i965: Add optimization pass to let us use the replicate data message
[mesa.git] / src / mesa / drivers / dri / i965 / brw_blorp_clear.cpp
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 extern "C" {
25 #include "main/teximage.h"
26 #include "main/blend.h"
27 #include "main/fbobject.h"
28 #include "main/renderbuffer.h"
29 }
30
31 #include "util/ralloc.h"
32
33 #include "intel_fbo.h"
34
35 #include "brw_blorp.h"
36 #include "brw_context.h"
37 #include "brw_eu.h"
38 #include "brw_state.h"
39
40 #define FILE_DEBUG_FLAG DEBUG_BLORP
41
42 struct brw_blorp_const_color_prog_key
43 {
44 bool use_simd16_replicated_data;
45 bool pad[3];
46 };
47
48 /**
49 * Parameters for a blorp operation where the fragment shader outputs a
50 * constant color. This is used for both fast color clears and color
51 * resolves.
52 */
53 class brw_blorp_const_color_params : public brw_blorp_params
54 {
55 public:
56 virtual uint32_t get_wm_prog(struct brw_context *brw,
57 brw_blorp_prog_data **prog_data) const;
58
59 brw_blorp_const_color_prog_key wm_prog_key;
60 };
61
62 class brw_blorp_clear_params : public brw_blorp_const_color_params
63 {
64 public:
65 brw_blorp_clear_params(struct brw_context *brw,
66 struct gl_framebuffer *fb,
67 struct gl_renderbuffer *rb,
68 GLubyte *color_mask,
69 bool partial_clear,
70 unsigned layer);
71 };
72
73
74 /**
75 * Parameters for a blorp operation that performs a "render target resolve".
76 * This is used to resolve pending fast clear pixels before a color buffer is
77 * used for texturing, ReadPixels, or scanout.
78 */
79 class brw_blorp_rt_resolve_params : public brw_blorp_const_color_params
80 {
81 public:
82 brw_blorp_rt_resolve_params(struct brw_context *brw,
83 struct intel_mipmap_tree *mt);
84 };
85
86
87 class brw_blorp_const_color_program
88 {
89 public:
90 brw_blorp_const_color_program(struct brw_context *brw,
91 const brw_blorp_const_color_prog_key *key);
92 ~brw_blorp_const_color_program();
93
94 const GLuint *compile(struct brw_context *brw, GLuint *program_size);
95
96 brw_blorp_prog_data prog_data;
97
98 private:
99 void alloc_regs();
100
101 void *mem_ctx;
102 const brw_blorp_const_color_prog_key *key;
103 struct brw_compile func;
104
105 /* Thread dispatch header */
106 struct brw_reg R0;
107
108 /* Pixel X/Y coordinates (always in R1). */
109 struct brw_reg R1;
110
111 /* Register with push constants (a single vec4) */
112 struct brw_reg clear_rgba;
113
114 /* MRF used for render target writes */
115 GLuint base_mrf;
116 };
117
118 brw_blorp_const_color_program::brw_blorp_const_color_program(
119 struct brw_context *brw,
120 const brw_blorp_const_color_prog_key *key)
121 : mem_ctx(ralloc_context(NULL)),
122 key(key),
123 R0(),
124 R1(),
125 clear_rgba(),
126 base_mrf(0)
127 {
128 prog_data.first_curbe_grf = 0;
129 prog_data.persample_msaa_dispatch = false;
130 brw_init_compile(brw, &func, mem_ctx);
131 }
132
133 brw_blorp_const_color_program::~brw_blorp_const_color_program()
134 {
135 ralloc_free(mem_ctx);
136 }
137
138
139 /**
140 * Determine if fast color clear supports the given clear color.
141 *
142 * Fast color clear can only clear to color values of 1.0 or 0.0. At the
143 * moment we only support floating point, unorm, and snorm buffers.
144 */
145 static bool
146 is_color_fast_clear_compatible(struct brw_context *brw,
147 mesa_format format,
148 const union gl_color_union *color)
149 {
150 if (_mesa_is_format_integer_color(format))
151 return false;
152
153 for (int i = 0; i < 4; i++) {
154 if (color->f[i] != 0.0 && color->f[i] != 1.0 &&
155 _mesa_format_has_color_component(format, i)) {
156 return false;
157 }
158 }
159 return true;
160 }
161
162
163 /**
164 * Convert the given color to a bitfield suitable for ORing into DWORD 7 of
165 * SURFACE_STATE.
166 */
167 static uint32_t
168 compute_fast_clear_color_bits(const union gl_color_union *color)
169 {
170 uint32_t bits = 0;
171 for (int i = 0; i < 4; i++) {
172 if (color->f[i] != 0.0)
173 bits |= 1 << (GEN7_SURFACE_CLEAR_COLOR_SHIFT + (3 - i));
174 }
175 return bits;
176 }
177
178
179 brw_blorp_clear_params::brw_blorp_clear_params(struct brw_context *brw,
180 struct gl_framebuffer *fb,
181 struct gl_renderbuffer *rb,
182 GLubyte *color_mask,
183 bool partial_clear,
184 unsigned layer)
185 {
186 struct gl_context *ctx = &brw->ctx;
187 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
188
189 dst.set(brw, irb->mt, irb->mt_level, layer, true);
190
191 /* Override the surface format according to the context's sRGB rules. */
192 mesa_format format = _mesa_get_render_format(ctx, irb->mt->format);
193 dst.brw_surfaceformat = brw->render_target_format[format];
194
195 x0 = fb->_Xmin;
196 x1 = fb->_Xmax;
197 if (rb->Name != 0) {
198 y0 = fb->_Ymin;
199 y1 = fb->_Ymax;
200 } else {
201 y0 = rb->Height - fb->_Ymax;
202 y1 = rb->Height - fb->_Ymin;
203 }
204
205 memcpy(&wm_push_consts.dst_x0, ctx->Color.ClearColor.f, sizeof(float) * 4);
206
207 use_wm_prog = true;
208
209 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
210
211 wm_prog_key.use_simd16_replicated_data = true;
212
213 /* From the SNB PRM (Vol4_Part1):
214 *
215 * "Replicated data (Message Type = 111) is only supported when
216 * accessing tiled memory. Using this Message Type to access linear
217 * (untiled) memory is UNDEFINED."
218 */
219 if (irb->mt->tiling == I915_TILING_NONE)
220 wm_prog_key.use_simd16_replicated_data = false;
221
222 /* Constant color writes ignore everyting in blend and color calculator
223 * state. This is not documented.
224 */
225 for (int i = 0; i < 4; i++) {
226 if (_mesa_format_has_color_component(irb->mt->format, i) &&
227 !color_mask[i]) {
228 color_write_disable[i] = true;
229 wm_prog_key.use_simd16_replicated_data = false;
230 }
231 }
232
233 /* If we can do this as a fast color clear, do so.
234 *
235 * Note that the condition "!partial_clear" means we only try to do full
236 * buffer clears using fast color clear logic. This is necessary because
237 * the fast color clear alignment requirements mean that we typically have
238 * to clear a larger rectangle than (x0, y0) to (x1, y1). Restricting fast
239 * color clears to the full-buffer condition guarantees that the extra
240 * memory locations that get written to are outside the image boundary (and
241 * hence irrelevant). Note that the rectangle alignment requirements are
242 * never larger than the size of a tile, so there is no danger of
243 * overflowing beyond the memory belonging to the region.
244 */
245 if (irb->mt->fast_clear_state != INTEL_FAST_CLEAR_STATE_NO_MCS &&
246 !partial_clear && wm_prog_key.use_simd16_replicated_data &&
247 is_color_fast_clear_compatible(brw, format, &ctx->Color.ClearColor)) {
248 memset(&wm_push_consts, 0xff, 4*sizeof(float));
249 fast_clear_op = GEN7_FAST_CLEAR_OP_FAST_CLEAR;
250
251 /* Figure out what the clear rectangle needs to be aligned to, and how
252 * much it needs to be scaled down.
253 */
254 unsigned x_align, y_align, x_scaledown, y_scaledown;
255
256 if (irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE) {
257 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
258 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
259 *
260 * Clear pass must have a clear rectangle that must follow
261 * alignment rules in terms of pixels and lines as shown in the
262 * table below. Further, the clear-rectangle height and width
263 * must be multiple of the following dimensions. If the height
264 * and width of the render target being cleared do not meet these
265 * requirements, an MCS buffer can be created such that it
266 * follows the requirement and covers the RT.
267 *
268 * The alignment size in the table that follows is related to the
269 * alignment size returned by intel_get_non_msrt_mcs_alignment(), but
270 * with X alignment multiplied by 16 and Y alignment multiplied by 32.
271 */
272 intel_get_non_msrt_mcs_alignment(brw, irb->mt, &x_align, &y_align);
273 x_align *= 16;
274 y_align *= 32;
275
276 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
277 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
278 *
279 * In order to optimize the performance MCS buffer (when bound to
280 * 1X RT) clear similarly to MCS buffer clear for MSRT case,
281 * clear rect is required to be scaled by the following factors
282 * in the horizontal and vertical directions:
283 *
284 * The X and Y scale down factors in the table that follows are each
285 * equal to half the alignment value computed above.
286 */
287 x_scaledown = x_align / 2;
288 y_scaledown = y_align / 2;
289
290 /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
291 * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
292 * Clear of Non-MultiSampled Render Target Restrictions":
293 *
294 * Clear rectangle must be aligned to two times the number of
295 * pixels in the table shown below due to 16x16 hashing across the
296 * slice.
297 */
298 x_align *= 2;
299 y_align *= 2;
300 } else {
301 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
302 * Target(s)", beneath the "MSAA Compression" bullet (p326):
303 *
304 * Clear pass for this case requires that scaled down primitive
305 * is sent down with upper left co-ordinate to coincide with
306 * actual rectangle being cleared. For MSAA, clear rectangle’s
307 * height and width need to as show in the following table in
308 * terms of (width,height) of the RT.
309 *
310 * MSAA Width of Clear Rect Height of Clear Rect
311 * 4X Ceil(1/8*width) Ceil(1/2*height)
312 * 8X Ceil(1/2*width) Ceil(1/2*height)
313 *
314 * The text "with upper left co-ordinate to coincide with actual
315 * rectangle being cleared" is a little confusing--it seems to imply
316 * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
317 * feed the pipeline using the rectangle (x,y) to
318 * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
319 * the number of samples. Experiments indicate that this is not
320 * quite correct; actually, what the hardware appears to do is to
321 * align whatever rectangle is sent down the pipeline to the nearest
322 * multiple of 2x2 blocks, and then scale it up by a factor of N
323 * horizontally and 2 vertically. So the resulting alignment is 4
324 * vertically and either 4 or 16 horizontally, and the scaledown
325 * factor is 2 vertically and either 2 or 8 horizontally.
326 */
327 switch (irb->mt->num_samples) {
328 case 4:
329 x_scaledown = 8;
330 break;
331 case 8:
332 x_scaledown = 2;
333 break;
334 default:
335 unreachable("Unexpected sample count for fast clear");
336 }
337 y_scaledown = 2;
338 x_align = x_scaledown * 2;
339 y_align = y_scaledown * 2;
340 }
341
342 /* Do the alignment and scaledown. */
343 x0 = ROUND_DOWN_TO(x0, x_align) / x_scaledown;
344 y0 = ROUND_DOWN_TO(y0, y_align) / y_scaledown;
345 x1 = ALIGN(x1, x_align) / x_scaledown;
346 y1 = ALIGN(y1, y_align) / y_scaledown;
347 }
348 }
349
350
351 brw_blorp_rt_resolve_params::brw_blorp_rt_resolve_params(
352 struct brw_context *brw,
353 struct intel_mipmap_tree *mt)
354 {
355 dst.set(brw, mt, 0 /* level */, 0 /* layer */, true);
356
357 /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
358 *
359 * A rectangle primitive must be scaled down by the following factors
360 * with respect to render target being resolved.
361 *
362 * The scaledown factors in the table that follows are related to the
363 * alignment size returned by intel_get_non_msrt_mcs_alignment(), but with
364 * X and Y alignment each divided by 2.
365 */
366 unsigned x_align, y_align;
367 intel_get_non_msrt_mcs_alignment(brw, mt, &x_align, &y_align);
368 unsigned x_scaledown = x_align / 2;
369 unsigned y_scaledown = y_align / 2;
370 x0 = y0 = 0;
371 x1 = ALIGN(mt->logical_width0, x_scaledown) / x_scaledown;
372 y1 = ALIGN(mt->logical_height0, y_scaledown) / y_scaledown;
373
374 fast_clear_op = GEN7_FAST_CLEAR_OP_RESOLVE;
375
376 /* Note: there is no need to initialize push constants because it doesn't
377 * matter what data gets dispatched to the render target. However, we must
378 * ensure that the fragment shader delivers the data using the "replicated
379 * color" message.
380 */
381 use_wm_prog = true;
382 memset(&wm_prog_key, 0, sizeof(wm_prog_key));
383 wm_prog_key.use_simd16_replicated_data = true;
384 }
385
386
387 uint32_t
388 brw_blorp_const_color_params::get_wm_prog(struct brw_context *brw,
389 brw_blorp_prog_data **prog_data)
390 const
391 {
392 uint32_t prog_offset = 0;
393 if (!brw_search_cache(&brw->cache, BRW_BLORP_CONST_COLOR_PROG,
394 &this->wm_prog_key, sizeof(this->wm_prog_key),
395 &prog_offset, prog_data)) {
396 brw_blorp_const_color_program prog(brw, &this->wm_prog_key);
397 GLuint program_size;
398 const GLuint *program = prog.compile(brw, &program_size);
399 brw_upload_cache(&brw->cache, BRW_BLORP_CONST_COLOR_PROG,
400 &this->wm_prog_key, sizeof(this->wm_prog_key),
401 program, program_size,
402 &prog.prog_data, sizeof(prog.prog_data),
403 &prog_offset, prog_data);
404 }
405 return prog_offset;
406 }
407
408 void
409 brw_blorp_const_color_program::alloc_regs()
410 {
411 int reg = 0;
412 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
413 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
414
415 prog_data.first_curbe_grf = reg;
416 clear_rgba = retype(brw_vec4_grf(reg++, 0), BRW_REGISTER_TYPE_F);
417 reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
418
419 /* Make sure we didn't run out of registers */
420 assert(reg <= GEN7_MRF_HACK_START);
421
422 this->base_mrf = 2;
423 }
424
425 const GLuint *
426 brw_blorp_const_color_program::compile(struct brw_context *brw,
427 GLuint *program_size)
428 {
429 /* Set up prog_data */
430 memset(&prog_data, 0, sizeof(prog_data));
431 prog_data.persample_msaa_dispatch = false;
432
433 alloc_regs();
434
435 brw_set_default_compression_control(&func, BRW_COMPRESSION_NONE);
436
437 struct brw_reg mrf_rt_write =
438 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_F);
439
440 uint32_t mlen, msg_type;
441 if (key->use_simd16_replicated_data) {
442 /* The message payload is a single register with the low 4 floats/ints
443 * filled with the constant clear color.
444 */
445 brw_set_default_mask_control(&func, BRW_MASK_DISABLE);
446 brw_MOV(&func, vec4(brw_message_reg(base_mrf)), clear_rgba);
447 brw_set_default_mask_control(&func, BRW_MASK_ENABLE);
448
449 msg_type = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
450 mlen = 1;
451 } else {
452 for (int i = 0; i < 4; i++) {
453 /* The message payload is pairs of registers for 16 pixels each of r,
454 * g, b, and a.
455 */
456 brw_set_default_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
457 brw_MOV(&func,
458 brw_message_reg(base_mrf + i * 2),
459 brw_vec1_grf(clear_rgba.nr, i));
460 brw_set_default_compression_control(&func, BRW_COMPRESSION_NONE);
461 }
462
463 msg_type = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
464 mlen = 8;
465 }
466
467 /* Now write to the render target and terminate the thread */
468 brw_fb_WRITE(&func,
469 16 /* dispatch_width */,
470 base_mrf /* msg_reg_nr */,
471 mrf_rt_write /* src0 */,
472 msg_type,
473 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
474 mlen,
475 0 /* response_length */,
476 true /* eot */,
477 false /* header present */);
478
479 if (unlikely(INTEL_DEBUG & DEBUG_BLORP)) {
480 fprintf(stderr, "Native code for BLORP clear:\n");
481 brw_disassemble(brw, func.store, 0, func.next_insn_offset, stderr);
482 fprintf(stderr, "\n");
483 }
484
485 brw_compact_instructions(&func, 0, 0, NULL);
486 return brw_get_program(&func, program_size);
487 }
488
489
490 bool
491 do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb,
492 struct gl_renderbuffer *rb, unsigned buf,
493 bool partial_clear, unsigned layer)
494 {
495 struct gl_context *ctx = &brw->ctx;
496 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
497
498 brw_blorp_clear_params params(brw, fb, rb, ctx->Color.ColorMask[buf],
499 partial_clear, layer);
500
501 bool is_fast_clear =
502 (params.fast_clear_op == GEN7_FAST_CLEAR_OP_FAST_CLEAR);
503 if (is_fast_clear) {
504 /* Record the clear color in the miptree so that it will be
505 * programmed in SURFACE_STATE by later rendering and resolve
506 * operations.
507 */
508 uint32_t new_color_value =
509 compute_fast_clear_color_bits(&ctx->Color.ClearColor);
510 if (irb->mt->fast_clear_color_value != new_color_value) {
511 irb->mt->fast_clear_color_value = new_color_value;
512 brw->state.dirty.brw |= BRW_NEW_SURFACES;
513 }
514
515 /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear
516 * is redundant and can be skipped.
517 */
518 if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
519 return true;
520
521 /* If the MCS buffer hasn't been allocated yet, we need to allocate
522 * it now.
523 */
524 if (!irb->mt->mcs_mt) {
525 if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt)) {
526 /* MCS allocation failed--probably this will only happen in
527 * out-of-memory conditions. But in any case, try to recover
528 * by falling back to a non-blorp clear technique.
529 */
530 return false;
531 }
532 brw->state.dirty.brw |= BRW_NEW_SURFACES;
533 }
534 }
535
536 const char *clear_type;
537 if (is_fast_clear)
538 clear_type = "fast";
539 else if (params.wm_prog_key.use_simd16_replicated_data)
540 clear_type = "replicated";
541 else
542 clear_type = "slow";
543
544 DBG("%s (%s) to mt %p level %d layer %d\n", __FUNCTION__, clear_type,
545 irb->mt, irb->mt_level, irb->mt_layer);
546
547 brw_blorp_exec(brw, &params);
548
549 if (is_fast_clear) {
550 /* Now that the fast clear has occurred, put the buffer in
551 * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing
552 * redundant clears.
553 */
554 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
555 }
556
557 return true;
558 }
559
560
561 extern "C" {
562 bool
563 brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb,
564 GLbitfield mask, bool partial_clear)
565 {
566 for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
567 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
568 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
569
570 /* Only clear the buffers present in the provided mask */
571 if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0)
572 continue;
573
574 /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
575 * the framebuffer can be complete with some attachments missing. In
576 * this case the _ColorDrawBuffers pointer will be NULL.
577 */
578 if (rb == NULL)
579 continue;
580
581 if (fb->MaxNumLayers > 0) {
582 unsigned layer_multiplier =
583 (irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
584 irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
585 irb->mt->num_samples : 1;
586 unsigned num_layers = irb->layer_count;
587 for (unsigned layer = 0; layer < num_layers; layer++) {
588 if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear,
589 irb->mt_layer + layer * layer_multiplier)) {
590 return false;
591 }
592 }
593 } else {
594 unsigned layer = irb->mt_layer;
595 if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear, layer))
596 return false;
597 }
598
599 irb->need_downsample = true;
600 }
601
602 return true;
603 }
604
605 void
606 brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt)
607 {
608 DBG("%s to mt %p\n", __FUNCTION__, mt);
609
610 brw_blorp_rt_resolve_params params(brw, mt);
611 brw_blorp_exec(brw, &params);
612 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
613 }
614
615 } /* extern "C" */