2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 #include "main/teximage.h"
26 #include "glsl/ralloc.h"
28 #include "intel_fbo.h"
30 #include "brw_blorp.h"
31 #include "brw_context.h"
33 #include "brw_state.h"
37 * Helper function for handling mirror image blits.
39 * If coord0 > coord1, swap them and invert the "mirror" boolean.
42 fixup_mirroring(bool &mirror
, GLint
&coord0
, GLint
&coord1
)
44 if (coord0
> coord1
) {
54 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
55 * destination coordinates.
57 * Return true if there is still blitting to do, false if all pixels got
58 * rejected by the clip and/or scissor.
60 * For clarity, the nomenclature of this function assumes we are clipping and
61 * scissoring the X coordinate; the exact same logic applies for Y
64 * Note: this function may also be used to account for clipping of source
65 * coordinates, by swapping the roles of src and dst.
68 clip_or_scissor(bool mirror
, GLint
&src_x0
, GLint
&src_x1
, GLint
&dst_x0
,
69 GLint
&dst_x1
, GLint fb_xmin
, GLint fb_xmax
)
71 /* If we are going to scissor everything away, stop. */
72 if (!(fb_xmin
< fb_xmax
&&
79 /* Clip the destination rectangle, and keep track of how many pixels we
80 * clipped off of the left and right sides of it.
82 GLint pixels_clipped_left
= 0;
83 GLint pixels_clipped_right
= 0;
84 if (dst_x0
< fb_xmin
) {
85 pixels_clipped_left
= fb_xmin
- dst_x0
;
88 if (fb_xmax
< dst_x1
) {
89 pixels_clipped_right
= dst_x1
- fb_xmax
;
93 /* If we are mirrored, then before applying pixels_clipped_{left,right} to
94 * the source coordinates, we need to flip them to account for the
98 GLint tmp
= pixels_clipped_left
;
99 pixels_clipped_left
= pixels_clipped_right
;
100 pixels_clipped_right
= tmp
;
103 /* Adjust the source rectangle to remove the pixels corresponding to those
104 * that were clipped/scissored out of the destination rectangle.
106 src_x0
+= pixels_clipped_left
;
107 src_x1
-= pixels_clipped_right
;
114 try_blorp_blit(struct intel_context
*intel
,
115 GLint srcX0
, GLint srcY0
, GLint srcX1
, GLint srcY1
,
116 GLint dstX0
, GLint dstY0
, GLint dstX1
, GLint dstY1
,
117 GLenum filter
, GLbitfield buffer_bit
)
119 struct gl_context
*ctx
= &intel
->ctx
;
121 /* Sync up the state of window system buffers. We need to do this before
122 * we go looking for the buffers.
124 intel_prepare_render(intel
);
127 const struct gl_framebuffer
*read_fb
= ctx
->ReadBuffer
;
128 const struct gl_framebuffer
*draw_fb
= ctx
->DrawBuffer
;
129 struct gl_renderbuffer
*src_rb
;
130 struct gl_renderbuffer
*dst_rb
;
131 switch (buffer_bit
) {
132 case GL_COLOR_BUFFER_BIT
:
133 src_rb
= read_fb
->_ColorReadBuffer
;
136 draw_fb
->_ColorDrawBufferIndexes
[0]].Renderbuffer
;
138 case GL_DEPTH_BUFFER_BIT
:
139 src_rb
= read_fb
->Attachment
[BUFFER_DEPTH
].Renderbuffer
;
140 dst_rb
= draw_fb
->Attachment
[BUFFER_DEPTH
].Renderbuffer
;
142 case GL_STENCIL_BUFFER_BIT
:
143 src_rb
= read_fb
->Attachment
[BUFFER_STENCIL
].Renderbuffer
;
144 dst_rb
= draw_fb
->Attachment
[BUFFER_STENCIL
].Renderbuffer
;
150 /* Find source miptree */
151 struct intel_renderbuffer
*src_irb
= intel_renderbuffer(src_rb
);
152 struct intel_mipmap_tree
*src_mt
= src_irb
->mt
;
153 if (buffer_bit
== GL_STENCIL_BUFFER_BIT
&& src_mt
->stencil_mt
)
154 src_mt
= src_mt
->stencil_mt
;
156 /* Find destination miptree */
157 struct intel_renderbuffer
*dst_irb
= intel_renderbuffer(dst_rb
);
158 struct intel_mipmap_tree
*dst_mt
= dst_irb
->mt
;
159 if (buffer_bit
== GL_STENCIL_BUFFER_BIT
&& dst_mt
->stencil_mt
)
160 dst_mt
= dst_mt
->stencil_mt
;
162 /* Blorp blits can't translate from one format to another. For that we'll
163 * have to fall back to the meta-op blit. Note: the meta-op blit doesn't
164 * support multisampled blits, but fortunately this is ok because
165 * multisampled blits require identical source and destination formats.
167 if (src_mt
->format
!= dst_mt
->format
)
170 /* Detect if the blit needs to be mirrored */
171 bool mirror_x
= false, mirror_y
= false;
172 fixup_mirroring(mirror_x
, srcX0
, srcX1
);
173 fixup_mirroring(mirror_x
, dstX0
, dstX1
);
174 fixup_mirroring(mirror_y
, srcY0
, srcY1
);
175 fixup_mirroring(mirror_y
, dstY0
, dstY1
);
177 /* Make sure width and height match */
178 if (srcX1
- srcX0
!= dstX1
- dstX0
) return false;
179 if (srcY1
- srcY0
!= dstY1
- dstY0
) return false;
181 /* If the destination rectangle needs to be clipped or scissored, do so.
183 if (!(clip_or_scissor(mirror_x
, srcX0
, srcX1
, dstX0
, dstX1
,
184 draw_fb
->_Xmin
, draw_fb
->_Xmax
) &&
185 clip_or_scissor(mirror_y
, srcY0
, srcY1
, dstY0
, dstY1
,
186 draw_fb
->_Ymin
, draw_fb
->_Ymax
))) {
187 /* Everything got clipped/scissored away, so the blit was successful. */
191 /* If the source rectangle needs to be clipped or scissored, do so. */
192 if (!(clip_or_scissor(mirror_x
, dstX0
, dstX1
, srcX0
, srcX1
,
193 0, read_fb
->Width
) &&
194 clip_or_scissor(mirror_y
, dstY0
, dstY1
, srcY0
, srcY1
,
195 0, read_fb
->Height
))) {
196 /* Everything got clipped/scissored away, so the blit was successful. */
200 /* Account for the fact that in the system framebuffer, the origin is at
203 if (read_fb
->Name
== 0) {
204 GLint tmp
= read_fb
->Height
- srcY0
;
205 srcY0
= read_fb
->Height
- srcY1
;
207 mirror_y
= !mirror_y
;
209 if (draw_fb
->Name
== 0) {
210 GLint tmp
= draw_fb
->Height
- dstY0
;
211 dstY0
= draw_fb
->Height
- dstY1
;
213 mirror_y
= !mirror_y
;
216 /* Get ready to blit. This includes depth resolving the src and dst
217 * buffers if necessary.
219 intel_renderbuffer_resolve_depth(intel
, src_irb
);
220 intel_renderbuffer_resolve_depth(intel
, dst_irb
);
223 brw_blorp_blit_params
params(brw_context(ctx
), src_mt
, dst_mt
,
224 srcX0
, srcY0
, dstX0
, dstY0
, dstX1
, dstY1
,
226 brw_blorp_exec(intel
, ¶ms
);
228 /* Mark the dst buffer as needing a HiZ resolve if necessary. */
229 intel_renderbuffer_set_needs_hiz_resolve(dst_irb
);
235 brw_blorp_framebuffer(struct intel_context
*intel
,
236 GLint srcX0
, GLint srcY0
, GLint srcX1
, GLint srcY1
,
237 GLint dstX0
, GLint dstY0
, GLint dstX1
, GLint dstY1
,
238 GLbitfield mask
, GLenum filter
)
240 /* BLORP is not supported before Gen6. */
244 static GLbitfield buffer_bits
[] = {
247 GL_STENCIL_BUFFER_BIT
,
250 for (unsigned int i
= 0; i
< ARRAY_SIZE(buffer_bits
); ++i
) {
251 if ((mask
& buffer_bits
[i
]) &&
252 try_blorp_blit(intel
,
253 srcX0
, srcY0
, srcX1
, srcY1
,
254 dstX0
, dstY0
, dstX1
, dstY1
,
255 filter
, buffer_bits
[i
])) {
256 mask
&= ~buffer_bits
[i
];
265 * Enum to specify the order of arguments in a sampler message
267 enum sampler_message_arg
269 SAMPLER_MESSAGE_ARG_U_FLOAT
,
270 SAMPLER_MESSAGE_ARG_V_FLOAT
,
271 SAMPLER_MESSAGE_ARG_U_INT
,
272 SAMPLER_MESSAGE_ARG_V_INT
,
273 SAMPLER_MESSAGE_ARG_SI_INT
,
274 SAMPLER_MESSAGE_ARG_MCS_INT
,
275 SAMPLER_MESSAGE_ARG_ZERO_INT
,
279 * Generator for WM programs used in BLORP blits.
281 * The bulk of the work done by the WM program is to wrap and unwrap the
282 * coordinate transformations used by the hardware to store surfaces in
283 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
284 * sample index for a multisampled surface) to a memory offset by the
285 * following formulas:
287 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
288 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
290 * For a single-sampled surface, or for a multisampled surface using
291 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
294 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
295 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
296 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
297 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
299 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
300 * embeds the sample number into bit 1 of the X and Y coordinates:
302 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
303 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
304 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
305 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
306 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
307 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
308 * S = (Y & 0b10) | (X & 0b10) >> 1
310 * For X tiling, tile() combines together the low-order bits of the X and Y
311 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
312 * bytes wide and 8 rows high:
314 * tile(x_tiled, X, Y, S) = A
315 * where A = tile_num << 12 | offset
316 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
317 * offset = (Y' & 0b111) << 9
318 * | (X & 0b111111111)
320 * Y' = Y + S * qpitch
321 * detile(x_tiled, A) = (X, Y, S)
325 * Y' = (tile_num / tile_pitch) << 3
326 * | (A & 0b111000000000) >> 9
327 * X' = (tile_num % tile_pitch) << 9
328 * | (A & 0b111111111)
330 * (In all tiling formulas, cpp is the number of bytes occupied by a single
331 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
332 * to fill the width of the surface, and qpitch is the spacing (in rows)
333 * between array slices).
335 * For Y tiling, tile() combines together the low-order bits of the X and Y
336 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
337 * bytes wide and 32 rows high:
339 * tile(y_tiled, X, Y, S) = A
340 * where A = tile_num << 12 | offset
341 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
342 * offset = (X' & 0b1110000) << 5
343 * | (Y' & 0b11111) << 4
346 * Y' = Y + S * qpitch
347 * detile(y_tiled, A) = (X, Y, S)
351 * Y' = (tile_num / tile_pitch) << 5
352 * | (A & 0b111110000) >> 4
353 * X' = (tile_num % tile_pitch) << 7
354 * | (A & 0b111000000000) >> 5
357 * For W tiling, tile() combines together the low-order bits of the X and Y
358 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
359 * bytes wide and 64 rows high (note that W tiling is only used for stencil
360 * buffers, which always have cpp = 1 and S=0):
362 * tile(w_tiled, X, Y, S) = A
363 * where A = tile_num << 12 | offset
364 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
365 * offset = (X' & 0b111000) << 6
366 * | (Y' & 0b111100) << 3
367 * | (X' & 0b100) << 2
373 * Y' = Y + S * qpitch
374 * detile(w_tiled, A) = (X, Y, S)
375 * where X = X' / cpp = X'
376 * Y = Y' % qpitch = Y'
378 * Y' = (tile_num / tile_pitch) << 6
379 * | (A & 0b111100000) >> 3
380 * | (A & 0b1000) >> 2
382 * X' = (tile_num % tile_pitch) << 6
383 * | (A & 0b111000000000) >> 6
384 * | (A & 0b10000) >> 2
388 * Finally, for a non-tiled surface, tile() simply combines together the X and
389 * Y coordinates in the natural way:
391 * tile(untiled, X, Y, S) = A
392 * where A = Y * pitch + X'
394 * Y' = Y + S * qpitch
395 * detile(untiled, A) = (X, Y, S)
402 * (In these formulas, pitch is the number of bytes occupied by a single row
405 class brw_blorp_blit_program
408 brw_blorp_blit_program(struct brw_context
*brw
,
409 const brw_blorp_blit_prog_key
*key
);
410 ~brw_blorp_blit_program();
412 const GLuint
*compile(struct brw_context
*brw
, GLuint
*program_size
);
414 brw_blorp_prog_data prog_data
;
418 void alloc_push_const_regs(int base_reg
);
419 void compute_frag_coords();
420 void translate_tiling(bool old_tiled_w
, bool new_tiled_w
);
421 void encode_msaa(unsigned num_samples
, intel_msaa_layout layout
);
422 void decode_msaa(unsigned num_samples
, intel_msaa_layout layout
);
423 void kill_if_outside_dst_rect();
424 void translate_dst_to_src();
425 void single_to_blend();
427 void sample(struct brw_reg dst
);
428 void texel_fetch(struct brw_reg dst
);
430 void expand_to_32_bits(struct brw_reg src
, struct brw_reg dst
);
431 void texture_lookup(struct brw_reg dst
, GLuint msg_type
,
432 const sampler_message_arg
*args
, int num_args
);
433 void render_target_write();
436 * Base-2 logarithm of the maximum number of samples that can be blended.
438 static const unsigned LOG2_MAX_BLEND_SAMPLES
= 2;
441 struct brw_context
*brw
;
442 const brw_blorp_blit_prog_key
*key
;
443 struct brw_compile func
;
445 /* Thread dispatch header */
448 /* Pixel X/Y coordinates (always in R1). */
452 struct brw_reg dst_x0
;
453 struct brw_reg dst_x1
;
454 struct brw_reg dst_y0
;
455 struct brw_reg dst_y1
;
457 struct brw_reg multiplier
;
458 struct brw_reg offset
;
459 } x_transform
, y_transform
;
461 /* Data read from texture (4 vec16's per array element) */
462 struct brw_reg texture_data
[LOG2_MAX_BLEND_SAMPLES
+ 1];
464 /* Auxiliary storage for the contents of the MCS surface.
466 * Since the sampler always returns 8 registers worth of data, this is 8
467 * registers wide, even though we only use the first 2 registers of it.
469 struct brw_reg mcs_data
;
471 /* X coordinates. We have two of them so that we can perform coordinate
472 * transformations easily.
474 struct brw_reg x_coords
[2];
476 /* Y coordinates. We have two of them so that we can perform coordinate
477 * transformations easily.
479 struct brw_reg y_coords
[2];
481 /* Which element of x_coords and y_coords is currently in use.
485 /* True if, at the point in the program currently being compiled, the
486 * sample index is known to be zero.
490 /* Register storing the sample index when s_is_zero is false. */
491 struct brw_reg sample_index
;
497 /* MRF used for sampling and render target writes */
501 brw_blorp_blit_program::brw_blorp_blit_program(
502 struct brw_context
*brw
,
503 const brw_blorp_blit_prog_key
*key
)
504 : mem_ctx(ralloc_context(NULL
)),
508 brw_init_compile(brw
, &func
, mem_ctx
);
511 brw_blorp_blit_program::~brw_blorp_blit_program()
513 ralloc_free(mem_ctx
);
517 brw_blorp_blit_program::compile(struct brw_context
*brw
,
518 GLuint
*program_size
)
521 if (key
->dst_tiled_w
&& key
->rt_samples
> 0) {
522 /* If the destination image is W tiled and multisampled, then the thread
523 * must be dispatched once per sample, not once per pixel. This is
524 * necessary because after conversion between W and Y tiling, there's no
525 * guarantee that all samples corresponding to a single pixel will still
528 assert(key
->persample_msaa_dispatch
);
532 /* We are blending, which means we won't have an opportunity to
533 * translate the tiling and sample count for the texture surface. So
534 * the surface state for the texture must be configured with the correct
535 * tiling and sample count.
537 assert(!key
->src_tiled_w
);
538 assert(key
->tex_samples
== key
->src_samples
);
539 assert(key
->tex_layout
== key
->src_layout
);
540 assert(key
->tex_samples
> 0);
543 if (key
->persample_msaa_dispatch
) {
544 /* It only makes sense to do persample dispatch if the render target is
545 * configured as multisampled.
547 assert(key
->rt_samples
> 0);
550 /* Make sure layout is consistent with sample count */
551 assert((key
->tex_layout
== INTEL_MSAA_LAYOUT_NONE
) ==
552 (key
->tex_samples
== 0));
553 assert((key
->rt_layout
== INTEL_MSAA_LAYOUT_NONE
) ==
554 (key
->rt_samples
== 0));
555 assert((key
->src_layout
== INTEL_MSAA_LAYOUT_NONE
) ==
556 (key
->src_samples
== 0));
557 assert((key
->dst_layout
== INTEL_MSAA_LAYOUT_NONE
) ==
558 (key
->dst_samples
== 0));
560 /* Set up prog_data */
561 memset(&prog_data
, 0, sizeof(prog_data
));
562 prog_data
.persample_msaa_dispatch
= key
->persample_msaa_dispatch
;
564 brw_set_compression_control(&func
, BRW_COMPRESSION_NONE
);
567 compute_frag_coords();
569 /* Render target and texture hardware don't support W tiling. */
570 const bool rt_tiled_w
= false;
571 const bool tex_tiled_w
= false;
573 /* The address that data will be written to is determined by the
574 * coordinates supplied to the WM thread and the tiling and sample count of
575 * the render target, according to the formula:
577 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
579 * If the actual tiling and sample count of the destination surface are not
580 * the same as the configuration of the render target, then these
581 * coordinates are wrong and we have to adjust them to compensate for the
584 if (rt_tiled_w
!= key
->dst_tiled_w
||
585 key
->rt_samples
!= key
->dst_samples
||
586 key
->rt_layout
!= key
->dst_layout
) {
587 encode_msaa(key
->rt_samples
, key
->rt_layout
);
588 /* Now (X, Y, S) = detile(rt_tiling, offset) */
589 translate_tiling(rt_tiled_w
, key
->dst_tiled_w
);
590 /* Now (X, Y, S) = detile(dst_tiling, offset) */
591 decode_msaa(key
->dst_samples
, key
->dst_layout
);
594 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
596 * That is: X, Y and S now contain the true coordinates and sample index of
597 * the data that the WM thread should output.
599 * If we need to kill pixels that are outside the destination rectangle,
600 * now is the time to do it.
604 kill_if_outside_dst_rect();
606 /* Next, apply a translation to obtain coordinates in the source image. */
607 translate_dst_to_src();
609 /* If the source image is not multisampled, then we want to fetch sample
610 * number 0, because that's the only sample there is.
612 if (key
->src_samples
== 0)
615 /* X, Y, and S are now the coordinates of the pixel in the source image
616 * that we want to texture from. Exception: if we are blending, then S is
617 * irrelevant, because we are going to fetch all samples.
620 if (brw
->intel
.gen
== 6) {
621 /* Gen6 hardware an automatically blend using the SAMPLE message */
623 sample(texture_data
[0]);
625 /* Gen7+ hardware doesn't automaticaly blend. */
629 /* We aren't blending, which means we just want to fetch a single sample
630 * from the source surface. The address that we want to fetch from is
631 * related to the X, Y and S values according to the formula:
633 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
635 * If the actual tiling and sample count of the source surface are not
636 * the same as the configuration of the texture, then we need to adjust
637 * the coordinates to compensate for the difference.
639 if (tex_tiled_w
!= key
->src_tiled_w
||
640 key
->tex_samples
!= key
->src_samples
||
641 key
->tex_layout
!= key
->src_layout
) {
642 encode_msaa(key
->src_samples
, key
->src_layout
);
643 /* Now (X, Y, S) = detile(src_tiling, offset) */
644 translate_tiling(key
->src_tiled_w
, tex_tiled_w
);
645 /* Now (X, Y, S) = detile(tex_tiling, offset) */
646 decode_msaa(key
->tex_samples
, key
->tex_layout
);
649 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
651 * In other words: X, Y, and S now contain values which, when passed to
652 * the texturing unit, will cause data to be read from the correct
653 * memory location. So we can fetch the texel now.
655 if (key
->tex_layout
== INTEL_MSAA_LAYOUT_CMS
)
657 texel_fetch(texture_data
[0]);
660 /* Finally, write the fetched (or blended) value to the render target and
661 * terminate the thread.
663 render_target_write();
664 return brw_get_program(&func
, program_size
);
668 brw_blorp_blit_program::alloc_push_const_regs(int base_reg
)
670 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
671 #define ALLOC_REG(name) \
673 brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
679 ALLOC_REG(x_transform
.multiplier
);
680 ALLOC_REG(x_transform
.offset
);
681 ALLOC_REG(y_transform
.multiplier
);
682 ALLOC_REG(y_transform
.offset
);
688 brw_blorp_blit_program::alloc_regs()
691 this->R0
= retype(brw_vec8_grf(reg
++, 0), BRW_REGISTER_TYPE_UW
);
692 this->R1
= retype(brw_vec8_grf(reg
++, 0), BRW_REGISTER_TYPE_UW
);
693 prog_data
.first_curbe_grf
= reg
;
694 alloc_push_const_regs(reg
);
695 reg
+= BRW_BLORP_NUM_PUSH_CONST_REGS
;
696 for (unsigned i
= 0; i
< ARRAY_SIZE(texture_data
); ++i
) {
697 this->texture_data
[i
] =
698 retype(vec16(brw_vec8_grf(reg
, 0)), key
->texture_data_type
);
702 retype(brw_vec8_grf(reg
, 0), BRW_REGISTER_TYPE_UD
); reg
+= 8;
703 for (int i
= 0; i
< 2; ++i
) {
705 = vec16(retype(brw_vec8_grf(reg
++, 0), BRW_REGISTER_TYPE_UW
));
707 = vec16(retype(brw_vec8_grf(reg
++, 0), BRW_REGISTER_TYPE_UW
));
709 this->xy_coord_index
= 0;
711 = vec16(retype(brw_vec8_grf(reg
++, 0), BRW_REGISTER_TYPE_UW
));
712 this->t1
= vec16(retype(brw_vec8_grf(reg
++, 0), BRW_REGISTER_TYPE_UW
));
713 this->t2
= vec16(retype(brw_vec8_grf(reg
++, 0), BRW_REGISTER_TYPE_UW
));
715 /* Make sure we didn't run out of registers */
716 assert(reg
<= GEN7_MRF_HACK_START
);
719 this->base_mrf
= mrf
;
722 /* In the code that follows, X and Y can be used to quickly refer to the
723 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
724 * prime") to the inactive elements.
726 * S can be used to quickly refer to sample_index.
728 #define X x_coords[xy_coord_index]
729 #define Y y_coords[xy_coord_index]
730 #define Xp x_coords[!xy_coord_index]
731 #define Yp y_coords[!xy_coord_index]
732 #define S sample_index
734 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
735 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
737 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
740 * Emit code to compute the X and Y coordinates of the pixels being rendered
741 * by this WM invocation.
743 * Assuming the render target is set up for Y tiling, these (X, Y) values are
744 * related to the address offset where outputs will be written by the formula:
746 * (X, Y, S) = decode_msaa(detile(offset)).
748 * (See brw_blorp_blit_program).
751 brw_blorp_blit_program::compute_frag_coords()
753 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
754 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
755 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
756 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
758 * Pixels within a subspan are laid out in this arrangement:
762 * So, to compute the coordinates of each pixel, we need to read every 2nd
763 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
764 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
765 * In other words, the data we want to access is R1.4<2;4,0>UW.
767 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
768 * result, since pixels n+1 and n+3 are in the right half of the subspan.
770 brw_ADD(&func
, X
, stride(suboffset(R1
, 4), 2, 4, 0), brw_imm_v(0x10101010));
772 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
773 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
774 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
777 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
778 * pixels n+2 and n+3 are in the bottom half of the subspan.
780 brw_ADD(&func
, Y
, stride(suboffset(R1
, 5), 2, 4, 0), brw_imm_v(0x11001100));
782 if (key
->persample_msaa_dispatch
) {
783 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples > 0.
784 * Therefore, subspan 0 will represent sample 0, subspan 1 will
785 * represent sample 1, and so on.
787 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1, 1,
788 * 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to populate a
789 * temporary variable with the sequence (0, 1, 2, 3), and then copy from
790 * it using vstride=1, width=4, hstride=0.
792 * TODO: implement the necessary calculation for 8x multisampling.
794 brw_MOV(&func
, t1
, brw_imm_v(0x3210));
795 brw_MOV(&func
, S
, stride(t1
, 1, 4, 0));
798 /* Either the destination surface is single-sampled, or the WM will be
799 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
800 * per pixel). In either case, it's not meaningful to compute a sample
801 * value. Just set it to 0.
808 * Emit code to compensate for the difference between Y and W tiling.
810 * This code modifies the X and Y coordinates according to the formula:
812 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
814 * (See brw_blorp_blit_program).
816 * It can only translate between W and Y tiling, so new_tiling and old_tiling
817 * are booleans where true represents W tiling and false represents Y tiling.
820 brw_blorp_blit_program::translate_tiling(bool old_tiled_w
, bool new_tiled_w
)
822 if (old_tiled_w
== new_tiled_w
)
825 /* In the code that follows, we can safely assume that S = 0, because W
826 * tiling formats always use IMS layout.
831 /* Given X and Y coordinates that describe an address using Y tiling,
832 * translate to the X and Y coordinates that describe the same address
835 * If we break down the low order bits of X and Y, using a
836 * single letter to represent each low-order bit:
838 * X = A << 7 | 0bBCDEFGH
839 * Y = J << 5 | 0bKLMNP (1)
841 * Then we can apply the Y tiling formula to see the memory offset being
844 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
846 * If we apply the W detiling formula to this memory location, that the
847 * corresponding X' and Y' coordinates are:
849 * X' = A << 6 | 0bBCDPFH (3)
850 * Y' = J << 6 | 0bKLMNEG
852 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
853 * we need to make the following computation:
855 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
856 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
858 brw_AND(&func
, t1
, X
, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
859 brw_SHR(&func
, t1
, t1
, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
860 brw_AND(&func
, t2
, Y
, brw_imm_uw(1)); /* Y & 0b1 */
861 brw_SHL(&func
, t2
, t2
, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
862 brw_OR(&func
, t1
, t1
, t2
); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
863 brw_AND(&func
, t2
, X
, brw_imm_uw(1)); /* X & 0b1 */
864 brw_OR(&func
, Xp
, t1
, t2
);
865 brw_AND(&func
, t1
, Y
, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
866 brw_SHL(&func
, t1
, t1
, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
867 brw_AND(&func
, t2
, X
, brw_imm_uw(8)); /* X & 0b1000 */
868 brw_SHR(&func
, t2
, t2
, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
869 brw_OR(&func
, t1
, t1
, t2
); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
870 brw_AND(&func
, t2
, X
, brw_imm_uw(2)); /* X & 0b10 */
871 brw_SHR(&func
, t2
, t2
, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
872 brw_OR(&func
, Yp
, t1
, t2
);
875 /* Applying the same logic as above, but in reverse, we obtain the
878 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
879 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
881 brw_AND(&func
, t1
, X
, brw_imm_uw(0xfffa)); /* X & ~0b101 */
882 brw_SHL(&func
, t1
, t1
, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
883 brw_AND(&func
, t2
, Y
, brw_imm_uw(2)); /* Y & 0b10 */
884 brw_SHL(&func
, t2
, t2
, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
885 brw_OR(&func
, t1
, t1
, t2
); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
886 brw_AND(&func
, t2
, Y
, brw_imm_uw(1)); /* Y & 0b1 */
887 brw_SHL(&func
, t2
, t2
, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
888 brw_OR(&func
, t1
, t1
, t2
); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
890 brw_AND(&func
, t2
, X
, brw_imm_uw(1)); /* X & 0b1 */
891 brw_OR(&func
, Xp
, t1
, t2
);
892 brw_AND(&func
, t1
, Y
, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
893 brw_SHR(&func
, t1
, t1
, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
894 brw_AND(&func
, t2
, X
, brw_imm_uw(4)); /* X & 0b100 */
895 brw_SHR(&func
, t2
, t2
, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
896 brw_OR(&func
, Yp
, t1
, t2
);
902 * Emit code to compensate for the difference between MSAA and non-MSAA
905 * This code modifies the X and Y coordinates according to the formula:
907 * (X', Y', S') = encode_msaa_4x(X, Y, S)
909 * (See brw_blorp_blit_program).
912 brw_blorp_blit_program::encode_msaa(unsigned num_samples
,
913 intel_msaa_layout layout
)
916 case INTEL_MSAA_LAYOUT_NONE
:
917 /* No translation necessary, and S should already be zero. */
920 case INTEL_MSAA_LAYOUT_CMS
:
921 /* We can't compensate for compressed layout since at this point in the
922 * program we haven't read from the MCS buffer.
924 assert(!"Bad layout in encode_msaa");
926 case INTEL_MSAA_LAYOUT_UMS
:
927 /* No translation necessary. */
929 case INTEL_MSAA_LAYOUT_IMS
:
930 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
931 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
932 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
934 brw_AND(&func
, t1
, X
, brw_imm_uw(0xfffe)); /* X & ~0b1 */
936 brw_AND(&func
, t2
, S
, brw_imm_uw(1)); /* S & 0b1 */
937 brw_OR(&func
, t1
, t1
, t2
); /* (X & ~0b1) | (S & 0b1) */
939 brw_SHL(&func
, t1
, t1
, brw_imm_uw(1)); /* (X & ~0b1) << 1
941 brw_AND(&func
, t2
, X
, brw_imm_uw(1)); /* X & 0b1 */
942 brw_OR(&func
, Xp
, t1
, t2
);
943 brw_AND(&func
, t1
, Y
, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
944 brw_SHL(&func
, t1
, t1
, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
946 brw_AND(&func
, t2
, S
, brw_imm_uw(2)); /* S & 0b10 */
947 brw_OR(&func
, t1
, t1
, t2
); /* (Y & ~0b1) << 1 | (S & 0b10) */
949 brw_AND(&func
, t2
, Y
, brw_imm_uw(1));
950 brw_OR(&func
, Yp
, t1
, t2
);
958 * Emit code to compensate for the difference between MSAA and non-MSAA
961 * This code modifies the X and Y coordinates according to the formula:
963 * (X', Y', S) = decode_msaa(num_samples, X, Y, S)
965 * (See brw_blorp_blit_program).
968 brw_blorp_blit_program::decode_msaa(unsigned num_samples
,
969 intel_msaa_layout layout
)
972 case INTEL_MSAA_LAYOUT_NONE
:
973 /* No translation necessary, and S should already be zero. */
976 case INTEL_MSAA_LAYOUT_CMS
:
977 /* We can't compensate for compressed layout since at this point in the
978 * program we don't have access to the MCS buffer.
980 assert(!"Bad layout in encode_msaa");
982 case INTEL_MSAA_LAYOUT_UMS
:
983 /* No translation necessary. */
985 case INTEL_MSAA_LAYOUT_IMS
:
986 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
987 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
988 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
989 * S = (Y & 0b10) | (X & 0b10) >> 1
992 brw_AND(&func
, t1
, X
, brw_imm_uw(0xfffc)); /* X & ~0b11 */
993 brw_SHR(&func
, t1
, t1
, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
994 brw_AND(&func
, t2
, X
, brw_imm_uw(1)); /* X & 0b1 */
995 brw_OR(&func
, Xp
, t1
, t2
);
996 brw_AND(&func
, t1
, Y
, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
997 brw_SHR(&func
, t1
, t1
, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
998 brw_AND(&func
, t2
, Y
, brw_imm_uw(1)); /* Y & 0b1 */
999 brw_OR(&func
, Yp
, t1
, t2
);
1000 brw_AND(&func
, t1
, Y
, brw_imm_uw(2)); /* Y & 0b10 */
1001 brw_AND(&func
, t2
, X
, brw_imm_uw(2)); /* X & 0b10 */
1002 brw_SHR(&func
, t2
, t2
, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1003 brw_OR(&func
, S
, t1
, t2
);
1011 * Emit code that kills pixels whose X and Y coordinates are outside the
1012 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
1016 brw_blorp_blit_program::kill_if_outside_dst_rect()
1018 struct brw_reg f0
= brw_flag_reg();
1019 struct brw_reg g1
= retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW
);
1020 struct brw_reg null16
= vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW
));
1022 brw_CMP(&func
, null16
, BRW_CONDITIONAL_GE
, X
, dst_x0
);
1023 brw_CMP(&func
, null16
, BRW_CONDITIONAL_GE
, Y
, dst_y0
);
1024 brw_CMP(&func
, null16
, BRW_CONDITIONAL_L
, X
, dst_x1
);
1025 brw_CMP(&func
, null16
, BRW_CONDITIONAL_L
, Y
, dst_y1
);
1027 brw_set_predicate_control(&func
, BRW_PREDICATE_NONE
);
1028 brw_push_insn_state(&func
);
1029 brw_set_mask_control(&func
, BRW_MASK_DISABLE
);
1030 brw_AND(&func
, g1
, f0
, g1
);
1031 brw_pop_insn_state(&func
);
1035 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1039 brw_blorp_blit_program::translate_dst_to_src()
1041 brw_MUL(&func
, Xp
, X
, x_transform
.multiplier
);
1042 brw_MUL(&func
, Yp
, Y
, y_transform
.multiplier
);
1043 brw_ADD(&func
, Xp
, Xp
, x_transform
.offset
);
1044 brw_ADD(&func
, Yp
, Yp
, y_transform
.offset
);
1049 * Emit code to transform the X and Y coordinates as needed for blending
1050 * together the different samples in an MSAA texture.
1053 brw_blorp_blit_program::single_to_blend()
1055 /* When looking up samples in an MSAA texture using the SAMPLE message,
1056 * Gen6 requires the texture coordinates to be odd integers (so that they
1057 * correspond to the center of a 2x2 block representing the four samples
1058 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1059 * each by 2 and then add 1.
1061 brw_SHL(&func
, t1
, X
, brw_imm_w(1));
1062 brw_SHL(&func
, t2
, Y
, brw_imm_w(1));
1063 brw_ADD(&func
, Xp
, t1
, brw_imm_w(1));
1064 brw_ADD(&func
, Yp
, t2
, brw_imm_w(1));
1070 * Count the number of trailing 1 bits in the given value. For example:
1072 * count_trailing_one_bits(0) == 0
1073 * count_trailing_one_bits(7) == 3
1074 * count_trailing_one_bits(11) == 2
1076 inline int count_trailing_one_bits(unsigned value
)
1078 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1079 return __builtin_ctz(~value
);
1081 return _mesa_bitcount(value
& ~(value
+ 1));
1087 brw_blorp_blit_program::manual_blend()
1089 /* TODO: support num_samples != 4 */
1090 const int num_samples
= 4;
1092 if (key
->tex_layout
== INTEL_MSAA_LAYOUT_CMS
)
1095 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1097 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1099 * This ensures that when all samples have the same value, no numerical
1100 * precision is lost, since each addition operation always adds two equal
1101 * values, and summing two equal floating point values does not lose
1104 * We perform this computation by treating the texture_data array as a
1105 * stack and performing the following operations:
1107 * - push sample 0 onto stack
1108 * - push sample 1 onto stack
1109 * - add top two stack entries
1110 * - push sample 2 onto stack
1111 * - push sample 3 onto stack
1112 * - add top two stack entries
1113 * - add top two stack entries
1114 * - divide top stack entry by 4
1116 * Note that after pushing sample i onto the stack, the number of add
1117 * operations we do is equal to the number of trailing 1 bits in i. This
1118 * works provided the total number of samples is a power of two, which it
1119 * always is for i965.
1121 * For integer formats, we replace the add operations with average
1122 * operations and skip the final division.
1124 typedef struct brw_instruction
*(*brw_op2_ptr
)(struct brw_compile
*,
1128 brw_op2_ptr combine_op
=
1129 key
->texture_data_type
== BRW_REGISTER_TYPE_F
? brw_ADD
: brw_AVG
;
1130 unsigned stack_depth
= 0;
1131 for (int i
= 0; i
< num_samples
; ++i
) {
1132 assert(stack_depth
== _mesa_bitcount(i
)); /* Loop invariant */
1134 /* Push sample i onto the stack */
1135 assert(stack_depth
< ARRAY_SIZE(texture_data
));
1140 brw_MOV(&func
, S
, brw_imm_uw(i
));
1142 texel_fetch(texture_data
[stack_depth
++]);
1144 if (i
== 0 && key
->tex_layout
== INTEL_MSAA_LAYOUT_CMS
) {
1145 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1146 * suggests an optimization:
1148 * "A simple optimization with probable large return in
1149 * performance is to compare the MCS value to zero (indicating
1150 * all samples are on sample slice 0), and sample only from
1151 * sample slice 0 using ld2dss if MCS is zero."
1153 * Note that in the case where the MCS value is zero, sampling from
1154 * sample slice 0 using ld2dss and sampling from sample 0 using
1155 * ld2dms are equivalent (since all samples are on sample slice 0).
1156 * Since we have already sampled from sample 0, all we need to do is
1157 * skip the remaining fetches and averaging if MCS is zero.
1159 brw_CMP(&func
, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ
,
1160 mcs_data
, brw_imm_ud(0));
1161 brw_IF(&func
, BRW_EXECUTE_16
);
1164 /* Do count_trailing_one_bits(i) times */
1165 for (int j
= count_trailing_one_bits(i
); j
-- > 0; ) {
1166 assert(stack_depth
>= 2);
1169 /* TODO: should use a smaller loop bound for non_RGBA formats */
1170 for (int k
= 0; k
< 4; ++k
) {
1171 combine_op(&func
, offset(texture_data
[stack_depth
- 1], 2*k
),
1172 offset(vec8(texture_data
[stack_depth
- 1]), 2*k
),
1173 offset(vec8(texture_data
[stack_depth
]), 2*k
));
1178 /* We should have just 1 sample on the stack now. */
1179 assert(stack_depth
== 1);
1181 if (key
->texture_data_type
== BRW_REGISTER_TYPE_F
) {
1182 /* Scale the result down by a factor of num_samples */
1183 /* TODO: should use a smaller loop bound for non-RGBA formats */
1184 for (int j
= 0; j
< 4; ++j
) {
1185 brw_MUL(&func
, offset(texture_data
[0], 2*j
),
1186 offset(vec8(texture_data
[0]), 2*j
),
1187 brw_imm_f(1.0/num_samples
));
1191 if (key
->tex_layout
== INTEL_MSAA_LAYOUT_CMS
)
1196 * Emit code to look up a value in the texture using the SAMPLE message (which
1197 * does blending of MSAA surfaces).
1200 brw_blorp_blit_program::sample(struct brw_reg dst
)
1202 static const sampler_message_arg args
[2] = {
1203 SAMPLER_MESSAGE_ARG_U_FLOAT
,
1204 SAMPLER_MESSAGE_ARG_V_FLOAT
1207 texture_lookup(dst
, GEN5_SAMPLER_MESSAGE_SAMPLE
, args
, ARRAY_SIZE(args
));
1211 * Emit code to look up a value in the texture using the SAMPLE_LD message
1212 * (which does a simple texel fetch).
1215 brw_blorp_blit_program::texel_fetch(struct brw_reg dst
)
1217 static const sampler_message_arg gen6_args
[5] = {
1218 SAMPLER_MESSAGE_ARG_U_INT
,
1219 SAMPLER_MESSAGE_ARG_V_INT
,
1220 SAMPLER_MESSAGE_ARG_ZERO_INT
, /* R */
1221 SAMPLER_MESSAGE_ARG_ZERO_INT
, /* LOD */
1222 SAMPLER_MESSAGE_ARG_SI_INT
1224 static const sampler_message_arg gen7_ld_args
[3] = {
1225 SAMPLER_MESSAGE_ARG_U_INT
,
1226 SAMPLER_MESSAGE_ARG_ZERO_INT
, /* LOD */
1227 SAMPLER_MESSAGE_ARG_V_INT
1229 static const sampler_message_arg gen7_ld2dss_args
[3] = {
1230 SAMPLER_MESSAGE_ARG_SI_INT
,
1231 SAMPLER_MESSAGE_ARG_U_INT
,
1232 SAMPLER_MESSAGE_ARG_V_INT
1234 static const sampler_message_arg gen7_ld2dms_args
[4] = {
1235 SAMPLER_MESSAGE_ARG_SI_INT
,
1236 SAMPLER_MESSAGE_ARG_MCS_INT
,
1237 SAMPLER_MESSAGE_ARG_U_INT
,
1238 SAMPLER_MESSAGE_ARG_V_INT
1241 switch (brw
->intel
.gen
) {
1243 texture_lookup(dst
, GEN5_SAMPLER_MESSAGE_SAMPLE_LD
, gen6_args
,
1247 switch (key
->tex_layout
) {
1248 case INTEL_MSAA_LAYOUT_IMS
:
1249 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1252 * If this field is MSFMT_DEPTH_STENCIL
1253 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1254 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1256 * So fall through to emit the same message as we use for
1257 * INTEL_MSAA_LAYOUT_CMS.
1259 case INTEL_MSAA_LAYOUT_CMS
:
1260 texture_lookup(dst
, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS
,
1261 gen7_ld2dms_args
, ARRAY_SIZE(gen7_ld2dms_args
));
1263 case INTEL_MSAA_LAYOUT_UMS
:
1264 texture_lookup(dst
, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS
,
1265 gen7_ld2dss_args
, ARRAY_SIZE(gen7_ld2dss_args
));
1267 case INTEL_MSAA_LAYOUT_NONE
:
1269 texture_lookup(dst
, GEN5_SAMPLER_MESSAGE_SAMPLE_LD
, gen7_ld_args
,
1270 ARRAY_SIZE(gen7_ld_args
));
1275 assert(!"Should not get here.");
1281 brw_blorp_blit_program::mcs_fetch()
1283 static const sampler_message_arg gen7_ld_mcs_args
[2] = {
1284 SAMPLER_MESSAGE_ARG_U_INT
,
1285 SAMPLER_MESSAGE_ARG_V_INT
1287 texture_lookup(vec16(mcs_data
), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS
,
1288 gen7_ld_mcs_args
, ARRAY_SIZE(gen7_ld_mcs_args
));
1292 brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src
,
1295 brw_MOV(&func
, vec8(dst
), vec8(src
));
1296 brw_set_compression_control(&func
, BRW_COMPRESSION_2NDHALF
);
1297 brw_MOV(&func
, offset(vec8(dst
), 1), suboffset(vec8(src
), 8));
1298 brw_set_compression_control(&func
, BRW_COMPRESSION_NONE
);
1302 brw_blorp_blit_program::texture_lookup(struct brw_reg dst
,
1304 const sampler_message_arg
*args
,
1307 struct brw_reg mrf
=
1308 retype(vec16(brw_message_reg(base_mrf
)), BRW_REGISTER_TYPE_UD
);
1309 for (int arg
= 0; arg
< num_args
; ++arg
) {
1310 switch (args
[arg
]) {
1311 case SAMPLER_MESSAGE_ARG_U_FLOAT
:
1312 expand_to_32_bits(X
, retype(mrf
, BRW_REGISTER_TYPE_F
));
1314 case SAMPLER_MESSAGE_ARG_V_FLOAT
:
1315 expand_to_32_bits(Y
, retype(mrf
, BRW_REGISTER_TYPE_F
));
1317 case SAMPLER_MESSAGE_ARG_U_INT
:
1318 expand_to_32_bits(X
, mrf
);
1320 case SAMPLER_MESSAGE_ARG_V_INT
:
1321 expand_to_32_bits(Y
, mrf
);
1323 case SAMPLER_MESSAGE_ARG_SI_INT
:
1324 /* Note: on Gen7, this code may be reached with s_is_zero==true
1325 * because in Gen7's ld2dss message, the sample index is the first
1326 * argument. When this happens, we need to move a 0 into the
1327 * appropriate message register.
1330 brw_MOV(&func
, mrf
, brw_imm_ud(0));
1332 expand_to_32_bits(S
, mrf
);
1334 case SAMPLER_MESSAGE_ARG_MCS_INT
:
1335 switch (key
->tex_layout
) {
1336 case INTEL_MSAA_LAYOUT_CMS
:
1337 brw_MOV(&func
, mrf
, mcs_data
);
1339 case INTEL_MSAA_LAYOUT_IMS
:
1340 /* When sampling from an IMS surface, MCS data is not relevant,
1341 * and the hardware ignores it. So don't bother populating it.
1345 /* We shouldn't be trying to send MCS data with any other
1348 assert (!"Unsupported layout for MCS data");
1352 case SAMPLER_MESSAGE_ARG_ZERO_INT
:
1353 brw_MOV(&func
, mrf
, brw_imm_ud(0));
1360 retype(dst
, BRW_REGISTER_TYPE_UW
) /* dest */,
1361 base_mrf
/* msg_reg_nr */,
1362 brw_message_reg(base_mrf
) /* src0 */,
1363 BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX
,
1367 8 /* response_length. TODO: should be smaller for non-RGBA formats? */,
1368 mrf
.nr
- base_mrf
/* msg_length */,
1369 0 /* header_present */,
1370 BRW_SAMPLER_SIMD_MODE_SIMD16
,
1371 BRW_SAMPLER_RETURN_FORMAT_FLOAT32
);
1379 #undef SWAP_XY_AND_XPYP
1382 brw_blorp_blit_program::render_target_write()
1384 struct brw_reg mrf_rt_write
=
1385 retype(vec16(brw_message_reg(base_mrf
)), key
->texture_data_type
);
1388 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1389 * so that the render target knows which pixels we killed.
1391 bool use_header
= key
->use_kill
;
1393 /* Copy R0/1 to MRF */
1394 brw_MOV(&func
, retype(mrf_rt_write
, BRW_REGISTER_TYPE_UD
),
1395 retype(R0
, BRW_REGISTER_TYPE_UD
));
1399 /* Copy texture data to MRFs */
1400 for (int i
= 0; i
< 4; ++i
) {
1401 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1402 brw_MOV(&func
, offset(mrf_rt_write
, mrf_offset
),
1403 offset(vec8(texture_data
[0]), 2*i
));
1407 /* Now write to the render target and terminate the thread */
1409 16 /* dispatch_width */,
1410 base_mrf
/* msg_reg_nr */,
1411 mrf_rt_write
/* src0 */,
1412 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE
,
1413 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX
,
1414 mrf_offset
/* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1415 0 /* response_length */,
1422 brw_blorp_coord_transform_params::setup(GLuint src0
, GLuint dst0
, GLuint dst1
,
1426 /* When not mirroring a coordinate (say, X), we need:
1427 * x' - src_x0 = x - dst_x0
1429 * x' = 1*x + (src_x0 - dst_x0)
1432 offset
= src0
- dst0
;
1434 /* When mirroring X we need:
1435 * x' - src_x0 = dst_x1 - x - 1
1437 * x' = -1*x + (src_x0 + dst_x1 - 1)
1440 offset
= src0
+ dst1
- 1;
1446 * Determine which MSAA layout the GPU pipeline should be configured for,
1447 * based on the chip generation, the number of samples, and the true layout of
1448 * the image in memory.
1450 inline intel_msaa_layout
1451 compute_msaa_layout_for_pipeline(struct brw_context
*brw
, unsigned num_samples
,
1452 intel_msaa_layout true_layout
)
1454 if (num_samples
== 0) {
1455 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1456 * format buffers, by transforming coordinates appropriately.
1458 assert(true_layout
== INTEL_MSAA_LAYOUT_NONE
||
1459 true_layout
== INTEL_MSAA_LAYOUT_IMS
);
1460 return INTEL_MSAA_LAYOUT_NONE
;
1462 assert(true_layout
!= INTEL_MSAA_LAYOUT_NONE
);
1465 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1466 if (brw
->intel
.gen
== 6) {
1467 assert(true_layout
== INTEL_MSAA_LAYOUT_IMS
);
1474 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context
*brw
,
1475 struct intel_mipmap_tree
*src_mt
,
1476 struct intel_mipmap_tree
*dst_mt
,
1477 GLuint src_x0
, GLuint src_y0
,
1478 GLuint dst_x0
, GLuint dst_y0
,
1479 GLuint dst_x1
, GLuint dst_y1
,
1480 bool mirror_x
, bool mirror_y
)
1482 src
.set(brw
, src_mt
, 0, 0);
1483 dst
.set(brw
, dst_mt
, 0, 0);
1486 memset(&wm_prog_key
, 0, sizeof(wm_prog_key
));
1488 /* texture_data_type indicates the register type that should be used to
1489 * manipulate texture data.
1491 switch (_mesa_get_format_datatype(src_mt
->format
)) {
1492 case GL_UNSIGNED_NORMALIZED
:
1493 case GL_SIGNED_NORMALIZED
:
1495 wm_prog_key
.texture_data_type
= BRW_REGISTER_TYPE_F
;
1497 case GL_UNSIGNED_INT
:
1498 if (src_mt
->format
== MESA_FORMAT_S8
) {
1499 /* We process stencil as though it's an unsigned normalized color */
1500 wm_prog_key
.texture_data_type
= BRW_REGISTER_TYPE_F
;
1502 wm_prog_key
.texture_data_type
= BRW_REGISTER_TYPE_UD
;
1506 wm_prog_key
.texture_data_type
= BRW_REGISTER_TYPE_D
;
1509 assert(!"Unrecognized blorp format");
1513 if (brw
->intel
.gen
> 6) {
1514 /* Gen7's rendering hardware only supports the IMS layout for depth and
1515 * stencil render targets. Blorp always maps its destination surface as
1516 * a color render target (even if it's actually a depth or stencil
1517 * buffer). So if the destination is IMS, we'll have to map it as a
1518 * single-sampled texture and interleave the samples ourselves.
1520 if (dst_mt
->msaa_layout
== INTEL_MSAA_LAYOUT_IMS
)
1521 dst
.num_samples
= 0;
1524 if (dst
.map_stencil_as_y_tiled
&& dst
.num_samples
> 0) {
1525 /* If the destination surface is a W-tiled multisampled stencil buffer
1526 * that we're mapping as Y tiled, then we need to arrange for the WM
1527 * program to run once per sample rather than once per pixel, because
1528 * the memory layout of related samples doesn't match between W and Y
1531 wm_prog_key
.persample_msaa_dispatch
= true;
1534 if (src
.num_samples
> 0 && dst
.num_samples
> 0) {
1535 /* We are blitting from a multisample buffer to a multisample buffer, so
1536 * we must preserve samples within a pixel. This means we have to
1537 * arrange for the WM program to run once per sample rather than once
1540 wm_prog_key
.persample_msaa_dispatch
= true;
1543 /* The render path must be configured to use the same number of samples as
1544 * the destination buffer.
1546 num_samples
= dst
.num_samples
;
1548 GLenum base_format
= _mesa_get_format_base_format(src_mt
->format
);
1549 if (base_format
!= GL_DEPTH_COMPONENT
&& /* TODO: what about depth/stencil? */
1550 base_format
!= GL_STENCIL_INDEX
&&
1551 src_mt
->num_samples
> 0 && dst_mt
->num_samples
== 0) {
1552 /* We are downsampling a color buffer, so blend. */
1553 wm_prog_key
.blend
= true;
1556 /* src_samples and dst_samples are the true sample counts */
1557 wm_prog_key
.src_samples
= src_mt
->num_samples
;
1558 wm_prog_key
.dst_samples
= dst_mt
->num_samples
;
1560 /* tex_samples and rt_samples are the sample counts that are set up in
1563 wm_prog_key
.tex_samples
= src
.num_samples
;
1564 wm_prog_key
.rt_samples
= dst
.num_samples
;
1566 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1567 * use to access the source and destination surfaces.
1569 wm_prog_key
.tex_layout
=
1570 compute_msaa_layout_for_pipeline(brw
, src
.num_samples
, src
.msaa_layout
);
1571 wm_prog_key
.rt_layout
=
1572 compute_msaa_layout_for_pipeline(brw
, dst
.num_samples
, dst
.msaa_layout
);
1574 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1577 wm_prog_key
.src_layout
= src_mt
->msaa_layout
;
1578 wm_prog_key
.dst_layout
= dst_mt
->msaa_layout
;
1580 wm_prog_key
.src_tiled_w
= src
.map_stencil_as_y_tiled
;
1581 wm_prog_key
.dst_tiled_w
= dst
.map_stencil_as_y_tiled
;
1582 x0
= wm_push_consts
.dst_x0
= dst_x0
;
1583 y0
= wm_push_consts
.dst_y0
= dst_y0
;
1584 x1
= wm_push_consts
.dst_x1
= dst_x1
;
1585 y1
= wm_push_consts
.dst_y1
= dst_y1
;
1586 wm_push_consts
.x_transform
.setup(src_x0
, dst_x0
, dst_x1
, mirror_x
);
1587 wm_push_consts
.y_transform
.setup(src_y0
, dst_y0
, dst_y1
, mirror_y
);
1589 if (dst
.num_samples
== 0 && dst_mt
->num_samples
> 0) {
1590 /* We must expand the rectangle we send through the rendering pipeline,
1591 * to account for the fact that we are mapping the destination region as
1592 * single-sampled when it is in fact multisampled. We must also align
1593 * it to a multiple of the multisampling pattern, because the
1594 * differences between multisampled and single-sampled surface formats
1595 * will mean that pixels are scrambled within the multisampling pattern.
1596 * TODO: what if this makes the coordinates too large?
1598 * Note: this only works if the destination surface uses the IMS layout.
1599 * If it's UMS, then we have no choice but to set up the rendering
1600 * pipeline as multisampled.
1602 assert(dst_mt
->msaa_layout
== INTEL_MSAA_LAYOUT_IMS
);
1605 x1
= ALIGN(x1
* 2, 4);
1606 y1
= ALIGN(y1
* 2, 4);
1607 wm_prog_key
.use_kill
= true;
1610 if (dst
.map_stencil_as_y_tiled
) {
1611 /* We must modify the rectangle we send through the rendering pipeline,
1612 * to account for the fact that we are mapping it as Y-tiled when it is
1613 * in fact W-tiled. Y tiles have dimensions 128x32 whereas W tiles have
1614 * dimensions 64x64. We must also align it to a multiple of the tile
1615 * size, because the differences between W and Y tiling formats will
1616 * mean that pixels are scrambled within the tile.
1618 * Note: if the destination surface configured to use IMS layout, then
1619 * the effective tile size we need to align it to is smaller, because
1620 * each pixel covers a 2x2 or a 4x2 block of samples.
1622 * TODO: what if this makes the coordinates too large?
1624 unsigned x_align
= 64, y_align
= 64;
1625 if (dst_mt
->msaa_layout
== INTEL_MSAA_LAYOUT_IMS
) {
1626 x_align
/= (dst_mt
->num_samples
== 4 ? 2 : 4);
1629 x0
= (x0
& ~(x_align
- 1)) * 2;
1630 y0
= (y0
& ~(y_align
- 1)) / 2;
1631 x1
= ALIGN(x1
, x_align
) * 2;
1632 y1
= ALIGN(y1
, y_align
) / 2;
1633 wm_prog_key
.use_kill
= true;
1638 brw_blorp_blit_params::get_wm_prog(struct brw_context
*brw
,
1639 brw_blorp_prog_data
**prog_data
) const
1641 uint32_t prog_offset
;
1642 if (!brw_search_cache(&brw
->cache
, BRW_BLORP_BLIT_PROG
,
1643 &this->wm_prog_key
, sizeof(this->wm_prog_key
),
1644 &prog_offset
, prog_data
)) {
1645 brw_blorp_blit_program
prog(brw
, &this->wm_prog_key
);
1646 GLuint program_size
;
1647 const GLuint
*program
= prog
.compile(brw
, &program_size
);
1648 brw_upload_cache(&brw
->cache
, BRW_BLORP_BLIT_PROG
,
1649 &this->wm_prog_key
, sizeof(this->wm_prog_key
),
1650 program
, program_size
,
1651 &prog
.prog_data
, sizeof(prog
.prog_data
),
1652 &prog_offset
, prog_data
);