i965/blorp: wrap MUL (/brw_MUL(&func, /emit_mul(/)
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_blit.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/teximage.h"
25 #include "main/fbobject.h"
26 #include "main/renderbuffer.h"
27
28 #include "intel_fbo.h"
29
30 #include "brw_blorp.h"
31 #include "brw_context.h"
32 #include "brw_blorp_blit_eu.h"
33 #include "brw_state.h"
34
35 #define FILE_DEBUG_FLAG DEBUG_BLORP
36
37 /**
38 * Helper function for handling mirror image blits.
39 *
40 * If coord0 > coord1, swap them and invert the "mirror" boolean.
41 */
42 static inline void
43 fixup_mirroring(bool &mirror, GLfloat &coord0, GLfloat &coord1)
44 {
45 if (coord0 > coord1) {
46 mirror = !mirror;
47 GLfloat tmp = coord0;
48 coord0 = coord1;
49 coord1 = tmp;
50 }
51 }
52
53
54 /**
55 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
56 * destination coordinates.
57 *
58 * Return true if there is still blitting to do, false if all pixels got
59 * rejected by the clip and/or scissor.
60 *
61 * For clarity, the nomenclature of this function assumes we are clipping and
62 * scissoring the X coordinate; the exact same logic applies for Y
63 * coordinates.
64 *
65 * Note: this function may also be used to account for clipping of source
66 * coordinates, by swapping the roles of src and dst.
67 */
68 static inline bool
69 clip_or_scissor(bool mirror, GLfloat &src_x0, GLfloat &src_x1, GLfloat &dst_x0,
70 GLfloat &dst_x1, GLfloat fb_xmin, GLfloat fb_xmax)
71 {
72 float scale = (float) (src_x1 - src_x0) / (dst_x1 - dst_x0);
73 /* If we are going to scissor everything away, stop. */
74 if (!(fb_xmin < fb_xmax &&
75 dst_x0 < fb_xmax &&
76 fb_xmin < dst_x1 &&
77 dst_x0 < dst_x1)) {
78 return false;
79 }
80
81 /* Clip the destination rectangle, and keep track of how many pixels we
82 * clipped off of the left and right sides of it.
83 */
84 GLint pixels_clipped_left = 0;
85 GLint pixels_clipped_right = 0;
86 if (dst_x0 < fb_xmin) {
87 pixels_clipped_left = fb_xmin - dst_x0;
88 dst_x0 = fb_xmin;
89 }
90 if (fb_xmax < dst_x1) {
91 pixels_clipped_right = dst_x1 - fb_xmax;
92 dst_x1 = fb_xmax;
93 }
94
95 /* If we are mirrored, then before applying pixels_clipped_{left,right} to
96 * the source coordinates, we need to flip them to account for the
97 * mirroring.
98 */
99 if (mirror) {
100 GLint tmp = pixels_clipped_left;
101 pixels_clipped_left = pixels_clipped_right;
102 pixels_clipped_right = tmp;
103 }
104
105 /* Adjust the source rectangle to remove the pixels corresponding to those
106 * that were clipped/scissored out of the destination rectangle.
107 */
108 src_x0 += pixels_clipped_left * scale;
109 src_x1 -= pixels_clipped_right * scale;
110
111 return true;
112 }
113
114
115 static struct intel_mipmap_tree *
116 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
117 {
118 struct intel_mipmap_tree *mt = irb->mt;
119 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
120 mt = mt->stencil_mt;
121 return mt;
122 }
123
124
125 /**
126 * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
127 * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
128 * the physical layer holding sample 0. So, for example, if
129 * src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
130 * 4*n.
131 */
132 void
133 brw_blorp_blit_miptrees(struct brw_context *brw,
134 struct intel_mipmap_tree *src_mt,
135 unsigned src_level, unsigned src_layer,
136 struct intel_mipmap_tree *dst_mt,
137 unsigned dst_level, unsigned dst_layer,
138 float src_x0, float src_y0,
139 float src_x1, float src_y1,
140 float dst_x0, float dst_y0,
141 float dst_x1, float dst_y1,
142 GLenum filter, bool mirror_x, bool mirror_y)
143 {
144 /* Get ready to blit. This includes depth resolving the src and dst
145 * buffers if necessary. Note: it's not necessary to do a color resolve on
146 * the destination buffer because we use the standard render path to render
147 * to destination color buffers, and the standard render path is
148 * fast-color-aware.
149 */
150 intel_miptree_resolve_color(brw, src_mt);
151 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
152 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
153
154 DBG("%s from %s mt %p %d %d (%f,%f) (%f,%f)"
155 "to %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
156 __FUNCTION__,
157 _mesa_get_format_name(src_mt->format), src_mt,
158 src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
159 _mesa_get_format_name(dst_mt->format), dst_mt,
160 dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
161 mirror_x, mirror_y);
162
163 brw_blorp_blit_params params(brw,
164 src_mt, src_level, src_layer,
165 dst_mt, dst_level, dst_layer,
166 src_x0, src_y0,
167 src_x1, src_y1,
168 dst_x0, dst_y0,
169 dst_x1, dst_y1,
170 filter, mirror_x, mirror_y);
171 brw_blorp_exec(brw, &params);
172
173 intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
174 }
175
176 static void
177 do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
178 struct intel_renderbuffer *src_irb,
179 struct intel_renderbuffer *dst_irb,
180 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
181 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
182 GLenum filter, bool mirror_x, bool mirror_y)
183 {
184 /* Find source/dst miptrees */
185 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
186 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
187
188 /* Do the blit */
189 brw_blorp_blit_miptrees(brw,
190 src_mt, src_irb->mt_level, src_irb->mt_layer,
191 dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
192 srcX0, srcY0, srcX1, srcY1,
193 dstX0, dstY0, dstX1, dstY1,
194 filter, mirror_x, mirror_y);
195
196 intel_renderbuffer_set_needs_downsample(dst_irb);
197 }
198
199 static bool
200 color_formats_match(gl_format src_format, gl_format dst_format)
201 {
202 gl_format linear_src_format = _mesa_get_srgb_format_linear(src_format);
203 gl_format linear_dst_format = _mesa_get_srgb_format_linear(dst_format);
204
205 /* Normally, we require the formats to be equal. However, we also support
206 * blitting from ARGB to XRGB (discarding alpha), and from XRGB to ARGB
207 * (overriding alpha to 1.0 via blending).
208 */
209 return linear_src_format == linear_dst_format ||
210 (linear_src_format == MESA_FORMAT_XRGB8888 &&
211 linear_dst_format == MESA_FORMAT_ARGB8888) ||
212 (linear_src_format == MESA_FORMAT_ARGB8888 &&
213 linear_dst_format == MESA_FORMAT_XRGB8888);
214 }
215
216 static bool
217 formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
218 struct intel_renderbuffer *dst_irb)
219 {
220 /* Note: don't just check gl_renderbuffer::Format, because in some cases
221 * multiple gl_formats resolve to the same native type in the miptree (for
222 * example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit
223 * between those formats.
224 */
225 gl_format src_format = find_miptree(buffer_bit, src_irb)->format;
226 gl_format dst_format = find_miptree(buffer_bit, dst_irb)->format;
227
228 return color_formats_match(src_format, dst_format);
229 }
230
231 static bool
232 try_blorp_blit(struct brw_context *brw,
233 GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
234 GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
235 GLenum filter, GLbitfield buffer_bit)
236 {
237 struct gl_context *ctx = &brw->ctx;
238
239 /* Sync up the state of window system buffers. We need to do this before
240 * we go looking for the buffers.
241 */
242 intel_prepare_render(brw);
243
244 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
245 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
246
247 /* Detect if the blit needs to be mirrored */
248 bool mirror_x = false, mirror_y = false;
249 fixup_mirroring(mirror_x, srcX0, srcX1);
250 fixup_mirroring(mirror_x, dstX0, dstX1);
251 fixup_mirroring(mirror_y, srcY0, srcY1);
252 fixup_mirroring(mirror_y, dstY0, dstY1);
253
254 /* If the destination rectangle needs to be clipped or scissored, do so.
255 */
256 if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
257 draw_fb->_Xmin, draw_fb->_Xmax) &&
258 clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
259 draw_fb->_Ymin, draw_fb->_Ymax))) {
260 /* Everything got clipped/scissored away, so the blit was successful. */
261 return true;
262 }
263
264 /* If the source rectangle needs to be clipped or scissored, do so. */
265 if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
266 0, read_fb->Width) &&
267 clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
268 0, read_fb->Height))) {
269 /* Everything got clipped/scissored away, so the blit was successful. */
270 return true;
271 }
272
273 /* Account for the fact that in the system framebuffer, the origin is at
274 * the lower left.
275 */
276 if (_mesa_is_winsys_fbo(read_fb)) {
277 GLint tmp = read_fb->Height - srcY0;
278 srcY0 = read_fb->Height - srcY1;
279 srcY1 = tmp;
280 mirror_y = !mirror_y;
281 }
282 if (_mesa_is_winsys_fbo(draw_fb)) {
283 GLint tmp = draw_fb->Height - dstY0;
284 dstY0 = draw_fb->Height - dstY1;
285 dstY1 = tmp;
286 mirror_y = !mirror_y;
287 }
288
289 /* Find buffers */
290 struct intel_renderbuffer *src_irb;
291 struct intel_renderbuffer *dst_irb;
292 switch (buffer_bit) {
293 case GL_COLOR_BUFFER_BIT:
294 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
295 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
296 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
297 if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
298 return false;
299 }
300 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
301 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
302 if (dst_irb)
303 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
304 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
305 filter, mirror_x, mirror_y);
306 }
307 break;
308 case GL_DEPTH_BUFFER_BIT:
309 src_irb =
310 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
311 dst_irb =
312 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
313 if (!formats_match(buffer_bit, src_irb, dst_irb))
314 return false;
315 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
316 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
317 filter, mirror_x, mirror_y);
318 break;
319 case GL_STENCIL_BUFFER_BIT:
320 src_irb =
321 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
322 dst_irb =
323 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
324 if (!formats_match(buffer_bit, src_irb, dst_irb))
325 return false;
326 do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
327 srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
328 filter, mirror_x, mirror_y);
329 break;
330 default:
331 assert(false);
332 }
333
334 return true;
335 }
336
337 bool
338 brw_blorp_copytexsubimage(struct brw_context *brw,
339 struct gl_renderbuffer *src_rb,
340 struct gl_texture_image *dst_image,
341 int slice,
342 int srcX0, int srcY0,
343 int dstX0, int dstY0,
344 int width, int height)
345 {
346 struct gl_context *ctx = &brw->ctx;
347 struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
348 struct intel_texture_image *intel_image = intel_texture_image(dst_image);
349
350 /* Sync up the state of window system buffers. We need to do this before
351 * we go looking at the src renderbuffer's miptree.
352 */
353 intel_prepare_render(brw);
354
355 struct intel_mipmap_tree *src_mt = src_irb->mt;
356 struct intel_mipmap_tree *dst_mt = intel_image->mt;
357
358 /* BLORP is not supported before Gen6. */
359 if (brw->gen < 6 || brw->gen >= 8)
360 return false;
361
362 if (_mesa_get_format_base_format(src_mt->format) !=
363 _mesa_get_format_base_format(dst_mt->format)) {
364 return false;
365 }
366
367 /* We can't handle format conversions between Z24 and other formats since
368 * we have to lie about the surface format. See the comments in
369 * brw_blorp_surface_info::set().
370 */
371 if ((src_mt->format == MESA_FORMAT_X8_Z24) !=
372 (dst_mt->format == MESA_FORMAT_X8_Z24)) {
373 return false;
374 }
375
376 if (!brw->format_supported_as_render_target[dst_mt->format])
377 return false;
378
379 /* Source clipping shouldn't be necessary, since copytexsubimage (in
380 * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
381 * takes care of it.
382 *
383 * Destination clipping shouldn't be necessary since the restrictions on
384 * glCopyTexSubImage prevent the user from specifying a destination rectangle
385 * that falls outside the bounds of the destination texture.
386 * See error_check_subtexture_dimensions().
387 */
388
389 int srcY1 = srcY0 + height;
390 int srcX1 = srcX0 + width;
391 int dstX1 = dstX0 + width;
392 int dstY1 = dstY0 + height;
393
394 /* Account for the fact that in the system framebuffer, the origin is at
395 * the lower left.
396 */
397 bool mirror_y = false;
398 if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
399 GLint tmp = src_rb->Height - srcY0;
400 srcY0 = src_rb->Height - srcY1;
401 srcY1 = tmp;
402 mirror_y = true;
403 }
404
405 brw_blorp_blit_miptrees(brw,
406 src_mt, src_irb->mt_level, src_irb->mt_layer,
407 dst_mt, dst_image->Level, dst_image->Face + slice,
408 srcX0, srcY0, srcX1, srcY1,
409 dstX0, dstY0, dstX1, dstY1,
410 GL_NEAREST, false, mirror_y);
411
412 /* If we're copying to a packed depth stencil texture and the source
413 * framebuffer has separate stencil, we need to also copy the stencil data
414 * over.
415 */
416 src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
417 if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
418 src_rb != NULL) {
419 src_irb = intel_renderbuffer(src_rb);
420 src_mt = src_irb->mt;
421
422 if (src_mt->stencil_mt)
423 src_mt = src_mt->stencil_mt;
424 if (dst_mt->stencil_mt)
425 dst_mt = dst_mt->stencil_mt;
426
427 if (src_mt != dst_mt) {
428 brw_blorp_blit_miptrees(brw,
429 src_mt, src_irb->mt_level, src_irb->mt_layer,
430 dst_mt, dst_image->Level,
431 dst_image->Face + slice,
432 srcX0, srcY0, srcX1, srcY1,
433 dstX0, dstY0, dstX1, dstY1,
434 GL_NEAREST, false, mirror_y);
435 }
436 }
437
438 return true;
439 }
440
441
442 GLbitfield
443 brw_blorp_framebuffer(struct brw_context *brw,
444 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
445 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
446 GLbitfield mask, GLenum filter)
447 {
448 /* BLORP is not supported before Gen6. */
449 if (brw->gen < 6 || brw->gen >= 8)
450 return mask;
451
452 static GLbitfield buffer_bits[] = {
453 GL_COLOR_BUFFER_BIT,
454 GL_DEPTH_BUFFER_BIT,
455 GL_STENCIL_BUFFER_BIT,
456 };
457
458 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
459 if ((mask & buffer_bits[i]) &&
460 try_blorp_blit(brw,
461 srcX0, srcY0, srcX1, srcY1,
462 dstX0, dstY0, dstX1, dstY1,
463 filter, buffer_bits[i])) {
464 mask &= ~buffer_bits[i];
465 }
466 }
467
468 return mask;
469 }
470
471
472 /**
473 * Enum to specify the order of arguments in a sampler message
474 */
475 enum sampler_message_arg
476 {
477 SAMPLER_MESSAGE_ARG_U_FLOAT,
478 SAMPLER_MESSAGE_ARG_V_FLOAT,
479 SAMPLER_MESSAGE_ARG_U_INT,
480 SAMPLER_MESSAGE_ARG_V_INT,
481 SAMPLER_MESSAGE_ARG_SI_INT,
482 SAMPLER_MESSAGE_ARG_MCS_INT,
483 SAMPLER_MESSAGE_ARG_ZERO_INT,
484 };
485
486 /**
487 * Generator for WM programs used in BLORP blits.
488 *
489 * The bulk of the work done by the WM program is to wrap and unwrap the
490 * coordinate transformations used by the hardware to store surfaces in
491 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
492 * sample index for a multisampled surface) to a memory offset by the
493 * following formulas:
494 *
495 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
496 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
497 *
498 * For a single-sampled surface, or for a multisampled surface using
499 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
500 * function:
501 *
502 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
503 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
504 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
505 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
506 *
507 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
508 * embeds the sample number into bit 1 of the X and Y coordinates:
509 *
510 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
511 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
512 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
513 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
514 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
515 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
516 * S = (Y & 0b10) | (X & 0b10) >> 1
517 *
518 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
519 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
520 * the Y coordinate:
521 *
522 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
523 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
524 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
525 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
526 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
527 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
528 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
529 *
530 * For X tiling, tile() combines together the low-order bits of the X and Y
531 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
532 * bytes wide and 8 rows high:
533 *
534 * tile(x_tiled, X, Y, S) = A
535 * where A = tile_num << 12 | offset
536 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
537 * offset = (Y' & 0b111) << 9
538 * | (X & 0b111111111)
539 * X' = X * cpp
540 * Y' = Y + S * qpitch
541 * detile(x_tiled, A) = (X, Y, S)
542 * where X = X' / cpp
543 * Y = Y' % qpitch
544 * S = Y' / qpitch
545 * Y' = (tile_num / tile_pitch) << 3
546 * | (A & 0b111000000000) >> 9
547 * X' = (tile_num % tile_pitch) << 9
548 * | (A & 0b111111111)
549 *
550 * (In all tiling formulas, cpp is the number of bytes occupied by a single
551 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
552 * to fill the width of the surface, and qpitch is the spacing (in rows)
553 * between array slices).
554 *
555 * For Y tiling, tile() combines together the low-order bits of the X and Y
556 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
557 * bytes wide and 32 rows high:
558 *
559 * tile(y_tiled, X, Y, S) = A
560 * where A = tile_num << 12 | offset
561 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
562 * offset = (X' & 0b1110000) << 5
563 * | (Y' & 0b11111) << 4
564 * | (X' & 0b1111)
565 * X' = X * cpp
566 * Y' = Y + S * qpitch
567 * detile(y_tiled, A) = (X, Y, S)
568 * where X = X' / cpp
569 * Y = Y' % qpitch
570 * S = Y' / qpitch
571 * Y' = (tile_num / tile_pitch) << 5
572 * | (A & 0b111110000) >> 4
573 * X' = (tile_num % tile_pitch) << 7
574 * | (A & 0b111000000000) >> 5
575 * | (A & 0b1111)
576 *
577 * For W tiling, tile() combines together the low-order bits of the X and Y
578 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
579 * bytes wide and 64 rows high (note that W tiling is only used for stencil
580 * buffers, which always have cpp = 1 and S=0):
581 *
582 * tile(w_tiled, X, Y, S) = A
583 * where A = tile_num << 12 | offset
584 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
585 * offset = (X' & 0b111000) << 6
586 * | (Y' & 0b111100) << 3
587 * | (X' & 0b100) << 2
588 * | (Y' & 0b10) << 2
589 * | (X' & 0b10) << 1
590 * | (Y' & 0b1) << 1
591 * | (X' & 0b1)
592 * X' = X * cpp = X
593 * Y' = Y + S * qpitch
594 * detile(w_tiled, A) = (X, Y, S)
595 * where X = X' / cpp = X'
596 * Y = Y' % qpitch = Y'
597 * S = Y / qpitch = 0
598 * Y' = (tile_num / tile_pitch) << 6
599 * | (A & 0b111100000) >> 3
600 * | (A & 0b1000) >> 2
601 * | (A & 0b10) >> 1
602 * X' = (tile_num % tile_pitch) << 6
603 * | (A & 0b111000000000) >> 6
604 * | (A & 0b10000) >> 2
605 * | (A & 0b100) >> 1
606 * | (A & 0b1)
607 *
608 * Finally, for a non-tiled surface, tile() simply combines together the X and
609 * Y coordinates in the natural way:
610 *
611 * tile(untiled, X, Y, S) = A
612 * where A = Y * pitch + X'
613 * X' = X * cpp
614 * Y' = Y + S * qpitch
615 * detile(untiled, A) = (X, Y, S)
616 * where X = X' / cpp
617 * Y = Y' % qpitch
618 * S = Y' / qpitch
619 * X' = A % pitch
620 * Y' = A / pitch
621 *
622 * (In these formulas, pitch is the number of bytes occupied by a single row
623 * of samples).
624 */
625 class brw_blorp_blit_program : public brw_blorp_eu_emitter
626 {
627 public:
628 brw_blorp_blit_program(struct brw_context *brw,
629 const brw_blorp_blit_prog_key *key);
630
631 const GLuint *compile(struct brw_context *brw, GLuint *program_size,
632 FILE *dump_file = stdout);
633
634 brw_blorp_prog_data prog_data;
635
636 private:
637 void alloc_regs();
638 void alloc_push_const_regs(int base_reg);
639 void compute_frag_coords();
640 void translate_tiling(bool old_tiled_w, bool new_tiled_w);
641 void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
642 void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
643 void translate_dst_to_src();
644 void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
645 struct brw_reg clampX0, struct brw_reg clampY0,
646 struct brw_reg clampX1, struct brw_reg clampY1);
647 void single_to_blend();
648 void manual_blend_average(unsigned num_samples);
649 void manual_blend_bilinear(unsigned num_samples);
650 void sample(struct brw_reg dst);
651 void texel_fetch(struct brw_reg dst);
652 void mcs_fetch();
653 void texture_lookup(struct brw_reg dst, enum opcode op,
654 const sampler_message_arg *args, int num_args);
655 void render_target_write();
656
657 void emit_lrp(const struct brw_reg &dst,
658 const struct brw_reg &src1,
659 const struct brw_reg &src2,
660 const struct brw_reg &src3);
661
662 /**
663 * Base-2 logarithm of the maximum number of samples that can be blended.
664 */
665 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
666
667 struct brw_context *brw;
668 const brw_blorp_blit_prog_key *key;
669
670 /* Thread dispatch header */
671 struct brw_reg R0;
672
673 /* Pixel X/Y coordinates (always in R1). */
674 struct brw_reg R1;
675
676 /* Push constants */
677 struct brw_reg dst_x0;
678 struct brw_reg dst_x1;
679 struct brw_reg dst_y0;
680 struct brw_reg dst_y1;
681 /* Top right coordinates of the rectangular grid used for scaled blitting */
682 struct brw_reg rect_grid_x1;
683 struct brw_reg rect_grid_y1;
684 struct {
685 struct brw_reg multiplier;
686 struct brw_reg offset;
687 } x_transform, y_transform;
688
689 /* Data read from texture (4 vec16's per array element) */
690 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
691
692 /* Auxiliary storage for the contents of the MCS surface.
693 *
694 * Since the sampler always returns 8 registers worth of data, this is 8
695 * registers wide, even though we only use the first 2 registers of it.
696 */
697 struct brw_reg mcs_data;
698
699 /* X coordinates. We have two of them so that we can perform coordinate
700 * transformations easily.
701 */
702 struct brw_reg x_coords[2];
703
704 /* Y coordinates. We have two of them so that we can perform coordinate
705 * transformations easily.
706 */
707 struct brw_reg y_coords[2];
708
709 /* X, Y coordinates of the pixel from which we need to fetch the specific
710 * sample. These are used for multisample scaled blitting.
711 */
712 struct brw_reg x_sample_coords;
713 struct brw_reg y_sample_coords;
714
715 /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
716 struct brw_reg x_frac;
717 struct brw_reg y_frac;
718
719 /* Which element of x_coords and y_coords is currently in use.
720 */
721 int xy_coord_index;
722
723 /* True if, at the point in the program currently being compiled, the
724 * sample index is known to be zero.
725 */
726 bool s_is_zero;
727
728 /* Register storing the sample index when s_is_zero is false. */
729 struct brw_reg sample_index;
730
731 /* Temporaries */
732 struct brw_reg t1;
733 struct brw_reg t2;
734
735 /* MRF used for sampling and render target writes */
736 GLuint base_mrf;
737 };
738
739 brw_blorp_blit_program::brw_blorp_blit_program(
740 struct brw_context *brw,
741 const brw_blorp_blit_prog_key *key)
742 : brw_blorp_eu_emitter(brw),
743 brw(brw),
744 key(key)
745 {
746 }
747
748 const GLuint *
749 brw_blorp_blit_program::compile(struct brw_context *brw,
750 GLuint *program_size,
751 FILE *dump_file)
752 {
753 /* Sanity checks */
754 if (key->dst_tiled_w && key->rt_samples > 0) {
755 /* If the destination image is W tiled and multisampled, then the thread
756 * must be dispatched once per sample, not once per pixel. This is
757 * necessary because after conversion between W and Y tiling, there's no
758 * guarantee that all samples corresponding to a single pixel will still
759 * be together.
760 */
761 assert(key->persample_msaa_dispatch);
762 }
763
764 if (key->blend) {
765 /* We are blending, which means we won't have an opportunity to
766 * translate the tiling and sample count for the texture surface. So
767 * the surface state for the texture must be configured with the correct
768 * tiling and sample count.
769 */
770 assert(!key->src_tiled_w);
771 assert(key->tex_samples == key->src_samples);
772 assert(key->tex_layout == key->src_layout);
773 assert(key->tex_samples > 0);
774 }
775
776 if (key->persample_msaa_dispatch) {
777 /* It only makes sense to do persample dispatch if the render target is
778 * configured as multisampled.
779 */
780 assert(key->rt_samples > 0);
781 }
782
783 /* Make sure layout is consistent with sample count */
784 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
785 (key->tex_samples == 0));
786 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
787 (key->rt_samples == 0));
788 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
789 (key->src_samples == 0));
790 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
791 (key->dst_samples == 0));
792
793 /* Set up prog_data */
794 memset(&prog_data, 0, sizeof(prog_data));
795 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
796
797 alloc_regs();
798 compute_frag_coords();
799
800 /* Render target and texture hardware don't support W tiling. */
801 const bool rt_tiled_w = false;
802 const bool tex_tiled_w = false;
803
804 /* The address that data will be written to is determined by the
805 * coordinates supplied to the WM thread and the tiling and sample count of
806 * the render target, according to the formula:
807 *
808 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
809 *
810 * If the actual tiling and sample count of the destination surface are not
811 * the same as the configuration of the render target, then these
812 * coordinates are wrong and we have to adjust them to compensate for the
813 * difference.
814 */
815 if (rt_tiled_w != key->dst_tiled_w ||
816 key->rt_samples != key->dst_samples ||
817 key->rt_layout != key->dst_layout) {
818 encode_msaa(key->rt_samples, key->rt_layout);
819 /* Now (X, Y, S) = detile(rt_tiling, offset) */
820 translate_tiling(rt_tiled_w, key->dst_tiled_w);
821 /* Now (X, Y, S) = detile(dst_tiling, offset) */
822 decode_msaa(key->dst_samples, key->dst_layout);
823 }
824
825 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
826 *
827 * That is: X, Y and S now contain the true coordinates and sample index of
828 * the data that the WM thread should output.
829 *
830 * If we need to kill pixels that are outside the destination rectangle,
831 * now is the time to do it.
832 */
833
834 if (key->use_kill)
835 emit_kill_if_outside_rect(x_coords[xy_coord_index],
836 y_coords[xy_coord_index],
837 dst_x0, dst_x1, dst_y0, dst_y1);
838
839 /* Next, apply a translation to obtain coordinates in the source image. */
840 translate_dst_to_src();
841
842 /* If the source image is not multisampled, then we want to fetch sample
843 * number 0, because that's the only sample there is.
844 */
845 if (key->src_samples == 0)
846 s_is_zero = true;
847
848 /* X, Y, and S are now the coordinates of the pixel in the source image
849 * that we want to texture from. Exception: if we are blending, then S is
850 * irrelevant, because we are going to fetch all samples.
851 */
852 if (key->blend && !key->blit_scaled) {
853 if (brw->gen == 6) {
854 /* Gen6 hardware an automatically blend using the SAMPLE message */
855 single_to_blend();
856 sample(texture_data[0]);
857 } else {
858 /* Gen7+ hardware doesn't automaticaly blend. */
859 manual_blend_average(key->src_samples);
860 }
861 } else if(key->blend && key->blit_scaled) {
862 manual_blend_bilinear(key->src_samples);
863 } else {
864 /* We aren't blending, which means we just want to fetch a single sample
865 * from the source surface. The address that we want to fetch from is
866 * related to the X, Y and S values according to the formula:
867 *
868 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
869 *
870 * If the actual tiling and sample count of the source surface are not
871 * the same as the configuration of the texture, then we need to adjust
872 * the coordinates to compensate for the difference.
873 */
874 if ((tex_tiled_w != key->src_tiled_w ||
875 key->tex_samples != key->src_samples ||
876 key->tex_layout != key->src_layout) &&
877 !key->bilinear_filter) {
878 encode_msaa(key->src_samples, key->src_layout);
879 /* Now (X, Y, S) = detile(src_tiling, offset) */
880 translate_tiling(key->src_tiled_w, tex_tiled_w);
881 /* Now (X, Y, S) = detile(tex_tiling, offset) */
882 decode_msaa(key->tex_samples, key->tex_layout);
883 }
884
885 if (key->bilinear_filter) {
886 sample(texture_data[0]);
887 }
888 else {
889 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
890 *
891 * In other words: X, Y, and S now contain values which, when passed to
892 * the texturing unit, will cause data to be read from the correct
893 * memory location. So we can fetch the texel now.
894 */
895 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
896 mcs_fetch();
897 texel_fetch(texture_data[0]);
898 }
899 }
900
901 /* Finally, write the fetched (or blended) value to the render target and
902 * terminate the thread.
903 */
904 render_target_write();
905
906 return get_program(program_size, dump_file);
907 }
908
909 void
910 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
911 {
912 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
913 #define ALLOC_REG(name, type) \
914 this->name = \
915 retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
916 base_reg + CONST_LOC(name) / 32, \
917 (CONST_LOC(name) % 32) / 4), type)
918
919 ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
920 ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
921 ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
922 ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
923 ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
924 ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
925 ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
926 ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
927 ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
928 ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
929 #undef CONST_LOC
930 #undef ALLOC_REG
931 }
932
933 void
934 brw_blorp_blit_program::alloc_regs()
935 {
936 int reg = 0;
937 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
938 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
939 prog_data.first_curbe_grf = reg;
940 alloc_push_const_regs(reg);
941 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
942 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
943 this->texture_data[i] =
944 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
945 reg += 8;
946 }
947 this->mcs_data =
948 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
949
950 for (int i = 0; i < 2; ++i) {
951 this->x_coords[i]
952 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
953 reg += 2;
954 this->y_coords[i]
955 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
956 reg += 2;
957 }
958
959 if (key->blit_scaled && key->blend) {
960 this->x_sample_coords = brw_vec8_grf(reg, 0);
961 reg += 2;
962 this->y_sample_coords = brw_vec8_grf(reg, 0);
963 reg += 2;
964 this->x_frac = brw_vec8_grf(reg, 0);
965 reg += 2;
966 this->y_frac = brw_vec8_grf(reg, 0);
967 reg += 2;
968 }
969
970 this->xy_coord_index = 0;
971 this->sample_index
972 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
973 reg += 2;
974 this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
975 reg += 2;
976 this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
977 reg += 2;
978
979 /* Make sure we didn't run out of registers */
980 assert(reg <= GEN7_MRF_HACK_START);
981
982 int mrf = 2;
983 this->base_mrf = mrf;
984 }
985
986 /* In the code that follows, X and Y can be used to quickly refer to the
987 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
988 * prime") to the inactive elements.
989 *
990 * S can be used to quickly refer to sample_index.
991 */
992 #define X x_coords[xy_coord_index]
993 #define Y y_coords[xy_coord_index]
994 #define Xp x_coords[!xy_coord_index]
995 #define Yp y_coords[!xy_coord_index]
996 #define S sample_index
997
998 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
999 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
1000 */
1001 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
1002
1003 /**
1004 * Emit code to compute the X and Y coordinates of the pixels being rendered
1005 * by this WM invocation.
1006 *
1007 * Assuming the render target is set up for Y tiling, these (X, Y) values are
1008 * related to the address offset where outputs will be written by the formula:
1009 *
1010 * (X, Y, S) = decode_msaa(detile(offset)).
1011 *
1012 * (See brw_blorp_blit_program).
1013 */
1014 void
1015 brw_blorp_blit_program::compute_frag_coords()
1016 {
1017 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
1018 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
1019 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
1020 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
1021 *
1022 * Pixels within a subspan are laid out in this arrangement:
1023 * 0 1
1024 * 2 3
1025 *
1026 * So, to compute the coordinates of each pixel, we need to read every 2nd
1027 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
1028 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
1029 * In other words, the data we want to access is R1.4<2;4,0>UW.
1030 *
1031 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
1032 * result, since pixels n+1 and n+3 are in the right half of the subspan.
1033 */
1034 emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
1035 stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
1036
1037 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
1038 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
1039 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
1040 * R1.4<2;4,0>UW).
1041 *
1042 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
1043 * pixels n+2 and n+3 are in the bottom half of the subspan.
1044 */
1045 emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
1046 stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
1047
1048 /* Move the coordinates to UD registers. */
1049 emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
1050 emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
1051 SWAP_XY_AND_XPYP();
1052
1053 if (key->persample_msaa_dispatch) {
1054 switch (key->rt_samples) {
1055 case 4: {
1056 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
1057 * Therefore, subspan 0 will represent sample 0, subspan 1 will
1058 * represent sample 1, and so on.
1059 *
1060 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
1061 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
1062 * populate a temporary variable with the sequence (0, 1, 2, 3), and
1063 * then copy from it using vstride=1, width=4, hstride=0.
1064 */
1065 struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
1066 emit_mov(vec16(t1_uw1), brw_imm_v(0x3210));
1067 /* Move to UD sample_index register. */
1068 emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
1069 emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
1070 break;
1071 }
1072 case 8: {
1073 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
1074 * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
1075 * subspan 1 will represent sample 1, and so on. We can find the
1076 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
1077 * Index") and multiplying by two (since samples are always delivered
1078 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
1079 * 0xc0) >> 5.
1080 *
1081 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
1082 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
1083 * variable with the sequence (0, 1, 2, 3), and then reading from it
1084 * using vstride=1, width=4, hstride=0.
1085 */
1086 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
1087 struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
1088 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
1089 emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
1090 emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
1091 emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
1092 emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
1093 stride(t2_uw1, 1, 4, 0));
1094 emit_add_8(offset(S, 1),
1095 retype(t1_ud1, BRW_REGISTER_TYPE_UW),
1096 suboffset(stride(t2_uw1, 1, 4, 0), 2));
1097 break;
1098 }
1099 default:
1100 assert(!"Unrecognized sample count in "
1101 "brw_blorp_blit_program::compute_frag_coords()");
1102 break;
1103 }
1104 s_is_zero = false;
1105 } else {
1106 /* Either the destination surface is single-sampled, or the WM will be
1107 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
1108 * per pixel). In either case, it's not meaningful to compute a sample
1109 * value. Just set it to 0.
1110 */
1111 s_is_zero = true;
1112 }
1113 }
1114
1115 /**
1116 * Emit code to compensate for the difference between Y and W tiling.
1117 *
1118 * This code modifies the X and Y coordinates according to the formula:
1119 *
1120 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
1121 *
1122 * (See brw_blorp_blit_program).
1123 *
1124 * It can only translate between W and Y tiling, so new_tiling and old_tiling
1125 * are booleans where true represents W tiling and false represents Y tiling.
1126 */
1127 void
1128 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
1129 {
1130 if (old_tiled_w == new_tiled_w)
1131 return;
1132
1133 /* In the code that follows, we can safely assume that S = 0, because W
1134 * tiling formats always use IMS layout.
1135 */
1136 assert(s_is_zero);
1137
1138 if (new_tiled_w) {
1139 /* Given X and Y coordinates that describe an address using Y tiling,
1140 * translate to the X and Y coordinates that describe the same address
1141 * using W tiling.
1142 *
1143 * If we break down the low order bits of X and Y, using a
1144 * single letter to represent each low-order bit:
1145 *
1146 * X = A << 7 | 0bBCDEFGH
1147 * Y = J << 5 | 0bKLMNP (1)
1148 *
1149 * Then we can apply the Y tiling formula to see the memory offset being
1150 * addressed:
1151 *
1152 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
1153 *
1154 * If we apply the W detiling formula to this memory location, that the
1155 * corresponding X' and Y' coordinates are:
1156 *
1157 * X' = A << 6 | 0bBCDPFH (3)
1158 * Y' = J << 6 | 0bKLMNEG
1159 *
1160 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
1161 * we need to make the following computation:
1162 *
1163 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
1164 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
1165 */
1166 emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
1167 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
1168 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1169 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
1170 emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
1171 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1172 emit_or(Xp, t1, t2);
1173 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1174 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1175 emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
1176 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
1177 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
1178 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1179 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1180 emit_or(Yp, t1, t2);
1181 SWAP_XY_AND_XPYP();
1182 } else {
1183 /* Applying the same logic as above, but in reverse, we obtain the
1184 * formulas:
1185 *
1186 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
1187 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
1188 */
1189 emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
1190 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
1191 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1192 emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
1193 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
1194 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1195 emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
1196 emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
1197 | (Y & 0b1) << 1 */
1198 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1199 emit_or(Xp, t1, t2);
1200 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1201 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1202 emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
1203 emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
1204 emit_or(Yp, t1, t2);
1205 SWAP_XY_AND_XPYP();
1206 }
1207 }
1208
1209 /**
1210 * Emit code to compensate for the difference between MSAA and non-MSAA
1211 * surfaces.
1212 *
1213 * This code modifies the X and Y coordinates according to the formula:
1214 *
1215 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1216 *
1217 * (See brw_blorp_blit_program).
1218 */
1219 void
1220 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1221 intel_msaa_layout layout)
1222 {
1223 switch (layout) {
1224 case INTEL_MSAA_LAYOUT_NONE:
1225 /* No translation necessary, and S should already be zero. */
1226 assert(s_is_zero);
1227 break;
1228 case INTEL_MSAA_LAYOUT_CMS:
1229 /* We can't compensate for compressed layout since at this point in the
1230 * program we haven't read from the MCS buffer.
1231 */
1232 assert(!"Bad layout in encode_msaa");
1233 break;
1234 case INTEL_MSAA_LAYOUT_UMS:
1235 /* No translation necessary. */
1236 break;
1237 case INTEL_MSAA_LAYOUT_IMS:
1238 switch (num_samples) {
1239 case 4:
1240 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1241 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1242 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1243 */
1244 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1245 if (!s_is_zero) {
1246 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1247 emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1248 }
1249 emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1250 | (S & 0b1) << 1 */
1251 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1252 emit_or(Xp, t1, t2);
1253 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1254 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1255 if (!s_is_zero) {
1256 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1257 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1258 }
1259 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1260 emit_or(Yp, t1, t2);
1261 break;
1262 case 8:
1263 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1264 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1265 * | (X & 0b1)
1266 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1267 */
1268 emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1269 emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1270 if (!s_is_zero) {
1271 emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
1272 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1273 emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
1274 emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1275 emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1276 | (S & 0b1) << 1 */
1277 }
1278 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1279 emit_or(Xp, t1, t2);
1280 emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1281 emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1282 if (!s_is_zero) {
1283 emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
1284 emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1285 }
1286 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1287 emit_or(Yp, t1, t2);
1288 break;
1289 }
1290 SWAP_XY_AND_XPYP();
1291 s_is_zero = true;
1292 break;
1293 }
1294 }
1295
1296 /**
1297 * Emit code to compensate for the difference between MSAA and non-MSAA
1298 * surfaces.
1299 *
1300 * This code modifies the X and Y coordinates according to the formula:
1301 *
1302 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1303 *
1304 * (See brw_blorp_blit_program).
1305 */
1306 void
1307 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1308 intel_msaa_layout layout)
1309 {
1310 switch (layout) {
1311 case INTEL_MSAA_LAYOUT_NONE:
1312 /* No translation necessary, and S should already be zero. */
1313 assert(s_is_zero);
1314 break;
1315 case INTEL_MSAA_LAYOUT_CMS:
1316 /* We can't compensate for compressed layout since at this point in the
1317 * program we don't have access to the MCS buffer.
1318 */
1319 assert(!"Bad layout in encode_msaa");
1320 break;
1321 case INTEL_MSAA_LAYOUT_UMS:
1322 /* No translation necessary. */
1323 break;
1324 case INTEL_MSAA_LAYOUT_IMS:
1325 assert(s_is_zero);
1326 switch (num_samples) {
1327 case 4:
1328 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1329 * where X' = (X & ~0b11) >> 1 | (X & 0b1)
1330 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1331 * S = (Y & 0b10) | (X & 0b10) >> 1
1332 */
1333 emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1334 emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1335 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1336 emit_or(Xp, t1, t2);
1337 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1338 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1339 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1340 emit_or(Yp, t1, t2);
1341 emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1342 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1343 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1344 emit_or(S, t1, t2);
1345 break;
1346 case 8:
1347 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1348 * where X' = (X & ~0b111) >> 2 | (X & 0b1)
1349 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1350 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1351 */
1352 emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1353 emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1354 emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
1355 emit_or(Xp, t1, t2);
1356 emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1357 emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1358 emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1359 emit_or(Yp, t1, t2);
1360 emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
1361 emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1362 emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1363 emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
1364 emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1365 emit_or(S, t1, t2);
1366 break;
1367 }
1368 s_is_zero = false;
1369 SWAP_XY_AND_XPYP();
1370 break;
1371 }
1372 }
1373
1374 /**
1375 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1376 * coordinates.
1377 */
1378 void
1379 brw_blorp_blit_program::translate_dst_to_src()
1380 {
1381 struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
1382 struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
1383 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1384 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1385
1386 /* Move the UD coordinates to float registers. */
1387 emit_mov(Xp_f, X);
1388 emit_mov(Yp_f, Y);
1389 /* Scale and offset */
1390 emit_mul(X_f, Xp_f, x_transform.multiplier);
1391 emit_mul(Y_f, Yp_f, y_transform.multiplier);
1392 emit_add(X_f, X_f, x_transform.offset);
1393 emit_add(Y_f, Y_f, y_transform.offset);
1394 if (key->blit_scaled && key->blend) {
1395 /* Translate coordinates to lay out the samples in a rectangular grid
1396 * roughly corresponding to sample locations.
1397 */
1398 emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
1399 emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
1400 /* Adjust coordinates so that integers represent pixel centers rather
1401 * than pixel edges.
1402 */
1403 emit_add(X_f, X_f, brw_imm_f(-0.5));
1404 emit_add(Y_f, Y_f, brw_imm_f(-0.5));
1405
1406 /* Clamp the X, Y texture coordinates to properly handle the sampling of
1407 * texels on texture edges.
1408 */
1409 clamp_tex_coords(X_f, Y_f,
1410 brw_imm_f(0.0), brw_imm_f(0.0),
1411 rect_grid_x1, rect_grid_y1);
1412
1413 /* Store the fractional parts to be used as bilinear interpolation
1414 * coefficients.
1415 */
1416 brw_FRC(&func, x_frac, X_f);
1417 brw_FRC(&func, y_frac, Y_f);
1418
1419 /* Round the float coordinates down to nearest integer */
1420 brw_RNDD(&func, Xp_f, X_f);
1421 brw_RNDD(&func, Yp_f, Y_f);
1422 emit_mul(X_f, Xp_f, brw_imm_f(1 / key->x_scale));
1423 emit_mul(Y_f, Yp_f, brw_imm_f(1 / key->y_scale));
1424 SWAP_XY_AND_XPYP();
1425 } else if (!key->bilinear_filter) {
1426 /* Round the float coordinates down to nearest integer by moving to
1427 * UD registers.
1428 */
1429 emit_mov(Xp, X_f);
1430 emit_mov(Yp, Y_f);
1431 SWAP_XY_AND_XPYP();
1432 }
1433 }
1434
1435 void
1436 brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
1437 struct brw_reg regY,
1438 struct brw_reg clampX0,
1439 struct brw_reg clampY0,
1440 struct brw_reg clampX1,
1441 struct brw_reg clampY1)
1442 {
1443 emit_cond_mov(regX, clampX0, BRW_CONDITIONAL_L, regX, clampX0);
1444 emit_cond_mov(regX, clampX1, BRW_CONDITIONAL_G, regX, clampX1);
1445 emit_cond_mov(regY, clampY0, BRW_CONDITIONAL_L, regY, clampY0);
1446 emit_cond_mov(regY, clampY1, BRW_CONDITIONAL_G, regY, clampY1);
1447 }
1448
1449 /**
1450 * Emit code to transform the X and Y coordinates as needed for blending
1451 * together the different samples in an MSAA texture.
1452 */
1453 void
1454 brw_blorp_blit_program::single_to_blend()
1455 {
1456 /* When looking up samples in an MSAA texture using the SAMPLE message,
1457 * Gen6 requires the texture coordinates to be odd integers (so that they
1458 * correspond to the center of a 2x2 block representing the four samples
1459 * that maxe up a pixel). So we need to multiply our X and Y coordinates
1460 * each by 2 and then add 1.
1461 */
1462 emit_shl(t1, X, brw_imm_w(1));
1463 emit_shl(t2, Y, brw_imm_w(1));
1464 emit_add(Xp, t1, brw_imm_w(1));
1465 emit_add(Yp, t2, brw_imm_w(1));
1466 SWAP_XY_AND_XPYP();
1467 }
1468
1469
1470 /**
1471 * Count the number of trailing 1 bits in the given value. For example:
1472 *
1473 * count_trailing_one_bits(0) == 0
1474 * count_trailing_one_bits(7) == 3
1475 * count_trailing_one_bits(11) == 2
1476 */
1477 inline int count_trailing_one_bits(unsigned value)
1478 {
1479 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1480 return __builtin_ctz(~value);
1481 #else
1482 return _mesa_bitcount(value & ~(value + 1));
1483 #endif
1484 }
1485
1486
1487 void
1488 brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
1489 {
1490 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1491 mcs_fetch();
1492
1493 /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1494 *
1495 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1496 *
1497 * This ensures that when all samples have the same value, no numerical
1498 * precision is lost, since each addition operation always adds two equal
1499 * values, and summing two equal floating point values does not lose
1500 * precision.
1501 *
1502 * We perform this computation by treating the texture_data array as a
1503 * stack and performing the following operations:
1504 *
1505 * - push sample 0 onto stack
1506 * - push sample 1 onto stack
1507 * - add top two stack entries
1508 * - push sample 2 onto stack
1509 * - push sample 3 onto stack
1510 * - add top two stack entries
1511 * - add top two stack entries
1512 * - divide top stack entry by 4
1513 *
1514 * Note that after pushing sample i onto the stack, the number of add
1515 * operations we do is equal to the number of trailing 1 bits in i. This
1516 * works provided the total number of samples is a power of two, which it
1517 * always is for i965.
1518 *
1519 * For integer formats, we replace the add operations with average
1520 * operations and skip the final division.
1521 */
1522 unsigned stack_depth = 0;
1523 for (unsigned i = 0; i < num_samples; ++i) {
1524 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1525
1526 /* Push sample i onto the stack */
1527 assert(stack_depth < ARRAY_SIZE(texture_data));
1528 if (i == 0) {
1529 s_is_zero = true;
1530 } else {
1531 s_is_zero = false;
1532 emit_mov(vec16(S), brw_imm_ud(i));
1533 }
1534 texel_fetch(texture_data[stack_depth++]);
1535
1536 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1537 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1538 * suggests an optimization:
1539 *
1540 * "A simple optimization with probable large return in
1541 * performance is to compare the MCS value to zero (indicating
1542 * all samples are on sample slice 0), and sample only from
1543 * sample slice 0 using ld2dss if MCS is zero."
1544 *
1545 * Note that in the case where the MCS value is zero, sampling from
1546 * sample slice 0 using ld2dss and sampling from sample 0 using
1547 * ld2dms are equivalent (since all samples are on sample slice 0).
1548 * Since we have already sampled from sample 0, all we need to do is
1549 * skip the remaining fetches and averaging if MCS is zero.
1550 */
1551 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
1552 mcs_data, brw_imm_ud(0));
1553 brw_IF(&func, BRW_EXECUTE_16);
1554 }
1555
1556 /* Do count_trailing_one_bits(i) times */
1557 for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1558 assert(stack_depth >= 2);
1559 --stack_depth;
1560
1561 /* TODO: should use a smaller loop bound for non_RGBA formats */
1562 for (int k = 0; k < 4; ++k) {
1563 emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ?
1564 BRW_OPCODE_ADD : BRW_OPCODE_AVG,
1565 offset(texture_data[stack_depth - 1], 2*k),
1566 offset(vec8(texture_data[stack_depth - 1]), 2*k),
1567 offset(vec8(texture_data[stack_depth]), 2*k));
1568 }
1569 }
1570 }
1571
1572 /* We should have just 1 sample on the stack now. */
1573 assert(stack_depth == 1);
1574
1575 if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1576 /* Scale the result down by a factor of num_samples */
1577 /* TODO: should use a smaller loop bound for non-RGBA formats */
1578 for (int j = 0; j < 4; ++j) {
1579 emit_mul(offset(texture_data[0], 2*j),
1580 offset(vec8(texture_data[0]), 2*j),
1581 brw_imm_f(1.0/num_samples));
1582 }
1583 }
1584
1585 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1586 brw_ENDIF(&func);
1587 }
1588
1589 void
1590 brw_blorp_blit_program::emit_lrp(const struct brw_reg &dst,
1591 const struct brw_reg &src1,
1592 const struct brw_reg &src2,
1593 const struct brw_reg &src3)
1594 {
1595 brw_set_access_mode(&func, BRW_ALIGN_16);
1596 brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1597 brw_LRP(&func, dst, src1, src2, src3);
1598 brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
1599 brw_LRP(&func, sechalf(dst), sechalf(src1), sechalf(src2), sechalf(src3));
1600 brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
1601 brw_set_access_mode(&func, BRW_ALIGN_1);
1602 }
1603
1604 void
1605 brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
1606 {
1607 /* We do this computation by performing the following operations:
1608 *
1609 * In case of 4x, 8x MSAA:
1610 * - Compute the pixel coordinates and sample numbers (a, b, c, d)
1611 * which are later used for interpolation
1612 * - linearly interpolate samples a and b in X
1613 * - linearly interpolate samples c and d in X
1614 * - linearly interpolate the results of last two operations in Y
1615 *
1616 * result = lrp(lrp(a + b) + lrp(c + d))
1617 */
1618 struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
1619 struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
1620 struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
1621 struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
1622
1623 for (unsigned i = 0; i < 4; ++i) {
1624 assert(i < ARRAY_SIZE(texture_data));
1625 s_is_zero = false;
1626
1627 /* Compute pixel coordinates */
1628 emit_add(vec16(x_sample_coords), Xp_f,
1629 brw_imm_f((float)(i & 0x1) * (1.0 / key->x_scale)));
1630 emit_add(vec16(y_sample_coords), Yp_f,
1631 brw_imm_f((float)((i >> 1) & 0x1) * (1.0 / key->y_scale)));
1632 emit_mov(vec16(X), x_sample_coords);
1633 emit_mov(vec16(Y), y_sample_coords);
1634
1635 /* The MCS value we fetch has to match up with the pixel that we're
1636 * sampling from. Since we sample from different pixels in each
1637 * iteration of this "for" loop, the call to mcs_fetch() should be
1638 * here inside the loop after computing the pixel coordinates.
1639 */
1640 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1641 mcs_fetch();
1642
1643 /* Compute sample index and map the sample index to a sample number.
1644 * Sample index layout shows the numbering of slots in a rectangular
1645 * grid of samples with in a pixel. Sample number layout shows the
1646 * rectangular grid of samples roughly corresponding to the real sample
1647 * locations with in a pixel.
1648 * In case of 4x MSAA, layout of sample indices matches the layout of
1649 * sample numbers:
1650 * ---------
1651 * | 0 | 1 |
1652 * ---------
1653 * | 2 | 3 |
1654 * ---------
1655 *
1656 * In case of 8x MSAA the two layouts don't match.
1657 * sample index layout : --------- sample number layout : ---------
1658 * | 0 | 1 | | 5 | 2 |
1659 * --------- ---------
1660 * | 2 | 3 | | 4 | 6 |
1661 * --------- ---------
1662 * | 4 | 5 | | 0 | 3 |
1663 * --------- ---------
1664 * | 6 | 7 | | 7 | 1 |
1665 * --------- ---------
1666 */
1667 brw_FRC(&func, vec16(t1_f), x_sample_coords);
1668 brw_FRC(&func, vec16(t2_f), y_sample_coords);
1669 emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
1670 emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
1671 emit_add(vec16(t1_f), t1_f, t2_f);
1672 emit_mov(vec16(S), t1_f);
1673
1674 if (num_samples == 8) {
1675 /* Map the sample index to a sample number */
1676 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_L,
1677 S, brw_imm_d(4));
1678 brw_IF(&func, BRW_EXECUTE_16);
1679 {
1680 emit_mov(vec16(t2), brw_imm_d(5));
1681 emit_if_eq_mov(S, 1, vec16(t2), 2);
1682 emit_if_eq_mov(S, 2, vec16(t2), 4);
1683 emit_if_eq_mov(S, 3, vec16(t2), 6);
1684 }
1685 brw_ELSE(&func);
1686 {
1687 emit_mov(vec16(t2), brw_imm_d(0));
1688 emit_if_eq_mov(S, 5, vec16(t2), 3);
1689 emit_if_eq_mov(S, 6, vec16(t2), 7);
1690 emit_if_eq_mov(S, 7, vec16(t2), 1);
1691 }
1692 brw_ENDIF(&func);
1693 emit_mov(vec16(S), t2);
1694 }
1695 texel_fetch(texture_data[i]);
1696 }
1697
1698 #define SAMPLE(x, y) offset(texture_data[x], y)
1699 for (int index = 3; index > 0; ) {
1700 /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
1701 * Counter value of 8 in 'for' loop below is used to interpolate all
1702 * the color components.
1703 */
1704 for (int k = 0; k < 8; k += 2)
1705 emit_lrp(vec8(SAMPLE(index - 1, k)),
1706 x_frac,
1707 vec8(SAMPLE(index, k)),
1708 vec8(SAMPLE(index - 1, k)));
1709 index -= 2;
1710 }
1711 for (int k = 0; k < 8; k += 2)
1712 emit_lrp(vec8(SAMPLE(0, k)),
1713 y_frac,
1714 vec8(SAMPLE(2, k)),
1715 vec8(SAMPLE(0, k)));
1716 #undef SAMPLE
1717 }
1718
1719 /**
1720 * Emit code to look up a value in the texture using the SAMPLE message (which
1721 * does blending of MSAA surfaces).
1722 */
1723 void
1724 brw_blorp_blit_program::sample(struct brw_reg dst)
1725 {
1726 static const sampler_message_arg args[2] = {
1727 SAMPLER_MESSAGE_ARG_U_FLOAT,
1728 SAMPLER_MESSAGE_ARG_V_FLOAT
1729 };
1730
1731 texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
1732 }
1733
1734 /**
1735 * Emit code to look up a value in the texture using the SAMPLE_LD message
1736 * (which does a simple texel fetch).
1737 */
1738 void
1739 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1740 {
1741 static const sampler_message_arg gen6_args[5] = {
1742 SAMPLER_MESSAGE_ARG_U_INT,
1743 SAMPLER_MESSAGE_ARG_V_INT,
1744 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1745 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1746 SAMPLER_MESSAGE_ARG_SI_INT
1747 };
1748 static const sampler_message_arg gen7_ld_args[3] = {
1749 SAMPLER_MESSAGE_ARG_U_INT,
1750 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1751 SAMPLER_MESSAGE_ARG_V_INT
1752 };
1753 static const sampler_message_arg gen7_ld2dss_args[3] = {
1754 SAMPLER_MESSAGE_ARG_SI_INT,
1755 SAMPLER_MESSAGE_ARG_U_INT,
1756 SAMPLER_MESSAGE_ARG_V_INT
1757 };
1758 static const sampler_message_arg gen7_ld2dms_args[4] = {
1759 SAMPLER_MESSAGE_ARG_SI_INT,
1760 SAMPLER_MESSAGE_ARG_MCS_INT,
1761 SAMPLER_MESSAGE_ARG_U_INT,
1762 SAMPLER_MESSAGE_ARG_V_INT
1763 };
1764
1765 switch (brw->gen) {
1766 case 6:
1767 texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
1768 break;
1769 case 7:
1770 switch (key->tex_layout) {
1771 case INTEL_MSAA_LAYOUT_IMS:
1772 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1773 * Format):
1774 *
1775 * If this field is MSFMT_DEPTH_STENCIL
1776 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1777 * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1778 *
1779 * So fall through to emit the same message as we use for
1780 * INTEL_MSAA_LAYOUT_CMS.
1781 */
1782 case INTEL_MSAA_LAYOUT_CMS:
1783 texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
1784 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1785 break;
1786 case INTEL_MSAA_LAYOUT_UMS:
1787 texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
1788 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1789 break;
1790 case INTEL_MSAA_LAYOUT_NONE:
1791 assert(s_is_zero);
1792 texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
1793 ARRAY_SIZE(gen7_ld_args));
1794 break;
1795 }
1796 break;
1797 default:
1798 assert(!"Should not get here.");
1799 break;
1800 };
1801 }
1802
1803 void
1804 brw_blorp_blit_program::mcs_fetch()
1805 {
1806 static const sampler_message_arg gen7_ld_mcs_args[2] = {
1807 SAMPLER_MESSAGE_ARG_U_INT,
1808 SAMPLER_MESSAGE_ARG_V_INT
1809 };
1810 texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
1811 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1812 }
1813
1814 void
1815 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1816 enum opcode op,
1817 const sampler_message_arg *args,
1818 int num_args)
1819 {
1820 struct brw_reg mrf =
1821 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1822 for (int arg = 0; arg < num_args; ++arg) {
1823 switch (args[arg]) {
1824 case SAMPLER_MESSAGE_ARG_U_FLOAT:
1825 if (key->bilinear_filter)
1826 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1827 retype(X, BRW_REGISTER_TYPE_F));
1828 else
1829 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
1830 break;
1831 case SAMPLER_MESSAGE_ARG_V_FLOAT:
1832 if (key->bilinear_filter)
1833 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
1834 retype(Y, BRW_REGISTER_TYPE_F));
1835 else
1836 emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
1837 break;
1838 case SAMPLER_MESSAGE_ARG_U_INT:
1839 emit_mov(mrf, X);
1840 break;
1841 case SAMPLER_MESSAGE_ARG_V_INT:
1842 emit_mov(mrf, Y);
1843 break;
1844 case SAMPLER_MESSAGE_ARG_SI_INT:
1845 /* Note: on Gen7, this code may be reached with s_is_zero==true
1846 * because in Gen7's ld2dss message, the sample index is the first
1847 * argument. When this happens, we need to move a 0 into the
1848 * appropriate message register.
1849 */
1850 if (s_is_zero)
1851 emit_mov(mrf, brw_imm_ud(0));
1852 else
1853 emit_mov(mrf, S);
1854 break;
1855 case SAMPLER_MESSAGE_ARG_MCS_INT:
1856 switch (key->tex_layout) {
1857 case INTEL_MSAA_LAYOUT_CMS:
1858 emit_mov(mrf, mcs_data);
1859 break;
1860 case INTEL_MSAA_LAYOUT_IMS:
1861 /* When sampling from an IMS surface, MCS data is not relevant,
1862 * and the hardware ignores it. So don't bother populating it.
1863 */
1864 break;
1865 default:
1866 /* We shouldn't be trying to send MCS data with any other
1867 * layouts.
1868 */
1869 assert (!"Unsupported layout for MCS data");
1870 break;
1871 }
1872 break;
1873 case SAMPLER_MESSAGE_ARG_ZERO_INT:
1874 emit_mov(mrf, brw_imm_ud(0));
1875 break;
1876 }
1877 mrf.nr += 2;
1878 }
1879
1880 emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1881 op,
1882 base_mrf,
1883 mrf.nr - base_mrf /* msg_length */);
1884 }
1885
1886 #undef X
1887 #undef Y
1888 #undef U
1889 #undef V
1890 #undef S
1891 #undef SWAP_XY_AND_XPYP
1892
1893 void
1894 brw_blorp_blit_program::render_target_write()
1895 {
1896 struct brw_reg mrf_rt_write =
1897 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1898 int mrf_offset = 0;
1899
1900 /* If we may have killed pixels, then we need to send R0 and R1 in a header
1901 * so that the render target knows which pixels we killed.
1902 */
1903 bool use_header = key->use_kill;
1904 if (use_header) {
1905 /* Copy R0/1 to MRF */
1906 emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1907 retype(R0, BRW_REGISTER_TYPE_UD));
1908 mrf_offset += 2;
1909 }
1910
1911 /* Copy texture data to MRFs */
1912 for (int i = 0; i < 4; ++i) {
1913 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1914 emit_mov(offset(mrf_rt_write, mrf_offset),
1915 offset(vec8(texture_data[0]), 2*i));
1916 mrf_offset += 2;
1917 }
1918
1919 /* Now write to the render target and terminate the thread */
1920 emit_render_target_write(
1921 mrf_rt_write,
1922 base_mrf,
1923 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
1924 use_header);
1925 }
1926
1927
1928 void
1929 brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
1930 GLfloat dst0, GLfloat dst1,
1931 bool mirror)
1932 {
1933 float scale = (src1 - src0) / (dst1 - dst0);
1934 if (!mirror) {
1935 /* When not mirroring a coordinate (say, X), we need:
1936 * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
1937 * Therefore:
1938 * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
1939 *
1940 * blorp program uses "round toward zero" to convert the
1941 * transformed floating point coordinates to integer coordinates,
1942 * whereas the behaviour we actually want is "round to nearest",
1943 * so 0.5 provides the necessary correction.
1944 */
1945 multiplier = scale;
1946 offset = src0 + (-dst0 + 0.5) * scale;
1947 } else {
1948 /* When mirroring X we need:
1949 * src_x - src_x0 = dst_x1 - dst_x - 0.5
1950 * Therefore:
1951 * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
1952 */
1953 multiplier = -scale;
1954 offset = src0 + (dst1 - 0.5) * scale;
1955 }
1956 }
1957
1958
1959 /**
1960 * Determine which MSAA layout the GPU pipeline should be configured for,
1961 * based on the chip generation, the number of samples, and the true layout of
1962 * the image in memory.
1963 */
1964 inline intel_msaa_layout
1965 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1966 intel_msaa_layout true_layout)
1967 {
1968 if (num_samples <= 1) {
1969 /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1970 * format buffers, by transforming coordinates appropriately.
1971 */
1972 assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1973 true_layout == INTEL_MSAA_LAYOUT_IMS);
1974 return INTEL_MSAA_LAYOUT_NONE;
1975 } else {
1976 assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1977 }
1978
1979 /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1980 if (brw->gen == 6) {
1981 assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1982 }
1983
1984 return true_layout;
1985 }
1986
1987
1988 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1989 struct intel_mipmap_tree *src_mt,
1990 unsigned src_level, unsigned src_layer,
1991 struct intel_mipmap_tree *dst_mt,
1992 unsigned dst_level, unsigned dst_layer,
1993 GLfloat src_x0, GLfloat src_y0,
1994 GLfloat src_x1, GLfloat src_y1,
1995 GLfloat dst_x0, GLfloat dst_y0,
1996 GLfloat dst_x1, GLfloat dst_y1,
1997 GLenum filter,
1998 bool mirror_x, bool mirror_y)
1999 {
2000 struct gl_context *ctx = &brw->ctx;
2001 const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
2002
2003 src.set(brw, src_mt, src_level, src_layer, false);
2004 dst.set(brw, dst_mt, dst_level, dst_layer, true);
2005
2006 /* Even though we do multisample resolves at the time of the blit, OpenGL
2007 * specification defines them as if they happen at the time of rendering,
2008 * which means that the type of averaging we do during the resolve should
2009 * only depend on the source format; the destination format should be
2010 * ignored. But, specification doesn't seem to be strict about it.
2011 *
2012 * It has been observed that mulitisample resolves produce slightly better
2013 * looking images when averaging is done using destination format. NVIDIA's
2014 * proprietary OpenGL driver also follow this approach. So, we choose to
2015 * follow it in our driver.
2016 *
2017 * When multisampling, if the source and destination formats are equal
2018 * (aside from the color space), we choose to blit in sRGB space to get
2019 * this higher quality image.
2020 */
2021 if (src.num_samples > 1 &&
2022 _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
2023 _mesa_get_srgb_format_linear(src_mt->format) ==
2024 _mesa_get_srgb_format_linear(dst_mt->format)) {
2025 dst.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
2026 src.brw_surfaceformat = dst.brw_surfaceformat;
2027 }
2028
2029 /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
2030 * texture, the above code configures the source format for L32_FLOAT or
2031 * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
2032 * the SAMPLE message appears to handle multisampled L32_FLOAT and
2033 * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
2034 * around the problem by using a source format of R32_FLOAT. This
2035 * shouldn't affect rendering correctness, since the destination format is
2036 * R32_FLOAT, so only the contents of the red channel matters.
2037 */
2038 if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
2039 src_mt->format == dst_mt->format &&
2040 dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
2041 src.brw_surfaceformat = dst.brw_surfaceformat;
2042 }
2043
2044 use_wm_prog = true;
2045 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
2046
2047 /* texture_data_type indicates the register type that should be used to
2048 * manipulate texture data.
2049 */
2050 switch (_mesa_get_format_datatype(src_mt->format)) {
2051 case GL_UNSIGNED_NORMALIZED:
2052 case GL_SIGNED_NORMALIZED:
2053 case GL_FLOAT:
2054 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
2055 break;
2056 case GL_UNSIGNED_INT:
2057 if (src_mt->format == MESA_FORMAT_S8) {
2058 /* We process stencil as though it's an unsigned normalized color */
2059 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
2060 } else {
2061 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
2062 }
2063 break;
2064 case GL_INT:
2065 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
2066 break;
2067 default:
2068 assert(!"Unrecognized blorp format");
2069 break;
2070 }
2071
2072 if (brw->gen > 6) {
2073 /* Gen7's rendering hardware only supports the IMS layout for depth and
2074 * stencil render targets. Blorp always maps its destination surface as
2075 * a color render target (even if it's actually a depth or stencil
2076 * buffer). So if the destination is IMS, we'll have to map it as a
2077 * single-sampled texture and interleave the samples ourselves.
2078 */
2079 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
2080 dst.num_samples = 0;
2081 }
2082
2083 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
2084 /* If the destination surface is a W-tiled multisampled stencil buffer
2085 * that we're mapping as Y tiled, then we need to arrange for the WM
2086 * program to run once per sample rather than once per pixel, because
2087 * the memory layout of related samples doesn't match between W and Y
2088 * tiling.
2089 */
2090 wm_prog_key.persample_msaa_dispatch = true;
2091 }
2092
2093 if (src.num_samples > 0 && dst.num_samples > 1) {
2094 /* We are blitting from a multisample buffer to a multisample buffer, so
2095 * we must preserve samples within a pixel. This means we have to
2096 * arrange for the WM program to run once per sample rather than once
2097 * per pixel.
2098 */
2099 wm_prog_key.persample_msaa_dispatch = true;
2100 }
2101
2102 /* Scaled blitting or not. */
2103 wm_prog_key.blit_scaled =
2104 ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
2105 (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
2106
2107 /* Scaling factors used for bilinear filtering in multisample scaled
2108 * blits.
2109 */
2110 wm_prog_key.x_scale = 2.0;
2111 wm_prog_key.y_scale = src_mt->num_samples / 2.0;
2112
2113 if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
2114 wm_prog_key.bilinear_filter = true;
2115
2116 GLenum base_format = _mesa_get_format_base_format(src_mt->format);
2117 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
2118 base_format != GL_STENCIL_INDEX &&
2119 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
2120 /* We are downsampling a color buffer, so blend. */
2121 wm_prog_key.blend = true;
2122 }
2123
2124 /* src_samples and dst_samples are the true sample counts */
2125 wm_prog_key.src_samples = src_mt->num_samples;
2126 wm_prog_key.dst_samples = dst_mt->num_samples;
2127
2128 /* tex_samples and rt_samples are the sample counts that are set up in
2129 * SURFACE_STATE.
2130 */
2131 wm_prog_key.tex_samples = src.num_samples;
2132 wm_prog_key.rt_samples = dst.num_samples;
2133
2134 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
2135 * use to access the source and destination surfaces.
2136 */
2137 wm_prog_key.tex_layout =
2138 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
2139 wm_prog_key.rt_layout =
2140 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
2141
2142 /* src_layout and dst_layout indicate the true MSAA layout used by src and
2143 * dst.
2144 */
2145 wm_prog_key.src_layout = src_mt->msaa_layout;
2146 wm_prog_key.dst_layout = dst_mt->msaa_layout;
2147
2148 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
2149 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
2150 x0 = wm_push_consts.dst_x0 = dst_x0;
2151 y0 = wm_push_consts.dst_y0 = dst_y0;
2152 x1 = wm_push_consts.dst_x1 = dst_x1;
2153 y1 = wm_push_consts.dst_y1 = dst_y1;
2154 wm_push_consts.rect_grid_x1 = read_fb->Width * wm_prog_key.x_scale - 1.0;
2155 wm_push_consts.rect_grid_y1 = read_fb->Height * wm_prog_key.y_scale - 1.0;
2156
2157 wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
2158 wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
2159
2160 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
2161 /* We must expand the rectangle we send through the rendering pipeline,
2162 * to account for the fact that we are mapping the destination region as
2163 * single-sampled when it is in fact multisampled. We must also align
2164 * it to a multiple of the multisampling pattern, because the
2165 * differences between multisampled and single-sampled surface formats
2166 * will mean that pixels are scrambled within the multisampling pattern.
2167 * TODO: what if this makes the coordinates too large?
2168 *
2169 * Note: this only works if the destination surface uses the IMS layout.
2170 * If it's UMS, then we have no choice but to set up the rendering
2171 * pipeline as multisampled.
2172 */
2173 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
2174 switch (dst_mt->num_samples) {
2175 case 4:
2176 x0 = ROUND_DOWN_TO(x0 * 2, 4);
2177 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2178 x1 = ALIGN(x1 * 2, 4);
2179 y1 = ALIGN(y1 * 2, 4);
2180 break;
2181 case 8:
2182 x0 = ROUND_DOWN_TO(x0 * 4, 8);
2183 y0 = ROUND_DOWN_TO(y0 * 2, 4);
2184 x1 = ALIGN(x1 * 4, 8);
2185 y1 = ALIGN(y1 * 2, 4);
2186 break;
2187 default:
2188 assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
2189 break;
2190 }
2191 wm_prog_key.use_kill = true;
2192 }
2193
2194 if (dst.map_stencil_as_y_tiled) {
2195 /* We must modify the rectangle we send through the rendering pipeline
2196 * (and the size and x/y offset of the destination surface), to account
2197 * for the fact that we are mapping it as Y-tiled when it is in fact
2198 * W-tiled.
2199 *
2200 * Both Y tiling and W tiling can be understood as organizations of
2201 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
2202 * is different, but the layout of the 32-byte sub-tiles within the 4k
2203 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
2204 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
2205 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
2206 *
2207 * Therefore, to account for the layout differences within the 32-byte
2208 * sub-tiles, we must expand the rectangle so the X coordinates of its
2209 * edges are multiples of 8 (the W sub-tile width), and its Y
2210 * coordinates of its edges are multiples of 4 (the W sub-tile height).
2211 * Then we need to scale the X and Y coordinates of the rectangle to
2212 * account for the differences in aspect ratio between the Y and W
2213 * sub-tiles. We need to modify the layer width and height similarly.
2214 *
2215 * A correction needs to be applied when MSAA is in use: since
2216 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
2217 * we need to align the Y coordinates to multiples of 8, so that when
2218 * they are divided by two they are still multiples of 4.
2219 *
2220 * Note: Since the x/y offset of the surface will be applied using the
2221 * SURFACE_STATE command packet, it will be invisible to the swizzling
2222 * code in the shader; therefore it needs to be in a multiple of the
2223 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
2224 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
2225 * buffer), and the miplevel alignment used for stencil buffers is 8
2226 * pixels horizontally and either 4 or 8 pixels vertically (see
2227 * intel_horizontal_texture_alignment_unit() and
2228 * intel_vertical_texture_alignment_unit()).
2229 *
2230 * Note: Also, since the SURFACE_STATE command packet can only apply
2231 * offsets that are multiples of 4 pixels horizontally and 2 pixels
2232 * vertically, it is important that the offsets will be multiples of
2233 * these sizes after they are converted into Y-tiled coordinates.
2234 * Fortunately they will be, since we know from above that the offsets
2235 * are a multiple of the 32-byte sub-tile size, and in Y-tiled
2236 * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
2237 *
2238 * TODO: what if this makes the coordinates (or the texture size) too
2239 * large?
2240 */
2241 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
2242 x0 = ROUND_DOWN_TO(x0, x_align) * 2;
2243 y0 = ROUND_DOWN_TO(y0, y_align) / 2;
2244 x1 = ALIGN(x1, x_align) * 2;
2245 y1 = ALIGN(y1, y_align) / 2;
2246 dst.width = ALIGN(dst.width, x_align) * 2;
2247 dst.height = ALIGN(dst.height, y_align) / 2;
2248 dst.x_offset *= 2;
2249 dst.y_offset /= 2;
2250 wm_prog_key.use_kill = true;
2251 }
2252
2253 if (src.map_stencil_as_y_tiled) {
2254 /* We must modify the size and x/y offset of the source surface to
2255 * account for the fact that we are mapping it as Y-tiled when it is in
2256 * fact W tiled.
2257 *
2258 * See the comments above concerning x/y offset alignment for the
2259 * destination surface.
2260 *
2261 * TODO: what if this makes the texture size too large?
2262 */
2263 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
2264 src.width = ALIGN(src.width, x_align) * 2;
2265 src.height = ALIGN(src.height, y_align) / 2;
2266 src.x_offset *= 2;
2267 src.y_offset /= 2;
2268 }
2269 }
2270
2271 uint32_t
2272 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
2273 brw_blorp_prog_data **prog_data) const
2274 {
2275 uint32_t prog_offset = 0;
2276 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2277 &this->wm_prog_key, sizeof(this->wm_prog_key),
2278 &prog_offset, prog_data)) {
2279 brw_blorp_blit_program prog(brw, &this->wm_prog_key);
2280 GLuint program_size;
2281 const GLuint *program = prog.compile(brw, &program_size, stdout);
2282 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
2283 &this->wm_prog_key, sizeof(this->wm_prog_key),
2284 program, program_size,
2285 &prog.prog_data, sizeof(prog.prog_data),
2286 &prog_offset, prog_data);
2287 }
2288 return prog_offset;
2289 }
2290
2291 void
2292 brw_blorp_blit_test_compile(struct brw_context *brw,
2293 const brw_blorp_blit_prog_key *key,
2294 FILE *out)
2295 {
2296 GLuint program_size;
2297 brw_blorp_blit_program prog(brw, key);
2298 INTEL_DEBUG |= DEBUG_BLORP;
2299 prog.compile(brw, &program_size, out);
2300 }