i965: Fix crash in fallback GTT mapping.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_bufmgr.c
1 /*
2 * Copyright © 2007 Red Hat Inc.
3 * Copyright © 2007-2017 Intel Corporation
4 * Copyright © 2006 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * IN THE SOFTWARE.
25 */
26
27 /*
28 * Authors: Thomas Hellström <thellstrom@vmware.com>
29 * Keith Whitwell <keithw@vmware.com>
30 * Eric Anholt <eric@anholt.net>
31 * Dave Airlie <airlied@linux.ie>
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <pthread.h>
47 #include <sys/ioctl.h>
48 #include <sys/stat.h>
49 #include <sys/types.h>
50 #include <stdbool.h>
51
52 #include "errno.h"
53 #ifndef ETIME
54 #define ETIME ETIMEDOUT
55 #endif
56 #include "common/gen_clflush.h"
57 #include "common/gen_debug.h"
58 #include "common/gen_device_info.h"
59 #include "libdrm_macros.h"
60 #include "main/macros.h"
61 #include "util/macros.h"
62 #include "util/hash_table.h"
63 #include "util/list.h"
64 #include "brw_bufmgr.h"
65 #include "brw_context.h"
66 #include "string.h"
67
68 #include "i915_drm.h"
69
70 #ifdef HAVE_VALGRIND
71 #include <valgrind.h>
72 #include <memcheck.h>
73 #define VG(x) x
74 #else
75 #define VG(x)
76 #endif
77
78 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
79 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
80 * leaked. All because it does not call VG(cli_free) from its
81 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
82 * and allocation, we mark it available for use upon mmapping and remove
83 * it upon unmapping.
84 */
85 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
86 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
87
88 #define memclear(s) memset(&s, 0, sizeof(s))
89
90 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
91
92 static inline int
93 atomic_add_unless(int *v, int add, int unless)
94 {
95 int c, old;
96 c = p_atomic_read(v);
97 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
98 c = old;
99 return c == unless;
100 }
101
102 struct bo_cache_bucket {
103 struct list_head head;
104 uint64_t size;
105 };
106
107 struct brw_bufmgr {
108 int fd;
109
110 pthread_mutex_t lock;
111
112 /** Array of lists of cached gem objects of power-of-two sizes */
113 struct bo_cache_bucket cache_bucket[14 * 4];
114 int num_buckets;
115 time_t time;
116
117 struct hash_table *name_table;
118 struct hash_table *handle_table;
119
120 bool has_llc:1;
121 bool has_mmap_wc:1;
122 bool bo_reuse:1;
123 };
124
125 static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
126 uint32_t stride);
127
128 static void bo_free(struct brw_bo *bo);
129
130 static uint32_t
131 key_hash_uint(const void *key)
132 {
133 return _mesa_hash_data(key, 4);
134 }
135
136 static bool
137 key_uint_equal(const void *a, const void *b)
138 {
139 return *((unsigned *) a) == *((unsigned *) b);
140 }
141
142 static struct brw_bo *
143 hash_find_bo(struct hash_table *ht, unsigned int key)
144 {
145 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
146 return entry ? (struct brw_bo *) entry->data : NULL;
147 }
148
149 static uint64_t
150 bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling)
151 {
152 if (tiling == I915_TILING_NONE)
153 return size;
154
155 /* 965+ just need multiples of page size for tiling */
156 return ALIGN(size, 4096);
157 }
158
159 /*
160 * Round a given pitch up to the minimum required for X tiling on a
161 * given chip. We use 512 as the minimum to allow for a later tiling
162 * change.
163 */
164 static uint32_t
165 bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling)
166 {
167 unsigned long tile_width;
168
169 /* If untiled, then just align it so that we can do rendering
170 * to it with the 3D engine.
171 */
172 if (tiling == I915_TILING_NONE)
173 return ALIGN(pitch, 64);
174
175 if (tiling == I915_TILING_X)
176 tile_width = 512;
177 else
178 tile_width = 128;
179
180 /* 965 is flexible */
181 return ALIGN(pitch, tile_width);
182 }
183
184 static struct bo_cache_bucket *
185 bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size)
186 {
187 int i;
188
189 for (i = 0; i < bufmgr->num_buckets; i++) {
190 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
191 if (bucket->size >= size) {
192 return bucket;
193 }
194 }
195
196 return NULL;
197 }
198
199 int
200 brw_bo_busy(struct brw_bo *bo)
201 {
202 struct brw_bufmgr *bufmgr = bo->bufmgr;
203 struct drm_i915_gem_busy busy;
204 int ret;
205
206 memclear(busy);
207 busy.handle = bo->gem_handle;
208
209 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
210 if (ret == 0) {
211 bo->idle = !busy.busy;
212 return busy.busy;
213 }
214 return false;
215 }
216
217 int
218 brw_bo_madvise(struct brw_bo *bo, int state)
219 {
220 struct drm_i915_gem_madvise madv;
221
222 memclear(madv);
223 madv.handle = bo->gem_handle;
224 madv.madv = state;
225 madv.retained = 1;
226 drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
227
228 return madv.retained;
229 }
230
231 /* drop the oldest entries that have been purged by the kernel */
232 static void
233 brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr,
234 struct bo_cache_bucket *bucket)
235 {
236 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
237 if (brw_bo_madvise(bo, I915_MADV_DONTNEED))
238 break;
239
240 list_del(&bo->head);
241 bo_free(bo);
242 }
243 }
244
245 static struct brw_bo *
246 bo_alloc_internal(struct brw_bufmgr *bufmgr,
247 const char *name,
248 uint64_t size,
249 unsigned flags,
250 uint32_t tiling_mode,
251 uint32_t stride, uint64_t alignment)
252 {
253 struct brw_bo *bo;
254 unsigned int page_size = getpagesize();
255 int ret;
256 struct bo_cache_bucket *bucket;
257 bool alloc_from_cache;
258 uint64_t bo_size;
259 bool busy = false;
260 bool zeroed = false;
261
262 if (flags & BO_ALLOC_BUSY)
263 busy = true;
264
265 if (flags & BO_ALLOC_ZEROED)
266 zeroed = true;
267
268 /* BUSY does doesn't really jive with ZEROED as we have to wait for it to
269 * be idle before we can memset. Just disallow that combination.
270 */
271 assert(!(busy && zeroed));
272
273 /* Round the allocated size up to a power of two number of pages. */
274 bucket = bucket_for_size(bufmgr, size);
275
276 /* If we don't have caching at this size, don't actually round the
277 * allocation up.
278 */
279 if (bucket == NULL) {
280 bo_size = size;
281 if (bo_size < page_size)
282 bo_size = page_size;
283 } else {
284 bo_size = bucket->size;
285 }
286
287 pthread_mutex_lock(&bufmgr->lock);
288 /* Get a buffer out of the cache if available */
289 retry:
290 alloc_from_cache = false;
291 if (bucket != NULL && !list_empty(&bucket->head)) {
292 if (busy && !zeroed) {
293 /* Allocate new render-target BOs from the tail (MRU)
294 * of the list, as it will likely be hot in the GPU
295 * cache and in the aperture for us. If the caller
296 * asked us to zero the buffer, we don't want this
297 * because we are going to mmap it.
298 */
299 bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head);
300 list_del(&bo->head);
301 alloc_from_cache = true;
302 bo->align = alignment;
303 } else {
304 assert(alignment == 0);
305 /* For non-render-target BOs (where we're probably
306 * going to map it first thing in order to fill it
307 * with data), check if the last BO in the cache is
308 * unbusy, and only reuse in that case. Otherwise,
309 * allocating a new buffer is probably faster than
310 * waiting for the GPU to finish.
311 */
312 bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head);
313 if (!brw_bo_busy(bo)) {
314 alloc_from_cache = true;
315 list_del(&bo->head);
316 }
317 }
318
319 if (alloc_from_cache) {
320 if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) {
321 bo_free(bo);
322 brw_bo_cache_purge_bucket(bufmgr, bucket);
323 goto retry;
324 }
325
326 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
327 bo_free(bo);
328 goto retry;
329 }
330
331 if (zeroed) {
332 void *map = brw_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
333 if (!map) {
334 bo_free(bo);
335 goto retry;
336 }
337 memset(map, 0, bo_size);
338 }
339 }
340 }
341
342 if (!alloc_from_cache) {
343 struct drm_i915_gem_create create;
344
345 bo = calloc(1, sizeof(*bo));
346 if (!bo)
347 goto err;
348
349 bo->size = bo_size;
350 bo->idle = true;
351
352 memclear(create);
353 create.size = bo_size;
354
355 /* All new BOs we get from the kernel are zeroed, so we don't need to
356 * worry about that here.
357 */
358 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
359 if (ret != 0) {
360 free(bo);
361 goto err;
362 }
363
364 bo->gem_handle = create.handle;
365 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
366
367 bo->bufmgr = bufmgr;
368 bo->align = alignment;
369
370 bo->tiling_mode = I915_TILING_NONE;
371 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
372 bo->stride = 0;
373
374 if (bo_set_tiling_internal(bo, tiling_mode, stride))
375 goto err_free;
376
377 /* Calling set_domain() will allocate pages for the BO outside of the
378 * struct mutex lock in the kernel, which is more efficient than waiting
379 * to create them during the first execbuf that uses the BO.
380 */
381 struct drm_i915_gem_set_domain sd = {
382 .handle = bo->gem_handle,
383 .read_domains = I915_GEM_DOMAIN_CPU,
384 .write_domain = 0,
385 };
386
387 if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
388 goto err_free;
389 }
390
391 bo->name = name;
392 p_atomic_set(&bo->refcount, 1);
393 bo->reusable = true;
394 bo->cache_coherent = bufmgr->has_llc;
395 bo->index = -1;
396
397 pthread_mutex_unlock(&bufmgr->lock);
398
399 DBG("bo_create: buf %d (%s) %ldb\n", bo->gem_handle, bo->name, size);
400
401 return bo;
402
403 err_free:
404 bo_free(bo);
405 err:
406 pthread_mutex_unlock(&bufmgr->lock);
407 return NULL;
408 }
409
410 struct brw_bo *
411 brw_bo_alloc(struct brw_bufmgr *bufmgr,
412 const char *name, uint64_t size, uint64_t alignment)
413 {
414 return bo_alloc_internal(bufmgr, name, size, 0, I915_TILING_NONE, 0, 0);
415 }
416
417 struct brw_bo *
418 brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name,
419 uint64_t size, uint32_t tiling_mode, uint32_t pitch,
420 unsigned flags)
421 {
422 return bo_alloc_internal(bufmgr, name, size, flags, tiling_mode, pitch, 0);
423 }
424
425 struct brw_bo *
426 brw_bo_alloc_tiled_2d(struct brw_bufmgr *bufmgr, const char *name,
427 int x, int y, int cpp, uint32_t tiling,
428 uint32_t *pitch, unsigned flags)
429 {
430 uint64_t size;
431 uint32_t stride;
432 unsigned long aligned_y, height_alignment;
433
434 /* If we're tiled, our allocations are in 8 or 32-row blocks,
435 * so failure to align our height means that we won't allocate
436 * enough pages.
437 *
438 * If we're untiled, we still have to align to 2 rows high
439 * because the data port accesses 2x2 blocks even if the
440 * bottom row isn't to be rendered, so failure to align means
441 * we could walk off the end of the GTT and fault. This is
442 * documented on 965, and may be the case on older chipsets
443 * too so we try to be careful.
444 */
445 aligned_y = y;
446 height_alignment = 2;
447
448 if (tiling == I915_TILING_X)
449 height_alignment = 8;
450 else if (tiling == I915_TILING_Y)
451 height_alignment = 32;
452 aligned_y = ALIGN(y, height_alignment);
453
454 stride = x * cpp;
455 stride = bo_tile_pitch(bufmgr, stride, tiling);
456 size = stride * aligned_y;
457 size = bo_tile_size(bufmgr, size, tiling);
458 *pitch = stride;
459
460 if (tiling == I915_TILING_NONE)
461 stride = 0;
462
463 return bo_alloc_internal(bufmgr, name, size, flags, tiling, stride, 0);
464 }
465
466 /**
467 * Returns a brw_bo wrapping the given buffer object handle.
468 *
469 * This can be used when one application needs to pass a buffer object
470 * to another.
471 */
472 struct brw_bo *
473 brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr,
474 const char *name, unsigned int handle)
475 {
476 struct brw_bo *bo;
477 int ret;
478 struct drm_gem_open open_arg;
479 struct drm_i915_gem_get_tiling get_tiling;
480
481 /* At the moment most applications only have a few named bo.
482 * For instance, in a DRI client only the render buffers passed
483 * between X and the client are named. And since X returns the
484 * alternating names for the front/back buffer a linear search
485 * provides a sufficiently fast match.
486 */
487 pthread_mutex_lock(&bufmgr->lock);
488 bo = hash_find_bo(bufmgr->name_table, handle);
489 if (bo) {
490 brw_bo_reference(bo);
491 goto out;
492 }
493
494 memclear(open_arg);
495 open_arg.name = handle;
496 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
497 if (ret != 0) {
498 DBG("Couldn't reference %s handle 0x%08x: %s\n",
499 name, handle, strerror(errno));
500 bo = NULL;
501 goto out;
502 }
503 /* Now see if someone has used a prime handle to get this
504 * object from the kernel before by looking through the list
505 * again for a matching gem_handle
506 */
507 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
508 if (bo) {
509 brw_bo_reference(bo);
510 goto out;
511 }
512
513 bo = calloc(1, sizeof(*bo));
514 if (!bo)
515 goto out;
516
517 p_atomic_set(&bo->refcount, 1);
518
519 bo->size = open_arg.size;
520 bo->gtt_offset = 0;
521 bo->bufmgr = bufmgr;
522 bo->gem_handle = open_arg.handle;
523 bo->name = name;
524 bo->global_name = handle;
525 bo->reusable = false;
526 bo->external = true;
527
528 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
529 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
530
531 memclear(get_tiling);
532 get_tiling.handle = bo->gem_handle;
533 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
534 if (ret != 0)
535 goto err_unref;
536
537 bo->tiling_mode = get_tiling.tiling_mode;
538 bo->swizzle_mode = get_tiling.swizzle_mode;
539 /* XXX stride is unknown */
540 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
541
542 out:
543 pthread_mutex_unlock(&bufmgr->lock);
544 return bo;
545
546 err_unref:
547 bo_free(bo);
548 pthread_mutex_unlock(&bufmgr->lock);
549 return NULL;
550 }
551
552 static void
553 bo_free(struct brw_bo *bo)
554 {
555 struct brw_bufmgr *bufmgr = bo->bufmgr;
556 struct drm_gem_close close;
557 struct hash_entry *entry;
558 int ret;
559
560 if (bo->map_cpu) {
561 VG_NOACCESS(bo->map_cpu, bo->size);
562 drm_munmap(bo->map_cpu, bo->size);
563 }
564 if (bo->map_wc) {
565 VG_NOACCESS(bo->map_wc, bo->size);
566 drm_munmap(bo->map_wc, bo->size);
567 }
568 if (bo->map_gtt) {
569 VG_NOACCESS(bo->map_gtt, bo->size);
570 drm_munmap(bo->map_gtt, bo->size);
571 }
572
573 if (bo->global_name) {
574 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
575 _mesa_hash_table_remove(bufmgr->name_table, entry);
576 }
577 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
578 _mesa_hash_table_remove(bufmgr->handle_table, entry);
579
580 /* Close this object */
581 memclear(close);
582 close.handle = bo->gem_handle;
583 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
584 if (ret != 0) {
585 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
586 bo->gem_handle, bo->name, strerror(errno));
587 }
588 free(bo);
589 }
590
591 /** Frees all cached buffers significantly older than @time. */
592 static void
593 cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time)
594 {
595 int i;
596
597 if (bufmgr->time == time)
598 return;
599
600 for (i = 0; i < bufmgr->num_buckets; i++) {
601 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
602
603 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
604 if (time - bo->free_time <= 1)
605 break;
606
607 list_del(&bo->head);
608
609 bo_free(bo);
610 }
611 }
612
613 bufmgr->time = time;
614 }
615
616 static void
617 bo_unreference_final(struct brw_bo *bo, time_t time)
618 {
619 struct brw_bufmgr *bufmgr = bo->bufmgr;
620 struct bo_cache_bucket *bucket;
621
622 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
623
624 bucket = bucket_for_size(bufmgr, bo->size);
625 /* Put the buffer into our internal cache for reuse if we can. */
626 if (bufmgr->bo_reuse && bo->reusable && bucket != NULL &&
627 brw_bo_madvise(bo, I915_MADV_DONTNEED)) {
628 bo->free_time = time;
629
630 bo->name = NULL;
631 bo->kflags = 0;
632
633 list_addtail(&bo->head, &bucket->head);
634 } else {
635 bo_free(bo);
636 }
637 }
638
639 void
640 brw_bo_unreference(struct brw_bo *bo)
641 {
642 if (bo == NULL)
643 return;
644
645 assert(p_atomic_read(&bo->refcount) > 0);
646
647 if (atomic_add_unless(&bo->refcount, -1, 1)) {
648 struct brw_bufmgr *bufmgr = bo->bufmgr;
649 struct timespec time;
650
651 clock_gettime(CLOCK_MONOTONIC, &time);
652
653 pthread_mutex_lock(&bufmgr->lock);
654
655 if (p_atomic_dec_zero(&bo->refcount)) {
656 bo_unreference_final(bo, time.tv_sec);
657 cleanup_bo_cache(bufmgr, time.tv_sec);
658 }
659
660 pthread_mutex_unlock(&bufmgr->lock);
661 }
662 }
663
664 static void
665 bo_wait_with_stall_warning(struct brw_context *brw,
666 struct brw_bo *bo,
667 const char *action)
668 {
669 double elapsed = unlikely(brw && brw->perf_debug) ? -get_time() : 0.0;
670
671 brw_bo_wait_rendering(bo);
672
673 if (unlikely(brw && brw->perf_debug)) {
674 elapsed += get_time();
675 if (elapsed > 1e-5) /* 0.01ms */
676 perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n",
677 action, bo->name, elapsed * 1000);
678 }
679 }
680
681 static void
682 print_flags(unsigned flags)
683 {
684 if (flags & MAP_READ)
685 DBG("READ ");
686 if (flags & MAP_WRITE)
687 DBG("WRITE ");
688 if (flags & MAP_ASYNC)
689 DBG("ASYNC ");
690 if (flags & MAP_PERSISTENT)
691 DBG("PERSISTENT ");
692 if (flags & MAP_COHERENT)
693 DBG("COHERENT ");
694 if (flags & MAP_RAW)
695 DBG("RAW ");
696 DBG("\n");
697 }
698
699 static void *
700 brw_bo_map_cpu(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
701 {
702 struct brw_bufmgr *bufmgr = bo->bufmgr;
703
704 /* We disallow CPU maps for writing to non-coherent buffers, as the
705 * CPU map can become invalidated when a batch is flushed out, which
706 * can happen at unpredictable times. You should use WC maps instead.
707 */
708 assert(bo->cache_coherent || !(flags & MAP_WRITE));
709
710 if (!bo->map_cpu) {
711 struct drm_i915_gem_mmap mmap_arg;
712 void *map;
713
714 DBG("brw_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
715
716 memclear(mmap_arg);
717 mmap_arg.handle = bo->gem_handle;
718 mmap_arg.size = bo->size;
719 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
720 if (ret != 0) {
721 ret = -errno;
722 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
723 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
724 return NULL;
725 }
726 map = (void *) (uintptr_t) mmap_arg.addr_ptr;
727 VG_DEFINED(map, bo->size);
728
729 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
730 VG_NOACCESS(map, bo->size);
731 drm_munmap(map, bo->size);
732 }
733 }
734 assert(bo->map_cpu);
735
736 DBG("brw_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
737 bo->map_cpu);
738 print_flags(flags);
739
740 if (!(flags & MAP_ASYNC)) {
741 bo_wait_with_stall_warning(brw, bo, "CPU mapping");
742 }
743
744 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
745 /* If we're reusing an existing CPU mapping, the CPU caches may
746 * contain stale data from the last time we read from that mapping.
747 * (With the BO cache, it might even be data from a previous buffer!)
748 * Even if it's a brand new mapping, the kernel may have zeroed the
749 * buffer via CPU writes.
750 *
751 * We need to invalidate those cachelines so that we see the latest
752 * contents, and so long as we only read from the CPU mmap we do not
753 * need to write those cachelines back afterwards.
754 *
755 * On LLC, the emprical evidence suggests that writes from the GPU
756 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
757 * cachelines. (Other reads, such as the display engine, bypass the
758 * LLC entirely requiring us to keep dirty pixels for the scanout
759 * out of any cache.)
760 */
761 gen_invalidate_range(bo->map_cpu, bo->size);
762 }
763
764 return bo->map_cpu;
765 }
766
767 static void *
768 brw_bo_map_wc(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
769 {
770 struct brw_bufmgr *bufmgr = bo->bufmgr;
771
772 if (!bufmgr->has_mmap_wc)
773 return NULL;
774
775 if (!bo->map_wc) {
776 struct drm_i915_gem_mmap mmap_arg;
777 void *map;
778
779 DBG("brw_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
780
781 memclear(mmap_arg);
782 mmap_arg.handle = bo->gem_handle;
783 mmap_arg.size = bo->size;
784 mmap_arg.flags = I915_MMAP_WC;
785 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
786 if (ret != 0) {
787 ret = -errno;
788 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
789 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
790 return NULL;
791 }
792
793 map = (void *) (uintptr_t) mmap_arg.addr_ptr;
794 VG_DEFINED(map, bo->size);
795
796 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
797 VG_NOACCESS(map, bo->size);
798 drm_munmap(map, bo->size);
799 }
800 }
801 assert(bo->map_wc);
802
803 DBG("brw_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
804 print_flags(flags);
805
806 if (!(flags & MAP_ASYNC)) {
807 bo_wait_with_stall_warning(brw, bo, "WC mapping");
808 }
809
810 return bo->map_wc;
811 }
812
813 /**
814 * Perform an uncached mapping via the GTT.
815 *
816 * Write access through the GTT is not quite fully coherent. On low power
817 * systems especially, like modern Atoms, we can observe reads from RAM before
818 * the write via GTT has landed. A write memory barrier that flushes the Write
819 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
820 * read after the write as the GTT write suffers a small delay through the GTT
821 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
822 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
823 * flushes prior to execbuf submission. However, if we are not informing the
824 * kernel about our GTT writes, it will not flush before earlier access, such
825 * as when using the cmdparser. Similarly, we need to be careful if we should
826 * ever issue a CPU read immediately following a GTT write.
827 *
828 * Telling the kernel about write access also has one more important
829 * side-effect. Upon receiving notification about the write, it cancels any
830 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
831 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
832 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
833 * tracking is handled on the buffer exchange instead.
834 */
835 static void *
836 brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
837 {
838 struct brw_bufmgr *bufmgr = bo->bufmgr;
839
840 /* Get a mapping of the buffer if we haven't before. */
841 if (bo->map_gtt == NULL) {
842 struct drm_i915_gem_mmap_gtt mmap_arg;
843 void *map;
844
845 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
846
847 memclear(mmap_arg);
848 mmap_arg.handle = bo->gem_handle;
849
850 /* Get the fake offset back... */
851 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
852 if (ret != 0) {
853 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
854 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
855 return NULL;
856 }
857
858 /* and mmap it. */
859 map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
860 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
861 if (map == MAP_FAILED) {
862 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
863 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
864 return NULL;
865 }
866
867 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
868 * already intercept this mmap call. However, for consistency between
869 * all the mmap paths, we mark the pointer as defined now and mark it
870 * as inaccessible afterwards.
871 */
872 VG_DEFINED(map, bo->size);
873
874 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
875 VG_NOACCESS(map, bo->size);
876 drm_munmap(map, bo->size);
877 }
878 }
879 assert(bo->map_gtt);
880
881 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
882 print_flags(flags);
883
884 if (!(flags & MAP_ASYNC)) {
885 bo_wait_with_stall_warning(brw, bo, "GTT mapping");
886 }
887
888 return bo->map_gtt;
889 }
890
891 static bool
892 can_map_cpu(struct brw_bo *bo, unsigned flags)
893 {
894 if (bo->cache_coherent)
895 return true;
896
897 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
898 * an LLC platform reads always are coherent (as they are performed via the
899 * central system agent). It is just the writes that we need to take special
900 * care to ensure that land in main memory and not stick in the CPU cache.
901 */
902 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
903 return true;
904
905 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
906 * across batch flushes where the kernel will change cache domains of the
907 * bo, invalidating continued access to the CPU mmap on non-LLC device.
908 *
909 * Similarly, ASYNC typically means that the buffer will be accessed via
910 * both the CPU and the GPU simultaneously. Batches may be executed that
911 * use the BO even while it is mapped. While OpenGL technically disallows
912 * most drawing while non-persistent mappings are active, we may still use
913 * the GPU for blits or other operations, causing batches to happen at
914 * inconvenient times.
915 */
916 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC))
917 return false;
918
919 return !(flags & MAP_WRITE);
920 }
921
922 void *
923 brw_bo_map(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
924 {
925 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
926 return brw_bo_map_gtt(brw, bo, flags);
927
928 void *map;
929
930 if (can_map_cpu(bo, flags))
931 map = brw_bo_map_cpu(brw, bo, flags);
932 else
933 map = brw_bo_map_wc(brw, bo, flags);
934
935 /* Allow the attempt to fail by falling back to the GTT where necessary.
936 *
937 * Not every buffer can be mmaped directly using the CPU (or WC), for
938 * example buffers that wrap stolen memory or are imported from other
939 * devices. For those, we have little choice but to use a GTT mmapping.
940 * However, if we use a slow GTT mmapping for reads where we expected fast
941 * access, that order of magnitude difference in throughput will be clearly
942 * expressed by angry users.
943 *
944 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
945 */
946 if (!map && !(flags & MAP_RAW)) {
947 if (brw) {
948 perf_debug("Fallback GTT mapping for %s with access flags %x\n",
949 bo->name, flags);
950 }
951 map = brw_bo_map_gtt(brw, bo, flags);
952 }
953
954 return map;
955 }
956
957 int
958 brw_bo_subdata(struct brw_bo *bo, uint64_t offset,
959 uint64_t size, const void *data)
960 {
961 struct brw_bufmgr *bufmgr = bo->bufmgr;
962 struct drm_i915_gem_pwrite pwrite;
963 int ret;
964
965 memclear(pwrite);
966 pwrite.handle = bo->gem_handle;
967 pwrite.offset = offset;
968 pwrite.size = size;
969 pwrite.data_ptr = (uint64_t) (uintptr_t) data;
970 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite);
971 if (ret != 0) {
972 ret = -errno;
973 DBG("%s:%d: Error writing data to buffer %d: "
974 "(%"PRIu64" %"PRIu64") %s .\n",
975 __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
976 }
977
978 return ret;
979 }
980
981 /** Waits for all GPU rendering with the object to have completed. */
982 void
983 brw_bo_wait_rendering(struct brw_bo *bo)
984 {
985 /* We require a kernel recent enough for WAIT_IOCTL support.
986 * See intel_init_bufmgr()
987 */
988 brw_bo_wait(bo, -1);
989 }
990
991 /**
992 * Waits on a BO for the given amount of time.
993 *
994 * @bo: buffer object to wait for
995 * @timeout_ns: amount of time to wait in nanoseconds.
996 * If value is less than 0, an infinite wait will occur.
997 *
998 * Returns 0 if the wait was successful ie. the last batch referencing the
999 * object has completed within the allotted time. Otherwise some negative return
1000 * value describes the error. Of particular interest is -ETIME when the wait has
1001 * failed to yield the desired result.
1002 *
1003 * Similar to brw_bo_wait_rendering except a timeout parameter allows
1004 * the operation to give up after a certain amount of time. Another subtle
1005 * difference is the internal locking semantics are different (this variant does
1006 * not hold the lock for the duration of the wait). This makes the wait subject
1007 * to a larger userspace race window.
1008 *
1009 * The implementation shall wait until the object is no longer actively
1010 * referenced within a batch buffer at the time of the call. The wait will
1011 * not guarantee that the buffer is re-issued via another thread, or an flinked
1012 * handle. Userspace must make sure this race does not occur if such precision
1013 * is important.
1014 *
1015 * Note that some kernels have broken the inifite wait for negative values
1016 * promise, upgrade to latest stable kernels if this is the case.
1017 */
1018 int
1019 brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns)
1020 {
1021 struct brw_bufmgr *bufmgr = bo->bufmgr;
1022 struct drm_i915_gem_wait wait;
1023 int ret;
1024
1025 /* If we know it's idle, don't bother with the kernel round trip */
1026 if (bo->idle && !bo->external)
1027 return 0;
1028
1029 memclear(wait);
1030 wait.bo_handle = bo->gem_handle;
1031 wait.timeout_ns = timeout_ns;
1032 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1033 if (ret == -1)
1034 return -errno;
1035
1036 bo->idle = true;
1037
1038 return ret;
1039 }
1040
1041 void
1042 brw_bufmgr_destroy(struct brw_bufmgr *bufmgr)
1043 {
1044 pthread_mutex_destroy(&bufmgr->lock);
1045
1046 /* Free any cached buffer objects we were going to reuse */
1047 for (int i = 0; i < bufmgr->num_buckets; i++) {
1048 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1049
1050 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
1051 list_del(&bo->head);
1052
1053 bo_free(bo);
1054 }
1055 }
1056
1057 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1058 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1059
1060 free(bufmgr);
1061 }
1062
1063 static int
1064 bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
1065 uint32_t stride)
1066 {
1067 struct brw_bufmgr *bufmgr = bo->bufmgr;
1068 struct drm_i915_gem_set_tiling set_tiling;
1069 int ret;
1070
1071 if (bo->global_name == 0 &&
1072 tiling_mode == bo->tiling_mode && stride == bo->stride)
1073 return 0;
1074
1075 memset(&set_tiling, 0, sizeof(set_tiling));
1076 do {
1077 /* set_tiling is slightly broken and overwrites the
1078 * input on the error path, so we have to open code
1079 * rmIoctl.
1080 */
1081 set_tiling.handle = bo->gem_handle;
1082 set_tiling.tiling_mode = tiling_mode;
1083 set_tiling.stride = stride;
1084
1085 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1086 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1087 if (ret == -1)
1088 return -errno;
1089
1090 bo->tiling_mode = set_tiling.tiling_mode;
1091 bo->swizzle_mode = set_tiling.swizzle_mode;
1092 bo->stride = set_tiling.stride;
1093 return 0;
1094 }
1095
1096 int
1097 brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode,
1098 uint32_t *swizzle_mode)
1099 {
1100 *tiling_mode = bo->tiling_mode;
1101 *swizzle_mode = bo->swizzle_mode;
1102 return 0;
1103 }
1104
1105 struct brw_bo *
1106 brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd)
1107 {
1108 int ret;
1109 uint32_t handle;
1110 struct brw_bo *bo;
1111 struct drm_i915_gem_get_tiling get_tiling;
1112
1113 pthread_mutex_lock(&bufmgr->lock);
1114 ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1115 if (ret) {
1116 DBG("create_from_prime: failed to obtain handle from fd: %s\n",
1117 strerror(errno));
1118 pthread_mutex_unlock(&bufmgr->lock);
1119 return NULL;
1120 }
1121
1122 /*
1123 * See if the kernel has already returned this buffer to us. Just as
1124 * for named buffers, we must not create two bo's pointing at the same
1125 * kernel object
1126 */
1127 bo = hash_find_bo(bufmgr->handle_table, handle);
1128 if (bo) {
1129 brw_bo_reference(bo);
1130 goto out;
1131 }
1132
1133 bo = calloc(1, sizeof(*bo));
1134 if (!bo)
1135 goto out;
1136
1137 p_atomic_set(&bo->refcount, 1);
1138
1139 /* Determine size of bo. The fd-to-handle ioctl really should
1140 * return the size, but it doesn't. If we have kernel 3.12 or
1141 * later, we can lseek on the prime fd to get the size. Older
1142 * kernels will just fail, in which case we fall back to the
1143 * provided (estimated or guess size). */
1144 ret = lseek(prime_fd, 0, SEEK_END);
1145 if (ret != -1)
1146 bo->size = ret;
1147
1148 bo->bufmgr = bufmgr;
1149
1150 bo->gem_handle = handle;
1151 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1152
1153 bo->name = "prime";
1154 bo->reusable = false;
1155 bo->external = true;
1156
1157 memclear(get_tiling);
1158 get_tiling.handle = bo->gem_handle;
1159 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1160 goto err;
1161
1162 bo->tiling_mode = get_tiling.tiling_mode;
1163 bo->swizzle_mode = get_tiling.swizzle_mode;
1164 /* XXX stride is unknown */
1165
1166 out:
1167 pthread_mutex_unlock(&bufmgr->lock);
1168 return bo;
1169
1170 err:
1171 bo_free(bo);
1172 pthread_mutex_unlock(&bufmgr->lock);
1173 return NULL;
1174 }
1175
1176 int
1177 brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd)
1178 {
1179 struct brw_bufmgr *bufmgr = bo->bufmgr;
1180
1181 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1182 DRM_CLOEXEC, prime_fd) != 0)
1183 return -errno;
1184
1185 bo->reusable = false;
1186 bo->external = true;
1187
1188 return 0;
1189 }
1190
1191 int
1192 brw_bo_flink(struct brw_bo *bo, uint32_t *name)
1193 {
1194 struct brw_bufmgr *bufmgr = bo->bufmgr;
1195
1196 if (!bo->global_name) {
1197 struct drm_gem_flink flink;
1198
1199 memclear(flink);
1200 flink.handle = bo->gem_handle;
1201 if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1202 return -errno;
1203
1204 pthread_mutex_lock(&bufmgr->lock);
1205 if (!bo->global_name) {
1206 bo->global_name = flink.name;
1207 bo->reusable = false;
1208 bo->external = true;
1209
1210 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1211 }
1212 pthread_mutex_unlock(&bufmgr->lock);
1213 }
1214
1215 *name = bo->global_name;
1216 return 0;
1217 }
1218
1219 /**
1220 * Enables unlimited caching of buffer objects for reuse.
1221 *
1222 * This is potentially very memory expensive, as the cache at each bucket
1223 * size is only bounded by how many buffers of that size we've managed to have
1224 * in flight at once.
1225 */
1226 void
1227 brw_bufmgr_enable_reuse(struct brw_bufmgr *bufmgr)
1228 {
1229 bufmgr->bo_reuse = true;
1230 }
1231
1232 static void
1233 add_bucket(struct brw_bufmgr *bufmgr, int size)
1234 {
1235 unsigned int i = bufmgr->num_buckets;
1236
1237 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1238
1239 list_inithead(&bufmgr->cache_bucket[i].head);
1240 bufmgr->cache_bucket[i].size = size;
1241 bufmgr->num_buckets++;
1242 }
1243
1244 static void
1245 init_cache_buckets(struct brw_bufmgr *bufmgr)
1246 {
1247 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1248
1249 /* OK, so power of two buckets was too wasteful of memory.
1250 * Give 3 other sizes between each power of two, to hopefully
1251 * cover things accurately enough. (The alternative is
1252 * probably to just go for exact matching of sizes, and assume
1253 * that for things like composited window resize the tiled
1254 * width/height alignment and rounding of sizes to pages will
1255 * get us useful cache hit rates anyway)
1256 */
1257 add_bucket(bufmgr, 4096);
1258 add_bucket(bufmgr, 4096 * 2);
1259 add_bucket(bufmgr, 4096 * 3);
1260
1261 /* Initialize the linked lists for BO reuse cache. */
1262 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
1263 add_bucket(bufmgr, size);
1264
1265 add_bucket(bufmgr, size + size * 1 / 4);
1266 add_bucket(bufmgr, size + size * 2 / 4);
1267 add_bucket(bufmgr, size + size * 3 / 4);
1268 }
1269 }
1270
1271 uint32_t
1272 brw_create_hw_context(struct brw_bufmgr *bufmgr)
1273 {
1274 struct drm_i915_gem_context_create create;
1275 int ret;
1276
1277 memclear(create);
1278 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1279 if (ret != 0) {
1280 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1281 return 0;
1282 }
1283
1284 return create.ctx_id;
1285 }
1286
1287 void
1288 brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id)
1289 {
1290 struct drm_i915_gem_context_destroy d = {.ctx_id = ctx_id };
1291
1292 if (ctx_id != 0 &&
1293 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1294 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1295 strerror(errno));
1296 }
1297 }
1298
1299 int
1300 brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1301 {
1302 struct drm_i915_reg_read reg_read;
1303 int ret;
1304
1305 memclear(reg_read);
1306 reg_read.offset = offset;
1307
1308 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1309
1310 *result = reg_read.val;
1311 return ret;
1312 }
1313
1314 static int
1315 gem_param(int fd, int name)
1316 {
1317 drm_i915_getparam_t gp;
1318 int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
1319
1320 memset(&gp, 0, sizeof(gp));
1321 gp.param = name;
1322 gp.value = &v;
1323 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
1324 return -1;
1325
1326 return v;
1327 }
1328
1329 /**
1330 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1331 * and manage map buffer objections.
1332 *
1333 * \param fd File descriptor of the opened DRM device.
1334 */
1335 struct brw_bufmgr *
1336 brw_bufmgr_init(struct gen_device_info *devinfo, int fd)
1337 {
1338 struct brw_bufmgr *bufmgr;
1339
1340 bufmgr = calloc(1, sizeof(*bufmgr));
1341 if (bufmgr == NULL)
1342 return NULL;
1343
1344 /* Handles to buffer objects belong to the device fd and are not
1345 * reference counted by the kernel. If the same fd is used by
1346 * multiple parties (threads sharing the same screen bufmgr, or
1347 * even worse the same device fd passed to multiple libraries)
1348 * ownership of those handles is shared by those independent parties.
1349 *
1350 * Don't do this! Ensure that each library/bufmgr has its own device
1351 * fd so that its namespace does not clash with another.
1352 */
1353 bufmgr->fd = fd;
1354
1355 if (pthread_mutex_init(&bufmgr->lock, NULL) != 0) {
1356 free(bufmgr);
1357 return NULL;
1358 }
1359
1360 bufmgr->has_llc = devinfo->has_llc;
1361 bufmgr->has_mmap_wc = gem_param(fd, I915_PARAM_MMAP_VERSION) > 0;
1362
1363 init_cache_buckets(bufmgr);
1364
1365 bufmgr->name_table =
1366 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1367 bufmgr->handle_table =
1368 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1369
1370 return bufmgr;
1371 }