i965/blorp: Don't fall back to swrast when miptrees absent.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25
26 #include "glsl/ralloc.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_eu.h"
33 #include "brw_state.h"
34
35
36 /**
37 * Helper function for handling mirror image blits.
38 *
39 * If coord0 > coord1, swap them and invert the "mirror" boolean.
40 */
41 static inline void
42 fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
43 {
44 if (coord0 > coord1) {
45 mirror = !mirror;
46 GLint tmp = coord0;
47 coord0 = coord1;
48 coord1 = tmp;
49 }
50 }
51
52
53 /**
54 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
55 * destination coordinates.
56 *
57 * Return true if there is still blitting to do, false if all pixels got
58 * rejected by the clip and/or scissor.
59 *
60 * For clarity, the nomenclature of this function assumes we are clipping and
61 * scissoring the X coordinate; the exact same logic applies for Y
62 * coordinates.
63 *
64 * Note: this function may also be used to account for clipping of source
65 * coordinates, by swapping the roles of src and dst.
66 */
67 static inline bool
68 clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
69 GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
70 {
71 /* If we are going to scissor everything away, stop. */
72 if (!(fb_xmin < fb_xmax &&
73 dst_x0 < fb_xmax &&
74 fb_xmin < dst_x1 &&
75 dst_x0 < dst_x1)) {
76 return false;
77 }
78
79 /* Clip the destination rectangle, and keep track of how many pixels we
80 * clipped off of the left and right sides of it.
81 */
82 GLint pixels_clipped_left = 0;
83 GLint pixels_clipped_right = 0;
84 if (dst_x0 < fb_xmin) {
85 pixels_clipped_left = fb_xmin - dst_x0;
86 dst_x0 = fb_xmin;
87 }
88 if (fb_xmax < dst_x1) {
89 pixels_clipped_right = dst_x1 - fb_xmax;
90 dst_x1 = fb_xmax;
91 }
92
93 /* If we are mirrored, then before applying pixels_clipped_{left,right} to
94 * the source coordinates, we need to flip them to account for the
95 * mirroring.
96 */
97 if (mirror) {
98 GLint tmp = pixels_clipped_left;
99 pixels_clipped_left = pixels_clipped_right;
100 pixels_clipped_right = tmp;
101 }
102
103 /* Adjust the source rectangle to remove the pixels corresponding to those
104 * that were clipped/scissored out of the destination rectangle.
105 */
106 src_x0 += pixels_clipped_left;
107 src_x1 -= pixels_clipped_right;
108
109 return true;
110 }
111
112
113 static bool
114 try_blorp_blit(struct intel_context *intel,
115 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
116 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
117 GLenum filter, GLbitfield buffer_bit)
118 {
119 struct gl_context *ctx = &intel->ctx;
120
121 /* Sync up the state of window system buffers. We need to do this before
122 * we go looking for the buffers.
123 */
124 intel_prepare_render(intel);
125
126 /* Find buffers */
127 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
128 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
129 struct gl_renderbuffer *src_rb;
130 struct gl_renderbuffer *dst_rb;
131 switch (buffer_bit) {
132 case GL_COLOR_BUFFER_BIT:
133 src_rb = read_fb->_ColorReadBuffer;
134 dst_rb =
135 draw_fb->Attachment[
136 draw_fb->_ColorDrawBufferIndexes[0]].Renderbuffer;
137 break;
138 case GL_DEPTH_BUFFER_BIT:
139 src_rb = read_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
140 dst_rb = draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
141 break;
142 case GL_STENCIL_BUFFER_BIT:
143 src_rb = read_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
144 dst_rb = draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
145 break;
146 default:
147 assert(false);
148 }
149
150 /* Find source miptree */
151 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
152 struct intel_mipmap_tree *src_mt = src_irb->mt;
153 if (buffer_bit == GL_STENCIL_BUFFER_BIT && src_mt->stencil_mt)
154 src_mt = src_mt->stencil_mt;
155
156 /* Find destination miptree */
157 struct intel_renderbuffer *dst_irb = intel_renderbuffer(dst_rb);
158 struct intel_mipmap_tree *dst_mt = dst_irb->mt;
159 if (buffer_bit == GL_STENCIL_BUFFER_BIT && dst_mt->stencil_mt)
160 dst_mt = dst_mt->stencil_mt;
161
162 /* Blorp blits can't translate from one format to another. For that we'll
163 * have to fall back to the meta-op blit. Note: the meta-op blit doesn't
164 * support multisampled blits, but fortunately this is ok because
165 * multisampled blits require identical source and destination formats.
166 */
167 if (src_mt->format != dst_mt->format)
168 return false;
169
170 /* Detect if the blit needs to be mirrored */
171 bool mirror_x = false, mirror_y = false;
172 fixup_mirroring(mirror_x, srcX0, srcX1);
173 fixup_mirroring(mirror_x, dstX0, dstX1);
174 fixup_mirroring(mirror_y, srcY0, srcY1);
175 fixup_mirroring(mirror_y, dstY0, dstY1);
176
177 /* Make sure width and height match */
178 if (srcX1 - srcX0 != dstX1 - dstX0) return false;
179 if (srcY1 - srcY0 != dstY1 - dstY0) return false;
180
181 /* If the destination rectangle needs to be clipped or scissored, do so.
182 */
183 if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
184 draw_fb->_Xmin, draw_fb->_Xmax) &&
185 clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
186 draw_fb->_Ymin, draw_fb->_Ymax))) {
187 /* Everything got clipped/scissored away, so the blit was successful. */
188 return true;
189 }
190
191 /* If the source rectangle needs to be clipped or scissored, do so. */
192 if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
193 0, read_fb->Width) &&
194 clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
195 0, read_fb->Height))) {
196 /* Everything got clipped/scissored away, so the blit was successful. */
197 return true;
198 }
199
200 /* Account for the fact that in the system framebuffer, the origin is at
201 * the lower left.
202 */
203 if (read_fb->Name == 0) {
204 GLint tmp = read_fb->Height - srcY0;
205 srcY0 = read_fb->Height - srcY1;
206 srcY1 = tmp;
207 mirror_y = !mirror_y;
208 }
209 if (draw_fb->Name == 0) {
210 GLint tmp = draw_fb->Height - dstY0;
211 dstY0 = draw_fb->Height - dstY1;
212 dstY1 = tmp;
213 mirror_y = !mirror_y;
214 }
215
216 /* Get ready to blit. This includes depth resolving the src and dst
217 * buffers if necessary.
218 */
219 intel_renderbuffer_resolve_depth(intel, src_irb);
220 intel_renderbuffer_resolve_depth(intel, dst_irb);
221
222 /* Do the blit */
223 brw_blorp_blit_params params(brw_context(ctx), src_mt, dst_mt,
224 srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
225 mirror_x, mirror_y);
226 brw_blorp_exec(intel, &params);
227
228 /* Mark the dst buffer as needing a HiZ resolve if necessary. */
229 intel_renderbuffer_set_needs_hiz_resolve(dst_irb);
230
231 return true;
232 }
233
234 GLbitfield
235 brw_blorp_framebuffer(struct intel_context *intel,
236 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
237 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
238 GLbitfield mask, GLenum filter)
239 {
240 /* BLORP is not supported before Gen6. */
241 if (intel->gen < 6)
242 return mask;
243
244 static GLbitfield buffer_bits[] = {
245 GL_COLOR_BUFFER_BIT,
246 GL_DEPTH_BUFFER_BIT,
247 GL_STENCIL_BUFFER_BIT,
248 };
249
250 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
251 if ((mask & buffer_bits[i]) &&
252 try_blorp_blit(intel,
253 srcX0, srcY0, srcX1, srcY1,
254 dstX0, dstY0, dstX1, dstY1,
255 filter, buffer_bits[i])) {
256 mask &= ~buffer_bits[i];
257 }
258 }
259
260 return mask;
261 }
262
263
264 /**
265 * Enum to specify the order of arguments in a sampler message
266 */
267 enum sampler_message_arg
268 {
269 SAMPLER_MESSAGE_ARG_U_FLOAT,
270 SAMPLER_MESSAGE_ARG_V_FLOAT,
271 SAMPLER_MESSAGE_ARG_U_INT,
272 SAMPLER_MESSAGE_ARG_V_INT,
273 SAMPLER_MESSAGE_ARG_SI_INT,
274 SAMPLER_MESSAGE_ARG_MCS_INT,
275 SAMPLER_MESSAGE_ARG_ZERO_INT,
276 };
277
278 /**
279 * Generator for WM programs used in BLORP blits.
280 *
281 * The bulk of the work done by the WM program is to wrap and unwrap the
282 * coordinate transformations used by the hardware to store surfaces in
283 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
284 * sample index for a multisampled surface) to a memory offset by the
285 * following formulas:
286 *
287 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
288 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
289 *
290 * For a single-sampled surface, or for a multisampled surface using
291 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
292 * function:
293 *
294 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
295 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
296 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
297 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
298 *
299 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
300 * embeds the sample number into bit 1 of the X and Y coordinates:
301 *
302 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
303 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
304 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
305 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
306 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
307 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
308 * S = (Y & 0b10) | (X & 0b10) >> 1
309 *
310 * For X tiling, tile() combines together the low-order bits of the X and Y
311 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
312 * bytes wide and 8 rows high:
313 *
314 * tile(x_tiled, X, Y, S) = A
315 * where A = tile_num << 12 | offset
316 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
317 * offset = (Y' & 0b111) << 9
318 * | (X & 0b111111111)
319 * X' = X * cpp
320 * Y' = Y + S * qpitch
321 * detile(x_tiled, A) = (X, Y, S)
322 * where X = X' / cpp
323 * Y = Y' % qpitch
324 * S = Y' / qpitch
325 * Y' = (tile_num / tile_pitch) << 3
326 * | (A & 0b111000000000) >> 9
327 * X' = (tile_num % tile_pitch) << 9
328 * | (A & 0b111111111)
329 *
330 * (In all tiling formulas, cpp is the number of bytes occupied by a single
331 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
332 * to fill the width of the surface, and qpitch is the spacing (in rows)
333 * between array slices).
334 *
335 * For Y tiling, tile() combines together the low-order bits of the X and Y
336 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
337 * bytes wide and 32 rows high:
338 *
339 * tile(y_tiled, X, Y, S) = A
340 * where A = tile_num << 12 | offset
341 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
342 * offset = (X' & 0b1110000) << 5
343 * | (Y' & 0b11111) << 4
344 * | (X' & 0b1111)
345 * X' = X * cpp
346 * Y' = Y + S * qpitch
347 * detile(y_tiled, A) = (X, Y, S)
348 * where X = X' / cpp
349 * Y = Y' % qpitch
350 * S = Y' / qpitch
351 * Y' = (tile_num / tile_pitch) << 5
352 * | (A & 0b111110000) >> 4
353 * X' = (tile_num % tile_pitch) << 7
354 * | (A & 0b111000000000) >> 5
355 * | (A & 0b1111)
356 *
357 * For W tiling, tile() combines together the low-order bits of the X and Y
358 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
359 * bytes wide and 64 rows high (note that W tiling is only used for stencil
360 * buffers, which always have cpp = 1 and S=0):
361 *
362 * tile(w_tiled, X, Y, S) = A
363 * where A = tile_num << 12 | offset
364 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
365 * offset = (X' & 0b111000) << 6
366 * | (Y' & 0b111100) << 3
367 * | (X' & 0b100) << 2
368 * | (Y' & 0b10) << 2
369 * | (X' & 0b10) << 1
370 * | (Y' & 0b1) << 1
371 * | (X' & 0b1)
372 * X' = X * cpp = X
373 * Y' = Y + S * qpitch
374 * detile(w_tiled, A) = (X, Y, S)
375 * where X = X' / cpp = X'
376 * Y = Y' % qpitch = Y'
377 * S = Y / qpitch = 0
378 * Y' = (tile_num / tile_pitch) << 6
379 * | (A & 0b111100000) >> 3
380 * | (A & 0b1000) >> 2
381 * | (A & 0b10) >> 1
382 * X' = (tile_num % tile_pitch) << 6
383 * | (A & 0b111000000000) >> 6
384 * | (A & 0b10000) >> 2
385 * | (A & 0b100) >> 1
386 * | (A & 0b1)
387 *
388 * Finally, for a non-tiled surface, tile() simply combines together the X and
389 * Y coordinates in the natural way:
390 *
391 * tile(untiled, X, Y, S) = A
392 * where A = Y * pitch + X'
393 * X' = X * cpp
394 * Y' = Y + S * qpitch
395 * detile(untiled, A) = (X, Y, S)
396 * where X = X' / cpp
397 * Y = Y' % qpitch
398 * S = Y' / qpitch
399 * X' = A % pitch
400 * Y' = A / pitch
401 *
402 * (In these formulas, pitch is the number of bytes occupied by a single row
403 * of samples).
404 */
405 class brw_blorp_blit_program
406 {
407 public:
408 brw_blorp_blit_program(struct brw_context *brw,
409 const brw_blorp_blit_prog_key *key);
410 ~brw_blorp_blit_program();
411
412 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
413
414 brw_blorp_prog_data prog_data;
415
416 private:
417 void alloc_regs();
418 void alloc_push_const_regs(int base_reg);
419 void compute_frag_coords();
420 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
421 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
422 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
423 void kill_if_outside_dst_rect();
424 void translate_dst_to_src();
425 void single_to_blend();
426 void manual_blend();
427 void sample(struct brw_reg dst);
428 void texel_fetch(struct brw_reg dst);
429 void mcs_fetch();
430 void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
431 void texture_lookup(struct brw_reg dst, GLuint msg_type,
432 const sampler_message_arg *args, int num_args);
433 void render_target_write();
434
435 /**
436 * Base-2 logarithm of the maximum number of samples that can be blended.
437 */
438 static const unsigned LOG2_MAX_BLEND_SAMPLES = 2;
439
440 void *mem_ctx;
441 struct brw_context *brw;
442 const brw_blorp_blit_prog_key *key;
443 struct brw_compile func;
444
445 /* Thread dispatch header */
446 struct brw_reg R0;
447
448 /* Pixel X/Y coordinates (always in R1). */
449 struct brw_reg R1;
450
451 /* Push constants */
452 struct brw_reg dst_x0;
453 struct brw_reg dst_x1;
454 struct brw_reg dst_y0;
455 struct brw_reg dst_y1;
456 struct {
457 struct brw_reg multiplier;
458 struct brw_reg offset;
459 } x_transform, y_transform;
460
461 /* Data read from texture (4 vec16's per array element) */
462 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
463
464 /* Auxiliary storage for the contents of the MCS surface.
465 *
466 * Since the sampler always returns 8 registers worth of data, this is 8
467 * registers wide, even though we only use the first 2 registers of it.
468 */
469 struct brw_reg mcs_data;
470
471 /* X coordinates. We have two of them so that we can perform coordinate
472 * transformations easily.
473 */
474 struct brw_reg x_coords[2];
475
476 /* Y coordinates. We have two of them so that we can perform coordinate
477 * transformations easily.
478 */
479 struct brw_reg y_coords[2];
480
481 /* Which element of x_coords and y_coords is currently in use.
482 */
483 int xy_coord_index;
484
485 /* True if, at the point in the program currently being compiled, the
486 * sample index is known to be zero.
487 */
488 bool s_is_zero;
489
490 /* Register storing the sample index when s_is_zero is false. */
491 struct brw_reg sample_index;
492
493 /* Temporaries */
494 struct brw_reg t1;
495 struct brw_reg t2;
496
497 /* MRF used for sampling and render target writes */
498 GLuint base_mrf;
499 };
500
501 brw_blorp_blit_program::brw_blorp_blit_program(
502 struct brw_context *brw,
503 const brw_blorp_blit_prog_key *key)
504 : mem_ctx(ralloc_context(NULL)),
505 brw(brw),
506 key(key)
507 {
508 brw_init_compile(brw, &func, mem_ctx);
509 }
510
511 brw_blorp_blit_program::~brw_blorp_blit_program()
512 {
513 ralloc_free(mem_ctx);
514 }
515
516 const GLuint *
517 brw_blorp_blit_program::compile(struct brw_context *brw,
518 GLuint *program_size)
519 {
520 /* Sanity checks */
521 if (key->dst_tiled_w && key->rt_samples > 0) {
522 /* If the destination image is W tiled and multisampled, then the thread
523 * must be dispatched once per sample, not once per pixel. This is
524 * necessary because after conversion between W and Y tiling, there's no
525 * guarantee that all samples corresponding to a single pixel will still
526 * be together.
527 */
528 assert(key->persample_msaa_dispatch);
529 }
530
531 if (key->blend) {
532 /* We are blending, which means we won't have an opportunity to
533 * translate the tiling and sample count for the texture surface. So
534 * the surface state for the texture must be configured with the correct
535 * tiling and sample count.
536 */
537 assert(!key->src_tiled_w);
538 assert(key->tex_samples == key->src_samples);
539 assert(key->tex_layout == key->src_layout);
540 assert(key->tex_samples > 0);
541 }
542
543 if (key->persample_msaa_dispatch) {
544 /* It only makes sense to do persample dispatch if the render target is
545 * configured as multisampled.
546 */
547 assert(key->rt_samples > 0);
548 }
549
550 /* Make sure layout is consistent with sample count */
551 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
552 (key->tex_samples == 0));
553 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
554 (key->rt_samples == 0));
555 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
556 (key->src_samples == 0));
557 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
558 (key->dst_samples == 0));
559
560 /* Set up prog_data */
561 memset(&prog_data, 0, sizeof(prog_data));
562 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
563
564 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
565
566 alloc_regs();
567 compute_frag_coords();
568
569 /* Render target and texture hardware don't support W tiling. */
570 const bool rt_tiled_w = false;
571 const bool tex_tiled_w = false;
572
573 /* The address that data will be written to is determined by the
574 * coordinates supplied to the WM thread and the tiling and sample count of
575 * the render target, according to the formula:
576 *
577 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
578 *
579 * If the actual tiling and sample count of the destination surface are not
580 * the same as the configuration of the render target, then these
581 * coordinates are wrong and we have to adjust them to compensate for the
582 * difference.
583 */
584 if (rt_tiled_w != key->dst_tiled_w ||
585 key->rt_samples != key->dst_samples ||
586 key->rt_layout != key->dst_layout) {
587 encode_msaa(key->rt_samples, key->rt_layout);
588 /* Now (X, Y, S) = detile(rt_tiling, offset) */
589 translate_tiling(rt_tiled_w, key->dst_tiled_w);
590 /* Now (X, Y, S) = detile(dst_tiling, offset) */
591 decode_msaa(key->dst_samples, key->dst_layout);
592 }
593
594 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
595 *
596 * That is: X, Y and S now contain the true coordinates and sample index of
597 * the data that the WM thread should output.
598 *
599 * If we need to kill pixels that are outside the destination rectangle,
600 * now is the time to do it.
601 */
602
603 if (key->use_kill)
604 kill_if_outside_dst_rect();
605
606 /* Next, apply a translation to obtain coordinates in the source image. */
607 translate_dst_to_src();
608
609 /* If the source image is not multisampled, then we want to fetch sample
610 * number 0, because that's the only sample there is.
611 */
612 if (key->src_samples == 0)
613 s_is_zero = true;
614
615 /* X, Y, and S are now the coordinates of the pixel in the source image
616 * that we want to texture from. Exception: if we are blending, then S is
617 * irrelevant, because we are going to fetch all samples.
618 */
619 if (key->blend) {
620 if (brw->intel.gen == 6) {
621 /* Gen6 hardware an automatically blend using the SAMPLE message */
622 single_to_blend();
623 sample(texture_data[0]);
624 } else {
625 /* Gen7+ hardware doesn't automaticaly blend. */
626 manual_blend();
627 }
628 } else {
629 /* We aren't blending, which means we just want to fetch a single sample
630 * from the source surface. The address that we want to fetch from is
631 * related to the X, Y and S values according to the formula:
632 *
633 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
634 *
635 * If the actual tiling and sample count of the source surface are not
636 * the same as the configuration of the texture, then we need to adjust
637 * the coordinates to compensate for the difference.
638 */
639 if (tex_tiled_w != key->src_tiled_w ||
640 key->tex_samples != key->src_samples ||
641 key->tex_layout != key->src_layout) {
642 encode_msaa(key->src_samples, key->src_layout);
643 /* Now (X, Y, S) = detile(src_tiling, offset) */
644 translate_tiling(key->src_tiled_w, tex_tiled_w);
645 /* Now (X, Y, S) = detile(tex_tiling, offset) */
646 decode_msaa(key->tex_samples, key->tex_layout);
647 }
648
649 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
650 *
651 * In other words: X, Y, and S now contain values which, when passed to
652 * the texturing unit, will cause data to be read from the correct
653 * memory location. So we can fetch the texel now.
654 */
655 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
656 mcs_fetch();
657 texel_fetch(texture_data[0]);
658 }
659
660 /* Finally, write the fetched (or blended) value to the render target and
661 * terminate the thread.
662 */
663 render_target_write();
664 return brw_get_program(&func, program_size);
665 }
666
667 void
668 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
669 {
670 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
671 #define ALLOC_REG(name) \
672 this->name = \
673 brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
674
675 ALLOC_REG(dst_x0);
676 ALLOC_REG(dst_x1);
677 ALLOC_REG(dst_y0);
678 ALLOC_REG(dst_y1);
679 ALLOC_REG(x_transform.multiplier);
680 ALLOC_REG(x_transform.offset);
681 ALLOC_REG(y_transform.multiplier);
682 ALLOC_REG(y_transform.offset);
683 #undef CONST_LOC
684 #undef ALLOC_REG
685 }
686
687 void
688 brw_blorp_blit_program::alloc_regs()
689 {
690 int reg = 0;
691 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
692 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
693 prog_data.first_curbe_grf = reg;
694 alloc_push_const_regs(reg);
695 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
696 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
697 this->texture_data[i] =
698 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
699 reg += 8;
700 }
701 this->mcs_data =
702 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
703 for (int i = 0; i < 2; ++i) {
704 this->x_coords[i]
705 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
706 this->y_coords[i]
707 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
708 }
709 this->xy_coord_index = 0;
710 this->sample_index
711 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
712 this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
713 this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
714
715 /* Make sure we didn't run out of registers */
716 assert(reg <= GEN7_MRF_HACK_START);
717
718 int mrf = 2;
719 this->base_mrf = mrf;
720 }
721
722 /* In the code that follows, X and Y can be used to quickly refer to the
723 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
724 * prime") to the inactive elements.
725 *
726 * S can be used to quickly refer to sample_index.
727 */
728 #define X x_coords[xy_coord_index]
729 #define Y y_coords[xy_coord_index]
730 #define Xp x_coords[!xy_coord_index]
731 #define Yp y_coords[!xy_coord_index]
732 #define S sample_index
733
734 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
735 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
736 */
737 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
738
739 /**
740 * Emit code to compute the X and Y coordinates of the pixels being rendered
741 * by this WM invocation.
742 *
743 * Assuming the render target is set up for Y tiling, these (X, Y) values are
744 * related to the address offset where outputs will be written by the formula:
745 *
746 * (X, Y, S) = decode_msaa(detile(offset)).
747 *
748 * (See brw_blorp_blit_program).
749 */
750 void
751 brw_blorp_blit_program::compute_frag_coords()
752 {
753 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
754 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
755 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
756 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
757 *
758 * Pixels within a subspan are laid out in this arrangement:
759 * 0 1
760 * 2 3
761 *
762 * So, to compute the coordinates of each pixel, we need to read every 2nd
763 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
764 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
765 * In other words, the data we want to access is R1.4<2;4,0>UW.
766 *
767 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
768 * result, since pixels n+1 and n+3 are in the right half of the subspan.
769 */
770 brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
771
772 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
773 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
774 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
775 * R1.4<2;4,0>UW).
776 *
777 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
778 * pixels n+2 and n+3 are in the bottom half of the subspan.
779 */
780 brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
781
782 if (key->persample_msaa_dispatch) {
783 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples > 0.
784 * Therefore, subspan 0 will represent sample 0, subspan 1 will
785 * represent sample 1, and so on.
786 *
787 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1, 1,
788 * 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to populate a
789 * temporary variable with the sequence (0, 1, 2, 3), and then copy from
790 * it using vstride=1, width=4, hstride=0.
791 *
792 * TODO: implement the necessary calculation for 8x multisampling.
793 */
794 brw_MOV(&func, t1, brw_imm_v(0x3210));
795 brw_MOV(&func, S, stride(t1, 1, 4, 0));
796 s_is_zero = false;
797 } else {
798 /* Either the destination surface is single-sampled, or the WM will be
799 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
800 * per pixel). In either case, it's not meaningful to compute a sample
801 * value. Just set it to 0.
802 */
803 s_is_zero = true;
804 }
805 }
806
807 /**
808 * Emit code to compensate for the difference between Y and W tiling.
809 *
810 * This code modifies the X and Y coordinates according to the formula:
811 *
812 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
813 *
814 * (See brw_blorp_blit_program).
815 *
816 * It can only translate between W and Y tiling, so new_tiling and old_tiling
817 * are booleans where true represents W tiling and false represents Y tiling.
818 */
819 void
820 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
821 {
822 if (old_tiled_w == new_tiled_w)
823 return;
824
825 /* In the code that follows, we can safely assume that S = 0, because W
826 * tiling formats always use IMS layout.
827 */
828 assert(s_is_zero);
829
830 if (new_tiled_w) {
831 /* Given X and Y coordinates that describe an address using Y tiling,
832 * translate to the X and Y coordinates that describe the same address
833 * using W tiling.
834 *
835 * If we break down the low order bits of X and Y, using a
836 * single letter to represent each low-order bit:
837 *
838 * X = A << 7 | 0bBCDEFGH
839 * Y = J << 5 | 0bKLMNP (1)
840 *
841 * Then we can apply the Y tiling formula to see the memory offset being
842 * addressed:
843 *
844 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
845 *
846 * If we apply the W detiling formula to this memory location, that the
847 * corresponding X' and Y' coordinates are:
848 *
849 * X' = A << 6 | 0bBCDPFH (3)
850 * Y' = J << 6 | 0bKLMNEG
851 *
852 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
853 * we need to make the following computation:
854 *
855 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
856 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
857 */
858 brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
859 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
860 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
861 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
862 brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
863 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
864 brw_OR(&func, Xp, t1, t2);
865 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
866 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
867 brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
868 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
869 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
870 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
871 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
872 brw_OR(&func, Yp, t1, t2);
873 SWAP_XY_AND_XPYP();
874 } else {
875 /* Applying the same logic as above, but in reverse, we obtain the
876 * formulas:
877 *
878 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
879 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
880 */
881 brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
882 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
883 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
884 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
885 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
886 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
887 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
888 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
889 | (Y & 0b1) << 1 */
890 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
891 brw_OR(&func, Xp, t1, t2);
892 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
893 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
894 brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
895 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
896 brw_OR(&func, Yp, t1, t2);
897 SWAP_XY_AND_XPYP();
898 }
899 }
900
901 /**
902 * Emit code to compensate for the difference between MSAA and non-MSAA
903 * surfaces.
904 *
905 * This code modifies the X and Y coordinates according to the formula:
906 *
907 * (X', Y', S') = encode_msaa_4x(X, Y, S)
908 *
909 * (See brw_blorp_blit_program).
910 */
911 void
912 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
913 intel_msaa_layout layout)
914 {
915 switch (layout) {
916 case INTEL_MSAA_LAYOUT_NONE:
917 /* No translation necessary, and S should already be zero. */
918 assert(s_is_zero);
919 break;
920 case INTEL_MSAA_LAYOUT_CMS:
921 /* We can't compensate for compressed layout since at this point in the
922 * program we haven't read from the MCS buffer.
923 */
924 assert(!"Bad layout in encode_msaa");
925 break;
926 case INTEL_MSAA_LAYOUT_UMS:
927 /* No translation necessary. */
928 break;
929 case INTEL_MSAA_LAYOUT_IMS:
930 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
931 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
932 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
933 */
934 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
935 if (!s_is_zero) {
936 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
937 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
938 }
939 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
940 | (S & 0b1) << 1 */
941 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
942 brw_OR(&func, Xp, t1, t2);
943 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
944 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
945 if (!s_is_zero) {
946 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
947 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
948 }
949 brw_AND(&func, t2, Y, brw_imm_uw(1));
950 brw_OR(&func, Yp, t1, t2);
951 SWAP_XY_AND_XPYP();
952 s_is_zero = true;
953 break;
954 }
955 }
956
957 /**
958 * Emit code to compensate for the difference between MSAA and non-MSAA
959 * surfaces.
960 *
961 * This code modifies the X and Y coordinates according to the formula:
962 *
963 * (X', Y', S) = decode_msaa(num_samples, X, Y, S)
964 *
965 * (See brw_blorp_blit_program).
966 */
967 void
968 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
969 intel_msaa_layout layout)
970 {
971 switch (layout) {
972 case INTEL_MSAA_LAYOUT_NONE:
973 /* No translation necessary, and S should already be zero. */
974 assert(s_is_zero);
975 break;
976 case INTEL_MSAA_LAYOUT_CMS:
977 /* We can't compensate for compressed layout since at this point in the
978 * program we don't have access to the MCS buffer.
979 */
980 assert(!"Bad layout in encode_msaa");
981 break;
982 case INTEL_MSAA_LAYOUT_UMS:
983 /* No translation necessary. */
984 break;
985 case INTEL_MSAA_LAYOUT_IMS:
986 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
987 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
988 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
989 * S = (Y & 0b10) | (X & 0b10) >> 1
990 */
991 assert(s_is_zero);
992 brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
993 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
994 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
995 brw_OR(&func, Xp, t1, t2);
996 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
997 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
998 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
999 brw_OR(&func, Yp, t1, t2);
1000 brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1001 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1002 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1003 brw_OR(&func, S, t1, t2);
1004 s_is_zero = false;
1005 SWAP_XY_AND_XPYP();
1006 break;
1007 }
1008 }
1009
1010 /**
1011 * Emit code that kills pixels whose X and Y coordinates are outside the
1012 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
1013 * dst_x1, dst_y1).
1014 */
1015 void
1016 brw_blorp_blit_program::kill_if_outside_dst_rect()
1017 {
1018 struct brw_reg f0 = brw_flag_reg();
1019 struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1020 struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
1021
1022 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
1023 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
1024 brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
1025 brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
1026
1027 brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1028 brw_push_insn_state(&func);
1029 brw_set_mask_control(&func, BRW_MASK_DISABLE);
1030 brw_AND(&func, g1, f0, g1);
1031 brw_pop_insn_state(&func);
1032 }
1033
1034 /**
1035 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1036 * coordinates.
1037 */
1038 void
1039 brw_blorp_blit_program::translate_dst_to_src()
1040 {
1041 brw_MUL(&func, Xp, X, x_transform.multiplier);
1042 brw_MUL(&func, Yp, Y, y_transform.multiplier);
1043 brw_ADD(&func, Xp, Xp, x_transform.offset);
1044 brw_ADD(&func, Yp, Yp, y_transform.offset);
1045 SWAP_XY_AND_XPYP();
1046 }
1047
1048 /**
1049 * Emit code to transform the X and Y coordinates as needed for blending
1050 * together the different samples in an MSAA texture.
1051 */
1052 void
1053 brw_blorp_blit_program::single_to_blend()
1054 {
1055 /* When looking up samples in an MSAA texture using the SAMPLE message,
1056 * Gen6 requires the texture coordinates to be odd integers (so that they
1057 * correspond to the center of a 2x2 block representing the four samples
1058 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1059 * each by 2 and then add 1.
1060 */
1061 brw_SHL(&func, t1, X, brw_imm_w(1));
1062 brw_SHL(&func, t2, Y, brw_imm_w(1));
1063 brw_ADD(&func, Xp, t1, brw_imm_w(1));
1064 brw_ADD(&func, Yp, t2, brw_imm_w(1));
1065 SWAP_XY_AND_XPYP();
1066 }
1067
1068
1069 /**
1070 * Count the number of trailing 1 bits in the given value. For example:
1071 *
1072 * count_trailing_one_bits(0) == 0
1073 * count_trailing_one_bits(7) == 3
1074 * count_trailing_one_bits(11) == 2
1075 */
1076 inline int count_trailing_one_bits(unsigned value)
1077 {
1078 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1079 return __builtin_ctz(~value);
1080 #else
1081 return _mesa_bitcount(value & ~(value + 1));
1082 #endif
1083 }
1084
1085
1086 void
1087 brw_blorp_blit_program::manual_blend()
1088 {
1089 /* TODO: support num_samples != 4 */
1090 const int num_samples = 4;
1091
1092 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1093 mcs_fetch();
1094
1095 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1096 *
1097 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1098 *
1099 * This ensures that when all samples have the same value, no numerical
1100 * precision is lost, since each addition operation always adds two equal
1101 * values, and summing two equal floating point values does not lose
1102 * precision.
1103 *
1104 * We perform this computation by treating the texture_data array as a
1105 * stack and performing the following operations:
1106 *
1107 * - push sample 0 onto stack
1108 * - push sample 1 onto stack
1109 * - add top two stack entries
1110 * - push sample 2 onto stack
1111 * - push sample 3 onto stack
1112 * - add top two stack entries
1113 * - add top two stack entries
1114 * - divide top stack entry by 4
1115 *
1116 * Note that after pushing sample i onto the stack, the number of add
1117 * operations we do is equal to the number of trailing 1 bits in i. This
1118 * works provided the total number of samples is a power of two, which it
1119 * always is for i965.
1120 *
1121 * For integer formats, we replace the add operations with average
1122 * operations and skip the final division.
1123 */
1124 typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *,
1125 struct brw_reg,
1126 struct brw_reg,
1127 struct brw_reg);
1128 brw_op2_ptr combine_op =
1129 key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG;
1130 unsigned stack_depth = 0;
1131 for (int i = 0; i < num_samples; ++i) {
1132 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1133
1134 /* Push sample i onto the stack */
1135 assert(stack_depth < ARRAY_SIZE(texture_data));
1136 if (i == 0) {
1137 s_is_zero = true;
1138 } else {
1139 s_is_zero = false;
1140 brw_MOV(&func, S, brw_imm_uw(i));
1141 }
1142 texel_fetch(texture_data[stack_depth++]);
1143
1144 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1145 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1146 * suggests an optimization:
1147 *
1148 * "A simple optimization with probable large return in
1149 * performance is to compare the MCS value to zero (indicating
1150 * all samples are on sample slice 0), and sample only from
1151 * sample slice 0 using ld2dss if MCS is zero."
1152 *
1153 * Note that in the case where the MCS value is zero, sampling from
1154 * sample slice 0 using ld2dss and sampling from sample 0 using
1155 * ld2dms are equivalent (since all samples are on sample slice 0).
1156 * Since we have already sampled from sample 0, all we need to do is
1157 * skip the remaining fetches and averaging if MCS is zero.
1158 */
1159 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
1160 mcs_data, brw_imm_ud(0));
1161 brw_IF(&func, BRW_EXECUTE_16);
1162 }
1163
1164 /* Do count_trailing_one_bits(i) times */
1165 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1166 assert(stack_depth >= 2);
1167 --stack_depth;
1168
1169 /* TODO: should use a smaller loop bound for non_RGBA formats */
1170 for (int k = 0; k < 4; ++k) {
1171 combine_op(&func, offset(texture_data[stack_depth - 1], 2*k),
1172 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1173 offset(vec8(texture_data[stack_depth]), 2*k));
1174 }
1175 }
1176 }
1177
1178 /* We should have just 1 sample on the stack now. */
1179 assert(stack_depth == 1);
1180
1181 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1182 /* Scale the result down by a factor of num_samples */
1183 /* TODO: should use a smaller loop bound for non-RGBA formats */
1184 for (int j = 0; j < 4; ++j) {
1185 brw_MUL(&func, offset(texture_data[0], 2*j),
1186 offset(vec8(texture_data[0]), 2*j),
1187 brw_imm_f(1.0/num_samples));
1188 }
1189 }
1190
1191 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1192 brw_ENDIF(&func);
1193 }
1194
1195 /**
1196 * Emit code to look up a value in the texture using the SAMPLE message (which
1197 * does blending of MSAA surfaces).
1198 */
1199 void
1200 brw_blorp_blit_program::sample(struct brw_reg dst)
1201 {
1202 static const sampler_message_arg args[2] = {
1203 SAMPLER_MESSAGE_ARG_U_FLOAT,
1204 SAMPLER_MESSAGE_ARG_V_FLOAT
1205 };
1206
1207 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
1208 }
1209
1210 /**
1211 * Emit code to look up a value in the texture using the SAMPLE_LD message
1212 * (which does a simple texel fetch).
1213 */
1214 void
1215 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1216 {
1217 static const sampler_message_arg gen6_args[5] = {
1218 SAMPLER_MESSAGE_ARG_U_INT,
1219 SAMPLER_MESSAGE_ARG_V_INT,
1220 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1221 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1222 SAMPLER_MESSAGE_ARG_SI_INT
1223 };
1224 static const sampler_message_arg gen7_ld_args[3] = {
1225 SAMPLER_MESSAGE_ARG_U_INT,
1226 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1227 SAMPLER_MESSAGE_ARG_V_INT
1228 };
1229 static const sampler_message_arg gen7_ld2dss_args[3] = {
1230 SAMPLER_MESSAGE_ARG_SI_INT,
1231 SAMPLER_MESSAGE_ARG_U_INT,
1232 SAMPLER_MESSAGE_ARG_V_INT
1233 };
1234 static const sampler_message_arg gen7_ld2dms_args[4] = {
1235 SAMPLER_MESSAGE_ARG_SI_INT,
1236 SAMPLER_MESSAGE_ARG_MCS_INT,
1237 SAMPLER_MESSAGE_ARG_U_INT,
1238 SAMPLER_MESSAGE_ARG_V_INT
1239 };
1240
1241 switch (brw->intel.gen) {
1242 case 6:
1243 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1244 s_is_zero ? 2 : 5);
1245 break;
1246 case 7:
1247 switch (key->tex_layout) {
1248 case INTEL_MSAA_LAYOUT_IMS:
1249 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1250 * Format):
1251 *
1252 * If this field is MSFMT_DEPTH_STENCIL
1253 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1254 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1255 *
1256 * So fall through to emit the same message as we use for
1257 * INTEL_MSAA_LAYOUT_CMS.
1258 */
1259 case INTEL_MSAA_LAYOUT_CMS:
1260 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
1261 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1262 break;
1263 case INTEL_MSAA_LAYOUT_UMS:
1264 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1265 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1266 break;
1267 case INTEL_MSAA_LAYOUT_NONE:
1268 assert(s_is_zero);
1269 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1270 ARRAY_SIZE(gen7_ld_args));
1271 break;
1272 }
1273 break;
1274 default:
1275 assert(!"Should not get here.");
1276 break;
1277 };
1278 }
1279
1280 void
1281 brw_blorp_blit_program::mcs_fetch()
1282 {
1283 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1284 SAMPLER_MESSAGE_ARG_U_INT,
1285 SAMPLER_MESSAGE_ARG_V_INT
1286 };
1287 texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
1288 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1289 }
1290
1291 void
1292 brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
1293 struct brw_reg dst)
1294 {
1295 brw_MOV(&func, vec8(dst), vec8(src));
1296 brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
1297 brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
1298 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1299 }
1300
1301 void
1302 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1303 GLuint msg_type,
1304 const sampler_message_arg *args,
1305 int num_args)
1306 {
1307 struct brw_reg mrf =
1308 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1309 for (int arg = 0; arg < num_args; ++arg) {
1310 switch (args[arg]) {
1311 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1312 expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
1313 break;
1314 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1315 expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
1316 break;
1317 case SAMPLER_MESSAGE_ARG_U_INT:
1318 expand_to_32_bits(X, mrf);
1319 break;
1320 case SAMPLER_MESSAGE_ARG_V_INT:
1321 expand_to_32_bits(Y, mrf);
1322 break;
1323 case SAMPLER_MESSAGE_ARG_SI_INT:
1324 /* Note: on Gen7, this code may be reached with s_is_zero==true
1325 * because in Gen7's ld2dss message, the sample index is the first
1326 * argument. When this happens, we need to move a 0 into the
1327 * appropriate message register.
1328 */
1329 if (s_is_zero)
1330 brw_MOV(&func, mrf, brw_imm_ud(0));
1331 else
1332 expand_to_32_bits(S, mrf);
1333 break;
1334 case SAMPLER_MESSAGE_ARG_MCS_INT:
1335 switch (key->tex_layout) {
1336 case INTEL_MSAA_LAYOUT_CMS:
1337 brw_MOV(&func, mrf, mcs_data);
1338 break;
1339 case INTEL_MSAA_LAYOUT_IMS:
1340 /* When sampling from an IMS surface, MCS data is not relevant,
1341 * and the hardware ignores it. So don't bother populating it.
1342 */
1343 break;
1344 default:
1345 /* We shouldn't be trying to send MCS data with any other
1346 * layouts.
1347 */
1348 assert (!"Unsupported layout for MCS data");
1349 break;
1350 }
1351 break;
1352 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1353 brw_MOV(&func, mrf, brw_imm_ud(0));
1354 break;
1355 }
1356 mrf.nr += 2;
1357 }
1358
1359 brw_SAMPLE(&func,
1360 retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1361 base_mrf /* msg_reg_nr */,
1362 brw_message_reg(base_mrf) /* src0 */,
1363 BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1364 0 /* sampler */,
1365 WRITEMASK_XYZW,
1366 msg_type,
1367 8 /* response_length. TODO: should be smaller for non-RGBA formats? */,
1368 mrf.nr - base_mrf /* msg_length */,
1369 0 /* header_present */,
1370 BRW_SAMPLER_SIMD_MODE_SIMD16,
1371 BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1372 }
1373
1374 #undef X
1375 #undef Y
1376 #undef U
1377 #undef V
1378 #undef S
1379 #undef SWAP_XY_AND_XPYP
1380
1381 void
1382 brw_blorp_blit_program::render_target_write()
1383 {
1384 struct brw_reg mrf_rt_write =
1385 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1386 int mrf_offset = 0;
1387
1388 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1389 * so that the render target knows which pixels we killed.
1390 */
1391 bool use_header = key->use_kill;
1392 if (use_header) {
1393 /* Copy R0/1 to MRF */
1394 brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1395 retype(R0, BRW_REGISTER_TYPE_UD));
1396 mrf_offset += 2;
1397 }
1398
1399 /* Copy texture data to MRFs */
1400 for (int i = 0; i < 4; ++i) {
1401 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1402 brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1403 offset(vec8(texture_data[0]), 2*i));
1404 mrf_offset += 2;
1405 }
1406
1407 /* Now write to the render target and terminate the thread */
1408 brw_fb_WRITE(&func,
1409 16 /* dispatch_width */,
1410 base_mrf /* msg_reg_nr */,
1411 mrf_rt_write /* src0 */,
1412 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
1413 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
1414 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1415 0 /* response_length */,
1416 true /* eot */,
1417 use_header);
1418 }
1419
1420
1421 void
1422 brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
1423 bool mirror)
1424 {
1425 if (!mirror) {
1426 /* When not mirroring a coordinate (say, X), we need:
1427 * x' - src_x0 = x - dst_x0
1428 * Therefore:
1429 * x' = 1*x + (src_x0 - dst_x0)
1430 */
1431 multiplier = 1;
1432 offset = src0 - dst0;
1433 } else {
1434 /* When mirroring X we need:
1435 * x' - src_x0 = dst_x1 - x - 1
1436 * Therefore:
1437 * x' = -1*x + (src_x0 + dst_x1 - 1)
1438 */
1439 multiplier = -1;
1440 offset = src0 + dst1 - 1;
1441 }
1442 }
1443
1444
1445 /**
1446 * Determine which MSAA layout the GPU pipeline should be configured for,
1447 * based on the chip generation, the number of samples, and the true layout of
1448 * the image in memory.
1449 */
1450 inline intel_msaa_layout
1451 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1452 intel_msaa_layout true_layout)
1453 {
1454 if (num_samples == 0) {
1455 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1456 * format buffers, by transforming coordinates appropriately.
1457 */
1458 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1459 true_layout == INTEL_MSAA_LAYOUT_IMS);
1460 return INTEL_MSAA_LAYOUT_NONE;
1461 } else {
1462 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1463 }
1464
1465 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1466 if (brw->intel.gen == 6) {
1467 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1468 }
1469
1470 return true_layout;
1471 }
1472
1473
1474 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1475 struct intel_mipmap_tree *src_mt,
1476 struct intel_mipmap_tree *dst_mt,
1477 GLuint src_x0, GLuint src_y0,
1478 GLuint dst_x0, GLuint dst_y0,
1479 GLuint dst_x1, GLuint dst_y1,
1480 bool mirror_x, bool mirror_y)
1481 {
1482 src.set(brw, src_mt, 0, 0);
1483 dst.set(brw, dst_mt, 0, 0);
1484
1485 use_wm_prog = true;
1486 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1487
1488 /* texture_data_type indicates the register type that should be used to
1489 * manipulate texture data.
1490 */
1491 switch (_mesa_get_format_datatype(src_mt->format)) {
1492 case GL_UNSIGNED_NORMALIZED:
1493 case GL_SIGNED_NORMALIZED:
1494 case GL_FLOAT:
1495 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1496 break;
1497 case GL_UNSIGNED_INT:
1498 if (src_mt->format == MESA_FORMAT_S8) {
1499 /* We process stencil as though it's an unsigned normalized color */
1500 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1501 } else {
1502 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1503 }
1504 break;
1505 case GL_INT:
1506 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1507 break;
1508 default:
1509 assert(!"Unrecognized blorp format");
1510 break;
1511 }
1512
1513 if (brw->intel.gen > 6) {
1514 /* Gen7's rendering hardware only supports the IMS layout for depth and
1515 * stencil render targets. Blorp always maps its destination surface as
1516 * a color render target (even if it's actually a depth or stencil
1517 * buffer). So if the destination is IMS, we'll have to map it as a
1518 * single-sampled texture and interleave the samples ourselves.
1519 */
1520 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1521 dst.num_samples = 0;
1522 }
1523
1524 if (dst.map_stencil_as_y_tiled && dst.num_samples > 0) {
1525 /* If the destination surface is a W-tiled multisampled stencil buffer
1526 * that we're mapping as Y tiled, then we need to arrange for the WM
1527 * program to run once per sample rather than once per pixel, because
1528 * the memory layout of related samples doesn't match between W and Y
1529 * tiling.
1530 */
1531 wm_prog_key.persample_msaa_dispatch = true;
1532 }
1533
1534 if (src.num_samples > 0 && dst.num_samples > 0) {
1535 /* We are blitting from a multisample buffer to a multisample buffer, so
1536 * we must preserve samples within a pixel. This means we have to
1537 * arrange for the WM program to run once per sample rather than once
1538 * per pixel.
1539 */
1540 wm_prog_key.persample_msaa_dispatch = true;
1541 }
1542
1543 /* The render path must be configured to use the same number of samples as
1544 * the destination buffer.
1545 */
1546 num_samples = dst.num_samples;
1547
1548 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1549 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1550 base_format != GL_STENCIL_INDEX &&
1551 src_mt->num_samples > 0 && dst_mt->num_samples == 0) {
1552 /* We are downsampling a color buffer, so blend. */
1553 wm_prog_key.blend = true;
1554 }
1555
1556 /* src_samples and dst_samples are the true sample counts */
1557 wm_prog_key.src_samples = src_mt->num_samples;
1558 wm_prog_key.dst_samples = dst_mt->num_samples;
1559
1560 /* tex_samples and rt_samples are the sample counts that are set up in
1561 * SURFACE_STATE.
1562 */
1563 wm_prog_key.tex_samples = src.num_samples;
1564 wm_prog_key.rt_samples = dst.num_samples;
1565
1566 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1567 * use to access the source and destination surfaces.
1568 */
1569 wm_prog_key.tex_layout =
1570 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1571 wm_prog_key.rt_layout =
1572 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1573
1574 /* src_layout and dst_layout indicate the true MSAA layout used by src and
1575 * dst.
1576 */
1577 wm_prog_key.src_layout = src_mt->msaa_layout;
1578 wm_prog_key.dst_layout = dst_mt->msaa_layout;
1579
1580 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1581 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1582 x0 = wm_push_consts.dst_x0 = dst_x0;
1583 y0 = wm_push_consts.dst_y0 = dst_y0;
1584 x1 = wm_push_consts.dst_x1 = dst_x1;
1585 y1 = wm_push_consts.dst_y1 = dst_y1;
1586 wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
1587 wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
1588
1589 if (dst.num_samples == 0 && dst_mt->num_samples > 0) {
1590 /* We must expand the rectangle we send through the rendering pipeline,
1591 * to account for the fact that we are mapping the destination region as
1592 * single-sampled when it is in fact multisampled. We must also align
1593 * it to a multiple of the multisampling pattern, because the
1594 * differences between multisampled and single-sampled surface formats
1595 * will mean that pixels are scrambled within the multisampling pattern.
1596 * TODO: what if this makes the coordinates too large?
1597 *
1598 * Note: this only works if the destination surface uses the IMS layout.
1599 * If it's UMS, then we have no choice but to set up the rendering
1600 * pipeline as multisampled.
1601 */
1602 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
1603 x0 = (x0 * 2) & ~3;
1604 y0 = (y0 * 2) & ~3;
1605 x1 = ALIGN(x1 * 2, 4);
1606 y1 = ALIGN(y1 * 2, 4);
1607 wm_prog_key.use_kill = true;
1608 }
1609
1610 if (dst.map_stencil_as_y_tiled) {
1611 /* We must modify the rectangle we send through the rendering pipeline,
1612 * to account for the fact that we are mapping it as Y-tiled when it is
1613 * in fact W-tiled. Y tiles have dimensions 128x32 whereas W tiles have
1614 * dimensions 64x64. We must also align it to a multiple of the tile
1615 * size, because the differences between W and Y tiling formats will
1616 * mean that pixels are scrambled within the tile.
1617 *
1618 * Note: if the destination surface configured to use IMS layout, then
1619 * the effective tile size we need to align it to is smaller, because
1620 * each pixel covers a 2x2 or a 4x2 block of samples.
1621 *
1622 * TODO: what if this makes the coordinates too large?
1623 */
1624 unsigned x_align = 64, y_align = 64;
1625 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
1626 x_align /= (dst_mt->num_samples == 4 ? 2 : 4);
1627 y_align /= 2;
1628 }
1629 x0 = (x0 & ~(x_align - 1)) * 2;
1630 y0 = (y0 & ~(y_align - 1)) / 2;
1631 x1 = ALIGN(x1, x_align) * 2;
1632 y1 = ALIGN(y1, y_align) / 2;
1633 wm_prog_key.use_kill = true;
1634 }
1635 }
1636
1637 uint32_t
1638 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
1639 brw_blorp_prog_data **prog_data) const
1640 {
1641 uint32_t prog_offset;
1642 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1643 &this->wm_prog_key, sizeof(this->wm_prog_key),
1644 &prog_offset, prog_data)) {
1645 brw_blorp_blit_program prog(brw, &this->wm_prog_key);
1646 GLuint program_size;
1647 const GLuint *program = prog.compile(brw, &program_size);
1648 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1649 &this->wm_prog_key, sizeof(this->wm_prog_key),
1650 program, program_size,
1651 &prog.prog_data, sizeof(prog.prog_data),
1652 &prog_offset, prog_data);
1653 }
1654 return prog_offset;
1655 }