a sampling operation when
462 * blending (4 vec16's)
463 */
464 struct brw_reg texture_data;
465
466 /* Auxiliary storage for the contents of the MCS surface.
467 *
468 * Since the sampler always returns 8 registers worth of data, this is 8
469 * registers wide, even though we only use the first 2 registers of it.
470 */
471 struct brw_reg mcs_data;
472
473 /* X coordinates. We have two of them so that we can perform coordinate
474 * transformations easily.
475 */
476 struct brw_reg x_coords[2];
477
478 /* Y coordinates. We have two of them so that we can perform coordinate
479 * transformations easily.
480 */
481 struct brw_reg y_coords[2];
482
483 /* Which element of x_coords and y_coords is currently in use.
484 */
485 int xy_coord_index;
486
487 /* True if, at the point in the program currently being compiled, the
488 * sample index is known to be zero.
489 */
490 bool s_is_zero;
491
492 /* Register storing the sample index when s_is_zero is false. */
493 struct brw_reg sample_index;
494
495 /* Temporaries */
496 struct brw_reg t1;
497 struct brw_reg t2;
498
499 /* MRF used for sampling and render target writes */
500 GLuint base_mrf;
501 };
502
503 brw_blorp_blit_program::brw_blorp_blit_program(
504 struct brw_context *brw,
505 const brw_blorp_blit_prog_key *key)
506 : mem_ctx(ralloc_context(NULL)),
507 brw(brw),
508 key(key)
509 {
510 brw_init_compile(brw, &func, mem_ctx);
511 }
512
513 brw_blorp_blit_program::~brw_blorp_blit_program()
514 {
515 ralloc_free(mem_ctx);
516 }
517
518 const GLuint *
519 brw_blorp_blit_program::compile(struct brw_context *brw,
520 GLuint *program_size)
521 {
522 /* Sanity checks */
523 if (key->dst_tiled_w && key->rt_samples > 0) {
524 /* If the destination image is W tiled and multisampled, then the thread
525 * must be dispatched once per sample, not once per pixel. This is
526 * necessary because after conversion between W and Y tiling, there's no
527 * guarantee that all samples corresponding to a single pixel will still
528 * be together.
529 */
530 assert(key->persample_msaa_dispatch);
531 }
532
533 if (key->blend) {
534 /* We are blending, which means we won't have an opportunity to
535 * translate the tiling and sample count for the texture surface. So
536 * the surface state for the texture must be configured with the correct
537 * tiling and sample count.
538 */
539 assert(!key->src_tiled_w);
540 assert(key->tex_samples == key->src_samples);
541 assert(key->tex_layout == key->src_layout);
542 assert(key->tex_samples > 0);
543 }
544
545 if (key->persample_msaa_dispatch) {
546 /* It only makes sense to do persample dispatch if the render target is
547 * configured as multisampled.
548 */
549 assert(key->rt_samples > 0);
550 }
551
552 /* Make sure layout is consistent with sample count */
553 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
554 (key->tex_samples == 0));
555 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
556 (key->rt_samples == 0));
557 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
558 (key->src_samples == 0));
559 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
560 (key->dst_samples == 0));
561
562 /* Set up prog_data */
563 memset(&prog_data, 0, sizeof(prog_data));
564 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
565
566 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
567
568 alloc_regs();
569 compute_frag_coords();
570
571 /* Render target and texture hardware don't support W tiling. */
572 const bool rt_tiled_w = false;
573 const bool tex_tiled_w = false;
574
575 /* The address that data will be written to is determined by the
576 * coordinates supplied to the WM thread and the tiling and sample count of
577 * the render target, according to the formula:
578 *
579 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
580 *
581 * If the actual tiling and sample count of the destination surface are not
582 * the same as the configuration of the render target, then these
583 * coordinates are wrong and we have to adjust them to compensate for the
584 * difference.
585 */
586 if (rt_tiled_w != key->dst_tiled_w ||
587 key->rt_samples != key->dst_samples ||
588 key->rt_layout != key->dst_layout) {
589 encode_msaa(key->rt_samples, key->rt_layout);
590 /* Now (X, Y, S) = detile(rt_tiling, offset) */
591 translate_tiling(rt_tiled_w, key->dst_tiled_w);
592 /* Now (X, Y, S) = detile(dst_tiling, offset) */
593 decode_msaa(key->dst_samples, key->dst_layout);
594 }
595
596 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
597 *
598 * That is: X, Y and S now contain the true coordinates and sample index of
599 * the data that the WM thread should output.
600 *
601 * If we need to kill pixels that are outside the destination rectangle,
602 * now is the time to do it.
603 */
604
605 if (key->use_kill)
606 kill_if_outside_dst_rect();
607
608 /* Next, apply a translation to obtain coordinates in the source image. */
609 translate_dst_to_src();
610
611 /* If the source image is not multisampled, then we want to fetch sample
612 * number 0, because that's the only sample there is.
613 */
614 if (key->src_samples == 0)
615 s_is_zero = true;
616
617 /* X, Y, and S are now the coordinates of the pixel in the source image
618 * that we want to texture from. Exception: if we are blending, then S is
619 * irrelevant, because we are going to fetch all samples.
620 */
621 if (key->blend) {
622 if (brw->intel.gen == 6) {
623 /* Gen6 hardware an automatically blend using the SAMPLE message */
624 single_to_blend();
625 sample(result);
626 } else {
627 /* Gen7+ hardware doesn't automaticaly blend. */
628 manual_blend();
629 }
630 } else {
631 /* We aren't blending, which means we just want to fetch a single sample
632 * from the source surface. The address that we want to fetch from is
633 * related to the X, Y and S values according to the formula:
634 *
635 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
636 *
637 * If the actual tiling and sample count of the source surface are not
638 * the same as the configuration of the texture, then we need to adjust
639 * the coordinates to compensate for the difference.
640 */
641 if (tex_tiled_w != key->src_tiled_w ||
642 key->tex_samples != key->src_samples ||
643 key->tex_layout != key->src_layout) {
644 encode_msaa(key->src_samples, key->src_layout);
645 /* Now (X, Y, S) = detile(src_tiling, offset) */
646 translate_tiling(key->src_tiled_w, tex_tiled_w);
647 /* Now (X, Y, S) = detile(tex_tiling, offset) */
648 decode_msaa(key->tex_samples, key->tex_layout);
649 }
650
651 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
652 *
653 * In other words: X, Y, and S now contain values which, when passed to
654 * the texturing unit, will cause data to be read from the correct
655 * memory location. So we can fetch the texel now.
656 */
657 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
658 mcs_fetch();
659 texel_fetch(result);
660 }
661
662 /* Finally, write the fetched (or blended) value to the render target and
663 * terminate the thread.
664 */
665 render_target_write();
666 return brw_get_program(&func, program_size);
667 }
668
669 void
670 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
671 {
672 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
673 #define ALLOC_REG(name) \
674 this->name = \
675 brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
676
677 ALLOC_REG(dst_x0);
678 ALLOC_REG(dst_x1);
679 ALLOC_REG(dst_y0);
680 ALLOC_REG(dst_y1);
681 ALLOC_REG(x_transform.multiplier);
682 ALLOC_REG(x_transform.offset);
683 ALLOC_REG(y_transform.multiplier);
684 ALLOC_REG(y_transform.offset);
685 #undef CONST_LOC
686 #undef ALLOC_REG
687 }
688
689 void
690 brw_blorp_blit_program::alloc_regs()
691 {
692 int reg = 0;
693 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
694 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
695 prog_data.first_curbe_grf = reg;
696 alloc_push_const_regs(reg);
697 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
698 this->result = vec16(brw_vec8_grf(reg, 0)); reg += 8;
699 this->texture_data = vec16(brw_vec8_grf(reg, 0)); reg += 8;
700 this->mcs_data =
701 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
702 for (int i = 0; i < 2; ++i) {
703 this->x_coords[i]
704 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
705 this->y_coords[i]
706 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
707 }
708 this->xy_coord_index = 0;
709 this->sample_index
710 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
711 this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
712 this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
713
714 int mrf = 2;
715 this->base_mrf = mrf;
716 }
717
718 /* In the code that follows, X and Y can be used to quickly refer to the
719 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
720 * prime") to the inactive elements.
721 *
722 * S can be used to quickly refer to sample_index.
723 */
724 #define X x_coords[xy_coord_index]
725 #define Y y_coords[xy_coord_index]
726 #define Xp x_coords[!xy_coord_index]
727 #define Yp y_coords[!xy_coord_index]
728 #define S sample_index
729
730 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
731 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
732 */
733 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
734
735 /**
736 * Emit code to compute the X and Y coordinates of the pixels being rendered
737 * by this WM invocation.
738 *
739 * Assuming the render target is set up for Y tiling, these (X, Y) values are
740 * related to the address offset where outputs will be written by the formula:
741 *
742 * (X, Y, S) = decode_msaa(detile(offset)).
743 *
744 * (See brw_blorp_blit_program).
745 */
746 void
747 brw_blorp_blit_program::compute_frag_coords()
748 {
749 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
750 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
751 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
752 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
753 *
754 * Pixels within a subspan are laid out in this arrangement:
755 * 0 1
756 * 2 3
757 *
758 * So, to compute the coordinates of each pixel, we need to read every 2nd
759 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
760 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
761 * In other words, the data we want to access is R1.4<2;4,0>UW.
762 *
763 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
764 * result, since pixels n+1 and n+3 are in the right half of the subspan.
765 */
766 brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
767
768 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
769 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
770 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
771 * R1.4<2;4,0>UW).
772 *
773 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
774 * pixels n+2 and n+3 are in the bottom half of the subspan.
775 */
776 brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
777
778 if (key->persample_msaa_dispatch) {
779 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples > 0.
780 * Therefore, subspan 0 will represent sample 0, subspan 1 will
781 * represent sample 1, and so on.
782 *
783 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1, 1,
784 * 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to populate a
785 * temporary variable with the sequence (0, 1, 2, 3), and then copy from
786 * it using vstride=1, width=4, hstride=0.
787 *
788 * TODO: implement the necessary calculation for 8x multisampling.
789 */
790 brw_MOV(&func, t1, brw_imm_v(0x3210));
791 brw_MOV(&func, S, stride(t1, 1, 4, 0));
792 s_is_zero = false;
793 } else {
794 /* Either the destination surface is single-sampled, or the WM will be
795 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
796 * per pixel). In either case, it's not meaningful to compute a sample
797 * value. Just set it to 0.
798 */
799 s_is_zero = true;
800 }
801 }
802
803 /**
804 * Emit code to compensate for the difference between Y and W tiling.
805 *
806 * This code modifies the X and Y coordinates according to the formula:
807 *
808 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
809 *
810 * (See brw_blorp_blit_program).
811 *
812 * It can only translate between W and Y tiling, so new_tiling and old_tiling
813 * are booleans where true represents W tiling and false represents Y tiling.
814 */
815 void
816 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
817 {
818 if (old_tiled_w == new_tiled_w)
819 return;
820
821 /* In the code that follows, we can safely assume that S = 0, because W
822 * tiling formats always use IMS layout.
823 */
824 assert(s_is_zero);
825
826 if (new_tiled_w) {
827 /* Given X and Y coordinates that describe an address using Y tiling,
828 * translate to the X and Y coordinates that describe the same address
829 * using W tiling.
830 *
831 * If we break down the low order bits of X and Y, using a
832 * single letter to represent each low-order bit:
833 *
834 * X = A << 7 | 0bBCDEFGH
835 * Y = J << 5 | 0bKLMNP (1)
836 *
837 * Then we can apply the Y tiling formula to see the memory offset being
838 * addressed:
839 *
840 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
841 *
842 * If we apply the W detiling formula to this memory location, that the
843 * corresponding X' and Y' coordinates are:
844 *
845 * X' = A << 6 | 0bBCDPFH (3)
846 * Y' = J << 6 | 0bKLMNEG
847 *
848 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
849 * we need to make the following computation:
850 *
851 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
852 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
853 */
854 brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
855 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
856 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
857 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
858 brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
859 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
860 brw_OR(&func, Xp, t1, t2);
861 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
862 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
863 brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
864 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
865 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
866 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
867 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
868 brw_OR(&func, Yp, t1, t2);
869 SWAP_XY_AND_XPYP();
870 } else {
871 /* Applying the same logic as above, but in reverse, we obtain the
872 * formulas:
873 *
874 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
875 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
876 */
877 brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
878 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
879 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
880 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
881 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
882 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
883 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
884 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
885 | (Y & 0b1) << 1 */
886 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
887 brw_OR(&func, Xp, t1, t2);
888 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
889 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
890 brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
891 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
892 brw_OR(&func, Yp, t1, t2);
893 SWAP_XY_AND_XPYP();
894 }
895 }
896
897 /**
898 * Emit code to compensate for the difference between MSAA and non-MSAA
899 * surfaces.
900 *
901 * This code modifies the X and Y coordinates according to the formula:
902 *
903 * (X', Y', S') = encode_msaa_4x(X, Y, S)
904 *
905 * (See brw_blorp_blit_program).
906 */
907 void
908 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
909 intel_msaa_layout layout)
910 {
911 switch (layout) {
912 case INTEL_MSAA_LAYOUT_NONE:
913 /* No translation necessary, and S should already be zero. */
914 assert(s_is_zero);
915 break;
916 case INTEL_MSAA_LAYOUT_CMS:
917 /* We can't compensate for compressed layout since at this point in the
918 * program we haven't read from the MCS buffer.
919 */
920 assert(!"Bad layout in encode_msaa");
921 break;
922 case INTEL_MSAA_LAYOUT_UMS:
923 /* No translation necessary. */
924 break;
925 case INTEL_MSAA_LAYOUT_IMS:
926 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
927 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
928 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
929 */
930 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
931 if (!s_is_zero) {
932 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
933 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
934 }
935 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
936 | (S & 0b1) << 1 */
937 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
938 brw_OR(&func, Xp, t1, t2);
939 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
940 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
941 if (!s_is_zero) {
942 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
943 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
944 }
945 brw_AND(&func, t2, Y, brw_imm_uw(1));
946 brw_OR(&func, Yp, t1, t2);
947 SWAP_XY_AND_XPYP();
948 s_is_zero = true;
949 break;
950 }
951 }
952
953 /**
954 * Emit code to compensate for the difference between MSAA and non-MSAA
955 * surfaces.
956 *
957 * This code modifies the X and Y coordinates according to the formula:
958 *
959 * (X', Y', S) = decode_msaa(num_samples, X, Y, S)
960 *
961 * (See brw_blorp_blit_program).
962 */
963 void
964 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
965 intel_msaa_layout layout)
966 {
967 switch (layout) {
968 case INTEL_MSAA_LAYOUT_NONE:
969 /* No translation necessary, and S should already be zero. */
970 assert(s_is_zero);
971 break;
972 case INTEL_MSAA_LAYOUT_CMS:
973 /* We can't compensate for compressed layout since at this point in the
974 * program we don't have access to the MCS buffer.
975 */
976 assert(!"Bad layout in encode_msaa");
977 break;
978 case INTEL_MSAA_LAYOUT_UMS:
979 /* No translation necessary. */
980 break;
981 case INTEL_MSAA_LAYOUT_IMS:
982 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
983 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
984 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
985 * S = (Y & 0b10) | (X & 0b10) >> 1
986 */
987 assert(s_is_zero);
988 brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
989 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
990 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
991 brw_OR(&func, Xp, t1, t2);
992 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
993 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
994 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
995 brw_OR(&func, Yp, t1, t2);
996 brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
997 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
998 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
999 brw_OR(&func, S, t1, t2);
1000 s_is_zero = false;
1001 SWAP_XY_AND_XPYP();
1002 break;
1003 }
1004 }
1005
1006 /**
1007 * Emit code that kills pixels whose X and Y coordinates are outside the
1008 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
1009 * dst_x1, dst_y1).
1010 */
1011 void
1012 brw_blorp_blit_program::kill_if_outside_dst_rect()
1013 {
1014 struct brw_reg f0 = brw_flag_reg();
1015 struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1016 struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
1017
1018 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
1019 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
1020 brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
1021 brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
1022
1023 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1024 brw_push_insn_state(&func);
1025 brw_set_mask_control(&func, BRW_MASK_DISABLE);
1026 brw_AND(&func, g1, f0, g1);
1027 brw_pop_insn_state(&func);
1028 }
1029
1030 /**
1031 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1032 * coordinates.
1033 */
1034 void
1035 brw_blorp_blit_program::translate_dst_to_src()
1036 {
1037 brw_MUL(&func, Xp, X, x_transform.multiplier);
1038 brw_MUL(&func, Yp, Y, y_transform.multiplier);
1039 brw_ADD(&func, Xp, Xp, x_transform.offset);
1040 brw_ADD(&func, Yp, Yp, y_transform.offset);
1041 SWAP_XY_AND_XPYP();
1042 }
1043
1044 /**
1045 * Emit code to transform the X and Y coordinates as needed for blending
1046 * together the different samples in an MSAA texture.
1047 */
1048 void
1049 brw_blorp_blit_program::single_to_blend()
1050 {
1051 /* When looking up samples in an MSAA texture using the SAMPLE message,
1052 * Gen6 requires the texture coordinates to be odd integers (so that they
1053 * correspond to the center of a 2x2 block representing the four samples
1054 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1055 * each by 2 and then add 1.
1056 */
1057 brw_SHL(&func, t1, X, brw_imm_w(1));
1058 brw_SHL(&func, t2, Y, brw_imm_w(1));
1059 brw_ADD(&func, Xp, t1, brw_imm_w(1));
1060 brw_ADD(&func, Yp, t2, brw_imm_w(1));
1061 SWAP_XY_AND_XPYP();
1062 }
1063
1064 void
1065 brw_blorp_blit_program::manual_blend()
1066 {
1067 /* TODO: support num_samples != 4 */
1068 const int num_samples = 4;
1069
1070 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1071 mcs_fetch();
1072
1073 /* Gather sample 0 data first */
1074 s_is_zero = true;
1075 texel_fetch(result);
1076
1077 /* Gather data for remaining samples and accumulate it into result. */
1078 s_is_zero = false;
1079 for (int i = 1; i < num_samples; ++i) {
1080 brw_MOV(&func, S, brw_imm_uw(i));
1081 texel_fetch(texture_data);
1082
1083 /* TODO: should use a smaller loop bound for non-RGBA formats */
1084 for (int j = 0; j < 4; ++j) {
1085 brw_ADD(&func, offset(result, 2*j), offset(vec8(result), 2*j),
1086 offset(vec8(texture_data), 2*j));
1087 }
1088 }
1089
1090 /* Scale the result down by a factor of num_samples */
1091 /* TODO: should use a smaller loop bound for non-RGBA formats */
1092 for (int j = 0; j < 4; ++j) {
1093 brw_MUL(&func, offset(result, 2*j), offset(vec8(result), 2*j),
1094 brw_imm_f(1.0/num_samples));
1095 }
1096 }
1097
1098 /**
1099 * Emit code to look up a value in the texture using the SAMPLE message (which
1100 * does blending of MSAA surfaces).
1101 */
1102 void
1103 brw_blorp_blit_program::sample(struct brw_reg dst)
1104 {
1105 static const sampler_message_arg args[2] = {
1106 SAMPLER_MESSAGE_ARG_U_FLOAT,
1107 SAMPLER_MESSAGE_ARG_V_FLOAT
1108 };
1109
1110 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
1111 }
1112
1113 /**
1114 * Emit code to look up a value in the texture using the SAMPLE_LD message
1115 * (which does a simple texel fetch).
1116 */
1117 void
1118 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1119 {
1120 static const sampler_message_arg gen6_args[5] = {
1121 SAMPLER_MESSAGE_ARG_U_INT,
1122 SAMPLER_MESSAGE_ARG_V_INT,
1123 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1124 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1125 SAMPLER_MESSAGE_ARG_SI_INT
1126 };
1127 static const sampler_message_arg gen7_ld_args[3] = {
1128 SAMPLER_MESSAGE_ARG_U_INT,
1129 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1130 SAMPLER_MESSAGE_ARG_V_INT
1131 };
1132 static const sampler_message_arg gen7_ld2dss_args[3] = {
1133 SAMPLER_MESSAGE_ARG_SI_INT,
1134 SAMPLER_MESSAGE_ARG_U_INT,
1135 SAMPLER_MESSAGE_ARG_V_INT
1136 };
1137 static const sampler_message_arg gen7_ld2dms_args[4] = {
1138 SAMPLER_MESSAGE_ARG_SI_INT,
1139 SAMPLER_MESSAGE_ARG_MCS_INT,
1140 SAMPLER_MESSAGE_ARG_U_INT,
1141 SAMPLER_MESSAGE_ARG_V_INT
1142 };
1143
1144 switch (brw->intel.gen) {
1145 case 6:
1146 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1147 s_is_zero ? 2 : 5);
1148 break;
1149 case 7:
1150 if (key->tex_samples > 0) {
1151 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1152 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
1153 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1154 } else {
1155 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1156 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1157 }
1158 } else {
1159 assert(s_is_zero);
1160 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1161 ARRAY_SIZE(gen7_ld_args));
1162 }
1163 break;
1164 default:
1165 assert(!"Should not get here.");
1166 break;
1167 };
1168 }
1169
1170 void
1171 brw_blorp_blit_program::mcs_fetch()
1172 {
1173 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1174 SAMPLER_MESSAGE_ARG_U_INT,
1175 SAMPLER_MESSAGE_ARG_V_INT
1176 };
1177 texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
1178 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1179 }
1180
1181 void
1182 brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
1183 struct brw_reg dst)
1184 {
1185 brw_MOV(&func, vec8(dst), vec8(src));
1186 brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
1187 brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
1188 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1189 }
1190
1191 void
1192 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1193 GLuint msg_type,
1194 const sampler_message_arg *args,
1195 int num_args)
1196 {
1197 struct brw_reg mrf =
1198 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1199 for (int arg = 0; arg < num_args; ++arg) {
1200 switch (args[arg]) {
1201 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1202 expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
1203 break;
1204 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1205 expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
1206 break;
1207 case SAMPLER_MESSAGE_ARG_U_INT:
1208 expand_to_32_bits(X, mrf);
1209 break;
1210 case SAMPLER_MESSAGE_ARG_V_INT:
1211 expand_to_32_bits(Y, mrf);
1212 break;
1213 case SAMPLER_MESSAGE_ARG_SI_INT:
1214 /* Note: on Gen7, this code may be reached with s_is_zero==true
1215 * because in Gen7's ld2dss message, the sample index is the first
1216 * argument. When this happens, we need to move a 0 into the
1217 * appropriate message register.
1218 */
1219 if (s_is_zero)
1220 brw_MOV(&func, mrf, brw_imm_ud(0));
1221 else
1222 expand_to_32_bits(S, mrf);
1223 break;
1224 case SAMPLER_MESSAGE_ARG_MCS_INT:
1225 brw_MOV(&func, mrf, mcs_data);
1226 break;
1227 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1228 brw_MOV(&func, mrf, brw_imm_ud(0));
1229 break;
1230 }
1231 mrf.nr += 2;
1232 }
1233
1234 brw_SAMPLE(&func,
1235 retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1236 base_mrf /* msg_reg_nr */,
1237 brw_message_reg(base_mrf) /* src0 */,
1238 BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1239 0 /* sampler */,
1240 WRITEMASK_XYZW,
1241 msg_type,
1242 8 /* response_length. TODO: should be smaller for non-RGBA formats? */,
1243 mrf.nr - base_mrf /* msg_length */,
1244 0 /* header_present */,
1245 BRW_SAMPLER_SIMD_MODE_SIMD16,
1246 BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1247 }
1248
1249 #undef X
1250 #undef Y
1251 #undef U
1252 #undef V
1253 #undef S
1254 #undef SWAP_XY_AND_XPYP
1255
1256 void
1257 brw_blorp_blit_program::render_target_write()
1258 {
1259 struct brw_reg mrf_rt_write = vec16(brw_message_reg(base_mrf));
1260 int mrf_offset = 0;
1261
1262 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1263 * so that the render target knows which pixels we killed.
1264 */
1265 bool use_header = key->use_kill;
1266 if (use_header) {
1267 /* Copy R0/1 to MRF */
1268 brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1269 retype(R0, BRW_REGISTER_TYPE_UD));
1270 mrf_offset += 2;
1271 }
1272
1273 /* Copy texture data to MRFs */
1274 for (int i = 0; i < 4; ++i) {
1275 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1276 brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1277 offset(vec8(result), 2*i));
1278 mrf_offset += 2;
1279 }
1280
1281 /* Now write to the render target and terminate the thread */
1282 brw_fb_WRITE(&func,
1283 16 /* dispatch_width */,
1284 base_mrf /* msg_reg_nr */,
1285 mrf_rt_write /* src0 */,
1286 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
1287 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
1288 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1289 0 /* response_length */,
1290 true /* eot */,
1291 use_header);
1292 }
1293
1294
1295 void
1296 brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
1297 bool mirror)
1298 {
1299 if (!mirror) {
1300 /* When not mirroring a coordinate (say, X), we need:
1301 * x' - src_x0 = x - dst_x0
1302 * Therefore:
1303 * x' = 1*x + (src_x0 - dst_x0)
1304 */
1305 multiplier = 1;
1306 offset = src0 - dst0;
1307 } else {
1308 /* When mirroring X we need:
1309 * x' - src_x0 = dst_x1 - x - 1
1310 * Therefore:
1311 * x' = -1*x + (src_x0 + dst_x1 - 1)
1312 */
1313 multiplier = -1;
1314 offset = src0 + dst1 - 1;
1315 }
1316 }
1317
1318
1319 /**
1320 * Determine which MSAA layout the GPU pipeline should be configured for,
1321 * based on the chip generation, the number of samples, and the true layout of
1322 * the image in memory.
1323 */
1324 inline intel_msaa_layout
1325 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1326 intel_msaa_layout true_layout)
1327 {
1328 if (num_samples == 0) {
1329 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1330 * format buffers, by transforming coordinates appropriately.
1331 */
1332 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1333 true_layout == INTEL_MSAA_LAYOUT_IMS);
1334 return INTEL_MSAA_LAYOUT_NONE;
1335 }
1336
1337 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1338 if (brw->intel.gen == 6) {
1339 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1340 return INTEL_MSAA_LAYOUT_IMS;
1341 }
1342
1343 /* Since blorp uses color textures and render targets to do all its work
1344 * (even when blitting stencil and depth data), we always have to configure
1345 * the Gen7 GPU to use UMS or CMS layout on Gen7.
1346 */
1347 assert(true_layout == INTEL_MSAA_LAYOUT_UMS ||
1348 true_layout == INTEL_MSAA_LAYOUT_CMS);
1349 return true_layout;
1350 }
1351
1352
1353 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1354 struct intel_mipmap_tree *src_mt,
1355 struct intel_mipmap_tree *dst_mt,
1356 GLuint src_x0, GLuint src_y0,
1357 GLuint dst_x0, GLuint dst_y0,
1358 GLuint dst_x1, GLuint dst_y1,
1359 bool mirror_x, bool mirror_y)
1360 {
1361 src.set(brw, src_mt, 0, 0);
1362 dst.set(brw, dst_mt, 0, 0);
1363
1364 use_wm_prog = true;
1365 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1366
1367 if (brw->intel.gen > 6) {
1368 /* Gen7's texturing hardware only supports the IMS layout with the
1369 * ld2dms instruction (which blorp doesn't use). So if the source is
1370 * IMS, we'll have to map it as a single-sampled texture and
1371 * de-interleave the samples ourselves.
1372 */
1373 if (src_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1374 src.num_samples = 0;
1375
1376 /* Similarly, Gen7's rendering hardware only supports the IMS layout for
1377 * depth and stencil render targets. Blorp always maps its destination
1378 * surface as a color render target (even if it's actually a depth or
1379 * stencil buffer). So if the destination is IMS, we'll have to map it
1380 * as a single-sampled texture and interleave the samples ourselves.
1381 */
1382 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1383 dst.num_samples = 0;
1384 }
1385
1386 if (dst.map_stencil_as_y_tiled && dst.num_samples > 0) {
1387 /* If the destination surface is a W-tiled multisampled stencil buffer
1388 * that we're mapping as Y tiled, then we need to arrange for the WM
1389 * program to run once per sample rather than once per pixel, because
1390 * the memory layout of related samples doesn't match between W and Y
1391 * tiling.
1392 */
1393 wm_prog_key.persample_msaa_dispatch = true;
1394 }
1395
1396 if (src.num_samples > 0 && dst.num_samples > 0) {
1397 /* We are blitting from a multisample buffer to a multisample buffer, so
1398 * we must preserve samples within a pixel. This means we have to
1399 * arrange for the WM program to run once per sample rather than once
1400 * per pixel.
1401 */
1402 wm_prog_key.persample_msaa_dispatch = true;
1403 }
1404
1405 /* The render path must be configured to use the same number of samples as
1406 * the destination buffer.
1407 */
1408 num_samples = dst.num_samples;
1409
1410 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1411 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1412 base_format != GL_STENCIL_INDEX &&
1413 src_mt->num_samples > 0 && dst_mt->num_samples == 0) {
1414 /* We are downsampling a color buffer, so blend. */
1415 wm_prog_key.blend = true;
1416 }
1417
1418 /* src_samples and dst_samples are the true sample counts */
1419 wm_prog_key.src_samples = src_mt->num_samples;
1420 wm_prog_key.dst_samples = dst_mt->num_samples;
1421
1422 /* tex_samples and rt_samples are the sample counts that are set up in
1423 * SURFACE_STATE.
1424 */
1425 wm_prog_key.tex_samples = src.num_samples;
1426 wm_prog_key.rt_samples = dst.num_samples;
1427
1428 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1429 * use to access the source and destination surfaces.
1430 */
1431 wm_prog_key.tex_layout =
1432 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1433 wm_prog_key.rt_layout =
1434 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1435
1436 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1437 * dst.
1438 */
1439 wm_prog_key.src_layout = src_mt->msaa_layout;
1440 wm_prog_key.dst_layout = dst_mt->msaa_layout;
1441
1442 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1443 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1444 x0 = wm_push_consts.dst_x0 = dst_x0;
1445 y0 = wm_push_consts.dst_y0 = dst_y0;
1446 x1 = wm_push_consts.dst_x1 = dst_x1;
1447 y1 = wm_push_consts.dst_y1 = dst_y1;
1448 wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
1449 wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
1450
1451 if (dst.num_samples == 0 && dst_mt->num_samples > 0) {
1452 /* We must expand the rectangle we send through the rendering pipeline,
1453 * to account for the fact that we are mapping the destination region as
1454 * single-sampled when it is in fact multisampled. We must also align
1455 * it to a multiple of the multisampling pattern, because the
1456 * differences between multisampled and single-sampled surface formats
1457 * will mean that pixels are scrambled within the multisampling pattern.
1458 * TODO: what if this makes the coordinates too large?
1459 *
1460 * Note: this only works if the destination surface uses the IMS layout.
1461 * If it's UMS, then we have no choice but to set up the rendering
1462 * pipeline as multisampled.
1463 */
1464 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
1465 x0 = (x0 * 2) & ~3;
1466 y0 = (y0 * 2) & ~3;
1467 x1 = ALIGN(x1 * 2, 4);
1468 y1 = ALIGN(y1 * 2, 4);
1469 wm_prog_key.use_kill = true;
1470 }
1471
1472 if (dst.map_stencil_as_y_tiled) {
1473 /* We must modify the rectangle we send through the rendering pipeline,
1474 * to account for the fact that we are mapping it as Y-tiled when it is
1475 * in fact W-tiled. Y tiles have dimensions 128x32 whereas W tiles have
1476 * dimensions 64x64. We must also align it to a multiple of the tile
1477 * size, because the differences between W and Y tiling formats will
1478 * mean that pixels are scrambled within the tile.
1479 *
1480 * Note: if the destination surface configured to use IMS layout, then
1481 * the effective tile size we need to align it to is smaller, because
1482 * each pixel covers a 2x2 or a 4x2 block of samples.
1483 *
1484 * TODO: what if this makes the coordinates too large?
1485 */
1486 unsigned x_align = 64, y_align = 64;
1487 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
1488 x_align /= (dst_mt->num_samples == 4 ? 2 : 4);
1489 y_align /= 2;
1490 }
1491 x0 = (x0 & ~(x_align - 1)) * 2;
1492 y0 = (y0 & ~(y_align - 1)) / 2;
1493 x1 = ALIGN(x1, x_align) * 2;
1494 y1 = ALIGN(y1, y_align) / 2;
1495 wm_prog_key.use_kill = true;
1496 }
1497 }
1498
1499 uint32_t
1500 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
1501 brw_blorp_prog_data **prog_data) const
1502 {
1503 uint32_t prog_offset;
1504 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1505 &this->wm_prog_key, sizeof(this->wm_prog_key),
1506 &prog_offset, prog_data)) {
1507 brw_blorp_blit_program prog(brw, &this->wm_prog_key);
1508 GLuint program_size;
1509 const GLuint *program = prog.compile(brw, &program_size);
1510 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1511 &this->wm_prog_key, sizeof(this->wm_prog_key),
1512 program, program_size,
1513 &prog.prog_data, sizeof(prog.prog_data),
1514 &prog_offset, prog_data);
1515 }
1516 return prog_offset;
1517 }