i965: Use C99 struct initializers in brw_bufmgr.c.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_bufmgr.c
1 /*
2 * Copyright © 2007 Red Hat Inc.
3 * Copyright © 2007-2017 Intel Corporation
4 * Copyright © 2006 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * IN THE SOFTWARE.
25 */
26
27 /*
28 * Authors: Thomas Hellström <thellstrom@vmware.com>
29 * Keith Whitwell <keithw@vmware.com>
30 * Eric Anholt <eric@anholt.net>
31 * Dave Airlie <airlied@linux.ie>
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/stat.h>
48 #include <sys/types.h>
49 #include <stdbool.h>
50
51 #include "errno.h"
52 #ifndef ETIME
53 #define ETIME ETIMEDOUT
54 #endif
55 #include "common/gen_clflush.h"
56 #include "common/gen_debug.h"
57 #include "common/gen_device_info.h"
58 #include "libdrm_macros.h"
59 #include "main/macros.h"
60 #include "util/macros.h"
61 #include "util/hash_table.h"
62 #include "util/list.h"
63 #include "brw_bufmgr.h"
64 #include "brw_context.h"
65 #include "string.h"
66
67 #include "i915_drm.h"
68
69 #ifdef HAVE_VALGRIND
70 #include <valgrind.h>
71 #include <memcheck.h>
72 #define VG(x) x
73 #else
74 #define VG(x)
75 #endif
76
77 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
78 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
79 * leaked. All because it does not call VG(cli_free) from its
80 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
81 * and allocation, we mark it available for use upon mmapping and remove
82 * it upon unmapping.
83 */
84 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
85 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
86
87 #define PAGE_SIZE 4096
88
89 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
90
91 static inline int
92 atomic_add_unless(int *v, int add, int unless)
93 {
94 int c, old;
95 c = p_atomic_read(v);
96 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
97 c = old;
98 return c == unless;
99 }
100
101 struct bo_cache_bucket {
102 struct list_head head;
103 uint64_t size;
104 };
105
106 struct brw_bufmgr {
107 int fd;
108
109 mtx_t lock;
110
111 /** Array of lists of cached gem objects of power-of-two sizes */
112 struct bo_cache_bucket cache_bucket[14 * 4];
113 int num_buckets;
114 time_t time;
115
116 struct hash_table *name_table;
117 struct hash_table *handle_table;
118
119 bool has_llc:1;
120 bool has_mmap_wc:1;
121 bool bo_reuse:1;
122 };
123
124 static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
125 uint32_t stride);
126
127 static void bo_free(struct brw_bo *bo);
128
129 static uint32_t
130 key_hash_uint(const void *key)
131 {
132 return _mesa_hash_data(key, 4);
133 }
134
135 static bool
136 key_uint_equal(const void *a, const void *b)
137 {
138 return *((unsigned *) a) == *((unsigned *) b);
139 }
140
141 static struct brw_bo *
142 hash_find_bo(struct hash_table *ht, unsigned int key)
143 {
144 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
145 return entry ? (struct brw_bo *) entry->data : NULL;
146 }
147
148 static uint64_t
149 bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling)
150 {
151 if (tiling == I915_TILING_NONE)
152 return size;
153
154 /* 965+ just need multiples of page size for tiling */
155 return ALIGN(size, 4096);
156 }
157
158 /*
159 * Round a given pitch up to the minimum required for X tiling on a
160 * given chip. We use 512 as the minimum to allow for a later tiling
161 * change.
162 */
163 static uint32_t
164 bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling)
165 {
166 unsigned long tile_width;
167
168 /* If untiled, then just align it so that we can do rendering
169 * to it with the 3D engine.
170 */
171 if (tiling == I915_TILING_NONE)
172 return ALIGN(pitch, 64);
173
174 if (tiling == I915_TILING_X)
175 tile_width = 512;
176 else
177 tile_width = 128;
178
179 /* 965 is flexible */
180 return ALIGN(pitch, tile_width);
181 }
182
183 /**
184 * This function finds the correct bucket fit for the input size.
185 * The function works with O(1) complexity when the requested size
186 * was queried instead of iterating the size through all the buckets.
187 */
188 static struct bo_cache_bucket *
189 bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size)
190 {
191 /* Calculating the pages and rounding up to the page size. */
192 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
193
194 /* Row Bucket sizes clz((x-1) | 3) Row Column
195 * in pages stride size
196 * 0: 1 2 3 4 -> 30 30 30 30 4 1
197 * 1: 5 6 7 8 -> 29 29 29 29 4 1
198 * 2: 10 12 14 16 -> 28 28 28 28 8 2
199 * 3: 20 24 28 32 -> 27 27 27 27 16 4
200 */
201 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
202 const unsigned row_max_pages = 4 << row;
203
204 /* The '& ~2' is the special case for row 1. In row 1, max pages /
205 * 2 is 2, but the previous row maximum is zero (because there is
206 * no previous row). All row maximum sizes are power of 2, so that
207 * is the only case where that bit will be set.
208 */
209 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
210 int col_size_log2 = row - 1;
211 col_size_log2 += (col_size_log2 < 0);
212
213 const unsigned col = (pages - prev_row_max_pages +
214 ((1 << col_size_log2) - 1)) >> col_size_log2;
215
216 /* Calculating the index based on the row and column. */
217 const unsigned index = (row * 4) + (col - 1);
218
219 return (index < bufmgr->num_buckets) ?
220 &bufmgr->cache_bucket[index] : NULL;
221 }
222
223 int
224 brw_bo_busy(struct brw_bo *bo)
225 {
226 struct brw_bufmgr *bufmgr = bo->bufmgr;
227 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
228
229 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
230 if (ret == 0) {
231 bo->idle = !busy.busy;
232 return busy.busy;
233 }
234 return false;
235 }
236
237 int
238 brw_bo_madvise(struct brw_bo *bo, int state)
239 {
240 struct drm_i915_gem_madvise madv = {
241 .handle = bo->gem_handle,
242 .madv = state,
243 .retained = 1,
244 };
245
246 drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
247
248 return madv.retained;
249 }
250
251 /* drop the oldest entries that have been purged by the kernel */
252 static void
253 brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr,
254 struct bo_cache_bucket *bucket)
255 {
256 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
257 if (brw_bo_madvise(bo, I915_MADV_DONTNEED))
258 break;
259
260 list_del(&bo->head);
261 bo_free(bo);
262 }
263 }
264
265 static struct brw_bo *
266 bo_alloc_internal(struct brw_bufmgr *bufmgr,
267 const char *name,
268 uint64_t size,
269 unsigned flags,
270 uint32_t tiling_mode,
271 uint32_t stride, uint64_t alignment)
272 {
273 struct brw_bo *bo;
274 unsigned int page_size = getpagesize();
275 int ret;
276 struct bo_cache_bucket *bucket;
277 bool alloc_from_cache;
278 uint64_t bo_size;
279 bool busy = false;
280 bool zeroed = false;
281
282 if (flags & BO_ALLOC_BUSY)
283 busy = true;
284
285 if (flags & BO_ALLOC_ZEROED)
286 zeroed = true;
287
288 /* BUSY does doesn't really jive with ZEROED as we have to wait for it to
289 * be idle before we can memset. Just disallow that combination.
290 */
291 assert(!(busy && zeroed));
292
293 /* Round the allocated size up to a power of two number of pages. */
294 bucket = bucket_for_size(bufmgr, size);
295
296 /* If we don't have caching at this size, don't actually round the
297 * allocation up.
298 */
299 if (bucket == NULL) {
300 bo_size = size;
301 if (bo_size < page_size)
302 bo_size = page_size;
303 } else {
304 bo_size = bucket->size;
305 }
306
307 mtx_lock(&bufmgr->lock);
308 /* Get a buffer out of the cache if available */
309 retry:
310 alloc_from_cache = false;
311 if (bucket != NULL && !list_empty(&bucket->head)) {
312 if (busy && !zeroed) {
313 /* Allocate new render-target BOs from the tail (MRU)
314 * of the list, as it will likely be hot in the GPU
315 * cache and in the aperture for us. If the caller
316 * asked us to zero the buffer, we don't want this
317 * because we are going to mmap it.
318 */
319 bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head);
320 list_del(&bo->head);
321 alloc_from_cache = true;
322 bo->align = alignment;
323 } else {
324 assert(alignment == 0);
325 /* For non-render-target BOs (where we're probably
326 * going to map it first thing in order to fill it
327 * with data), check if the last BO in the cache is
328 * unbusy, and only reuse in that case. Otherwise,
329 * allocating a new buffer is probably faster than
330 * waiting for the GPU to finish.
331 */
332 bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head);
333 if (!brw_bo_busy(bo)) {
334 alloc_from_cache = true;
335 list_del(&bo->head);
336 }
337 }
338
339 if (alloc_from_cache) {
340 if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) {
341 bo_free(bo);
342 brw_bo_cache_purge_bucket(bufmgr, bucket);
343 goto retry;
344 }
345
346 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
347 bo_free(bo);
348 goto retry;
349 }
350
351 if (zeroed) {
352 void *map = brw_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
353 if (!map) {
354 bo_free(bo);
355 goto retry;
356 }
357 memset(map, 0, bo_size);
358 }
359 }
360 }
361
362 if (!alloc_from_cache) {
363 bo = calloc(1, sizeof(*bo));
364 if (!bo)
365 goto err;
366
367 bo->size = bo_size;
368 bo->idle = true;
369
370 struct drm_i915_gem_create create = { .size = bo_size };
371
372 /* All new BOs we get from the kernel are zeroed, so we don't need to
373 * worry about that here.
374 */
375 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
376 if (ret != 0) {
377 free(bo);
378 goto err;
379 }
380
381 bo->gem_handle = create.handle;
382
383 bo->bufmgr = bufmgr;
384 bo->align = alignment;
385
386 bo->tiling_mode = I915_TILING_NONE;
387 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
388 bo->stride = 0;
389
390 if (bo_set_tiling_internal(bo, tiling_mode, stride))
391 goto err_free;
392
393 /* Calling set_domain() will allocate pages for the BO outside of the
394 * struct mutex lock in the kernel, which is more efficient than waiting
395 * to create them during the first execbuf that uses the BO.
396 */
397 struct drm_i915_gem_set_domain sd = {
398 .handle = bo->gem_handle,
399 .read_domains = I915_GEM_DOMAIN_CPU,
400 .write_domain = 0,
401 };
402
403 if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
404 goto err_free;
405 }
406
407 bo->name = name;
408 p_atomic_set(&bo->refcount, 1);
409 bo->reusable = true;
410 bo->cache_coherent = bufmgr->has_llc;
411 bo->index = -1;
412
413 mtx_unlock(&bufmgr->lock);
414
415 DBG("bo_create: buf %d (%s) %llub\n", bo->gem_handle, bo->name,
416 (unsigned long long) size);
417
418 return bo;
419
420 err_free:
421 bo_free(bo);
422 err:
423 mtx_unlock(&bufmgr->lock);
424 return NULL;
425 }
426
427 struct brw_bo *
428 brw_bo_alloc(struct brw_bufmgr *bufmgr,
429 const char *name, uint64_t size, uint64_t alignment)
430 {
431 return bo_alloc_internal(bufmgr, name, size, 0, I915_TILING_NONE, 0, 0);
432 }
433
434 struct brw_bo *
435 brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name,
436 uint64_t size, uint32_t tiling_mode, uint32_t pitch,
437 unsigned flags)
438 {
439 return bo_alloc_internal(bufmgr, name, size, flags, tiling_mode, pitch, 0);
440 }
441
442 struct brw_bo *
443 brw_bo_alloc_tiled_2d(struct brw_bufmgr *bufmgr, const char *name,
444 int x, int y, int cpp, uint32_t tiling,
445 uint32_t *pitch, unsigned flags)
446 {
447 uint64_t size;
448 uint32_t stride;
449 unsigned long aligned_y, height_alignment;
450
451 /* If we're tiled, our allocations are in 8 or 32-row blocks,
452 * so failure to align our height means that we won't allocate
453 * enough pages.
454 *
455 * If we're untiled, we still have to align to 2 rows high
456 * because the data port accesses 2x2 blocks even if the
457 * bottom row isn't to be rendered, so failure to align means
458 * we could walk off the end of the GTT and fault. This is
459 * documented on 965, and may be the case on older chipsets
460 * too so we try to be careful.
461 */
462 aligned_y = y;
463 height_alignment = 2;
464
465 if (tiling == I915_TILING_X)
466 height_alignment = 8;
467 else if (tiling == I915_TILING_Y)
468 height_alignment = 32;
469 aligned_y = ALIGN(y, height_alignment);
470
471 stride = x * cpp;
472 stride = bo_tile_pitch(bufmgr, stride, tiling);
473 size = stride * aligned_y;
474 size = bo_tile_size(bufmgr, size, tiling);
475 *pitch = stride;
476
477 if (tiling == I915_TILING_NONE)
478 stride = 0;
479
480 return bo_alloc_internal(bufmgr, name, size, flags, tiling, stride, 0);
481 }
482
483 /**
484 * Returns a brw_bo wrapping the given buffer object handle.
485 *
486 * This can be used when one application needs to pass a buffer object
487 * to another.
488 */
489 struct brw_bo *
490 brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr,
491 const char *name, unsigned int handle)
492 {
493 struct brw_bo *bo;
494
495 /* At the moment most applications only have a few named bo.
496 * For instance, in a DRI client only the render buffers passed
497 * between X and the client are named. And since X returns the
498 * alternating names for the front/back buffer a linear search
499 * provides a sufficiently fast match.
500 */
501 mtx_lock(&bufmgr->lock);
502 bo = hash_find_bo(bufmgr->name_table, handle);
503 if (bo) {
504 brw_bo_reference(bo);
505 goto out;
506 }
507
508 struct drm_gem_open open_arg = { .name = handle };
509 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
510 if (ret != 0) {
511 DBG("Couldn't reference %s handle 0x%08x: %s\n",
512 name, handle, strerror(errno));
513 bo = NULL;
514 goto out;
515 }
516 /* Now see if someone has used a prime handle to get this
517 * object from the kernel before by looking through the list
518 * again for a matching gem_handle
519 */
520 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
521 if (bo) {
522 brw_bo_reference(bo);
523 goto out;
524 }
525
526 bo = calloc(1, sizeof(*bo));
527 if (!bo)
528 goto out;
529
530 p_atomic_set(&bo->refcount, 1);
531
532 bo->size = open_arg.size;
533 bo->gtt_offset = 0;
534 bo->bufmgr = bufmgr;
535 bo->gem_handle = open_arg.handle;
536 bo->name = name;
537 bo->global_name = handle;
538 bo->reusable = false;
539 bo->external = true;
540
541 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
542 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
543
544 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
545 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
546 if (ret != 0)
547 goto err_unref;
548
549 bo->tiling_mode = get_tiling.tiling_mode;
550 bo->swizzle_mode = get_tiling.swizzle_mode;
551 /* XXX stride is unknown */
552 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
553
554 out:
555 mtx_unlock(&bufmgr->lock);
556 return bo;
557
558 err_unref:
559 bo_free(bo);
560 mtx_unlock(&bufmgr->lock);
561 return NULL;
562 }
563
564 static void
565 bo_free(struct brw_bo *bo)
566 {
567 struct brw_bufmgr *bufmgr = bo->bufmgr;
568
569 if (bo->map_cpu) {
570 VG_NOACCESS(bo->map_cpu, bo->size);
571 drm_munmap(bo->map_cpu, bo->size);
572 }
573 if (bo->map_wc) {
574 VG_NOACCESS(bo->map_wc, bo->size);
575 drm_munmap(bo->map_wc, bo->size);
576 }
577 if (bo->map_gtt) {
578 VG_NOACCESS(bo->map_gtt, bo->size);
579 drm_munmap(bo->map_gtt, bo->size);
580 }
581
582 if (bo->external) {
583 struct hash_entry *entry;
584
585 if (bo->global_name) {
586 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
587 _mesa_hash_table_remove(bufmgr->name_table, entry);
588 }
589
590 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
591 _mesa_hash_table_remove(bufmgr->handle_table, entry);
592 }
593
594 /* Close this object */
595 struct drm_gem_close close = { .handle = bo->gem_handle };
596 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
597 if (ret != 0) {
598 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
599 bo->gem_handle, bo->name, strerror(errno));
600 }
601 free(bo);
602 }
603
604 /** Frees all cached buffers significantly older than @time. */
605 static void
606 cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time)
607 {
608 int i;
609
610 if (bufmgr->time == time)
611 return;
612
613 for (i = 0; i < bufmgr->num_buckets; i++) {
614 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
615
616 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
617 if (time - bo->free_time <= 1)
618 break;
619
620 list_del(&bo->head);
621
622 bo_free(bo);
623 }
624 }
625
626 bufmgr->time = time;
627 }
628
629 static void
630 bo_unreference_final(struct brw_bo *bo, time_t time)
631 {
632 struct brw_bufmgr *bufmgr = bo->bufmgr;
633 struct bo_cache_bucket *bucket;
634
635 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
636
637 bucket = bucket_for_size(bufmgr, bo->size);
638 /* Put the buffer into our internal cache for reuse if we can. */
639 if (bufmgr->bo_reuse && bo->reusable && bucket != NULL &&
640 brw_bo_madvise(bo, I915_MADV_DONTNEED)) {
641 bo->free_time = time;
642
643 bo->name = NULL;
644 bo->kflags = 0;
645
646 list_addtail(&bo->head, &bucket->head);
647 } else {
648 bo_free(bo);
649 }
650 }
651
652 void
653 brw_bo_unreference(struct brw_bo *bo)
654 {
655 if (bo == NULL)
656 return;
657
658 assert(p_atomic_read(&bo->refcount) > 0);
659
660 if (atomic_add_unless(&bo->refcount, -1, 1)) {
661 struct brw_bufmgr *bufmgr = bo->bufmgr;
662 struct timespec time;
663
664 clock_gettime(CLOCK_MONOTONIC, &time);
665
666 mtx_lock(&bufmgr->lock);
667
668 if (p_atomic_dec_zero(&bo->refcount)) {
669 bo_unreference_final(bo, time.tv_sec);
670 cleanup_bo_cache(bufmgr, time.tv_sec);
671 }
672
673 mtx_unlock(&bufmgr->lock);
674 }
675 }
676
677 static void
678 bo_wait_with_stall_warning(struct brw_context *brw,
679 struct brw_bo *bo,
680 const char *action)
681 {
682 bool busy = brw && brw->perf_debug && !bo->idle;
683 double elapsed = unlikely(busy) ? -get_time() : 0.0;
684
685 brw_bo_wait_rendering(bo);
686
687 if (unlikely(busy)) {
688 elapsed += get_time();
689 if (elapsed > 1e-5) /* 0.01ms */
690 perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n",
691 action, bo->name, elapsed * 1000);
692 }
693 }
694
695 static void
696 print_flags(unsigned flags)
697 {
698 if (flags & MAP_READ)
699 DBG("READ ");
700 if (flags & MAP_WRITE)
701 DBG("WRITE ");
702 if (flags & MAP_ASYNC)
703 DBG("ASYNC ");
704 if (flags & MAP_PERSISTENT)
705 DBG("PERSISTENT ");
706 if (flags & MAP_COHERENT)
707 DBG("COHERENT ");
708 if (flags & MAP_RAW)
709 DBG("RAW ");
710 DBG("\n");
711 }
712
713 static void *
714 brw_bo_map_cpu(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
715 {
716 struct brw_bufmgr *bufmgr = bo->bufmgr;
717
718 /* We disallow CPU maps for writing to non-coherent buffers, as the
719 * CPU map can become invalidated when a batch is flushed out, which
720 * can happen at unpredictable times. You should use WC maps instead.
721 */
722 assert(bo->cache_coherent || !(flags & MAP_WRITE));
723
724 if (!bo->map_cpu) {
725 DBG("brw_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
726
727 struct drm_i915_gem_mmap mmap_arg = {
728 .handle = bo->gem_handle,
729 .size = bo->size,
730 };
731 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
732 if (ret != 0) {
733 ret = -errno;
734 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
735 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
736 return NULL;
737 }
738 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
739 VG_DEFINED(map, bo->size);
740
741 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
742 VG_NOACCESS(map, bo->size);
743 drm_munmap(map, bo->size);
744 }
745 }
746 assert(bo->map_cpu);
747
748 DBG("brw_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
749 bo->map_cpu);
750 print_flags(flags);
751
752 if (!(flags & MAP_ASYNC)) {
753 bo_wait_with_stall_warning(brw, bo, "CPU mapping");
754 }
755
756 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
757 /* If we're reusing an existing CPU mapping, the CPU caches may
758 * contain stale data from the last time we read from that mapping.
759 * (With the BO cache, it might even be data from a previous buffer!)
760 * Even if it's a brand new mapping, the kernel may have zeroed the
761 * buffer via CPU writes.
762 *
763 * We need to invalidate those cachelines so that we see the latest
764 * contents, and so long as we only read from the CPU mmap we do not
765 * need to write those cachelines back afterwards.
766 *
767 * On LLC, the emprical evidence suggests that writes from the GPU
768 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
769 * cachelines. (Other reads, such as the display engine, bypass the
770 * LLC entirely requiring us to keep dirty pixels for the scanout
771 * out of any cache.)
772 */
773 gen_invalidate_range(bo->map_cpu, bo->size);
774 }
775
776 return bo->map_cpu;
777 }
778
779 static void *
780 brw_bo_map_wc(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
781 {
782 struct brw_bufmgr *bufmgr = bo->bufmgr;
783
784 if (!bufmgr->has_mmap_wc)
785 return NULL;
786
787 if (!bo->map_wc) {
788 DBG("brw_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
789
790 struct drm_i915_gem_mmap mmap_arg = {
791 .handle = bo->gem_handle,
792 .size = bo->size,
793 .flags = I915_MMAP_WC,
794 };
795 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
796 if (ret != 0) {
797 ret = -errno;
798 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
799 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
800 return NULL;
801 }
802
803 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
804 VG_DEFINED(map, bo->size);
805
806 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
807 VG_NOACCESS(map, bo->size);
808 drm_munmap(map, bo->size);
809 }
810 }
811 assert(bo->map_wc);
812
813 DBG("brw_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
814 print_flags(flags);
815
816 if (!(flags & MAP_ASYNC)) {
817 bo_wait_with_stall_warning(brw, bo, "WC mapping");
818 }
819
820 return bo->map_wc;
821 }
822
823 /**
824 * Perform an uncached mapping via the GTT.
825 *
826 * Write access through the GTT is not quite fully coherent. On low power
827 * systems especially, like modern Atoms, we can observe reads from RAM before
828 * the write via GTT has landed. A write memory barrier that flushes the Write
829 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
830 * read after the write as the GTT write suffers a small delay through the GTT
831 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
832 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
833 * flushes prior to execbuf submission. However, if we are not informing the
834 * kernel about our GTT writes, it will not flush before earlier access, such
835 * as when using the cmdparser. Similarly, we need to be careful if we should
836 * ever issue a CPU read immediately following a GTT write.
837 *
838 * Telling the kernel about write access also has one more important
839 * side-effect. Upon receiving notification about the write, it cancels any
840 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
841 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
842 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
843 * tracking is handled on the buffer exchange instead.
844 */
845 static void *
846 brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
847 {
848 struct brw_bufmgr *bufmgr = bo->bufmgr;
849
850 /* Get a mapping of the buffer if we haven't before. */
851 if (bo->map_gtt == NULL) {
852 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
853
854 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
855
856 /* Get the fake offset back... */
857 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
858 if (ret != 0) {
859 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
860 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
861 return NULL;
862 }
863
864 /* and mmap it. */
865 void *map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
866 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
867 if (map == MAP_FAILED) {
868 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
869 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
870 return NULL;
871 }
872
873 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
874 * already intercept this mmap call. However, for consistency between
875 * all the mmap paths, we mark the pointer as defined now and mark it
876 * as inaccessible afterwards.
877 */
878 VG_DEFINED(map, bo->size);
879
880 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
881 VG_NOACCESS(map, bo->size);
882 drm_munmap(map, bo->size);
883 }
884 }
885 assert(bo->map_gtt);
886
887 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
888 print_flags(flags);
889
890 if (!(flags & MAP_ASYNC)) {
891 bo_wait_with_stall_warning(brw, bo, "GTT mapping");
892 }
893
894 return bo->map_gtt;
895 }
896
897 static bool
898 can_map_cpu(struct brw_bo *bo, unsigned flags)
899 {
900 if (bo->cache_coherent)
901 return true;
902
903 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
904 * an LLC platform reads always are coherent (as they are performed via the
905 * central system agent). It is just the writes that we need to take special
906 * care to ensure that land in main memory and not stick in the CPU cache.
907 */
908 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
909 return true;
910
911 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
912 * across batch flushes where the kernel will change cache domains of the
913 * bo, invalidating continued access to the CPU mmap on non-LLC device.
914 *
915 * Similarly, ASYNC typically means that the buffer will be accessed via
916 * both the CPU and the GPU simultaneously. Batches may be executed that
917 * use the BO even while it is mapped. While OpenGL technically disallows
918 * most drawing while non-persistent mappings are active, we may still use
919 * the GPU for blits or other operations, causing batches to happen at
920 * inconvenient times.
921 */
922 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC))
923 return false;
924
925 return !(flags & MAP_WRITE);
926 }
927
928 void *
929 brw_bo_map(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
930 {
931 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
932 return brw_bo_map_gtt(brw, bo, flags);
933
934 void *map;
935
936 if (can_map_cpu(bo, flags))
937 map = brw_bo_map_cpu(brw, bo, flags);
938 else
939 map = brw_bo_map_wc(brw, bo, flags);
940
941 /* Allow the attempt to fail by falling back to the GTT where necessary.
942 *
943 * Not every buffer can be mmaped directly using the CPU (or WC), for
944 * example buffers that wrap stolen memory or are imported from other
945 * devices. For those, we have little choice but to use a GTT mmapping.
946 * However, if we use a slow GTT mmapping for reads where we expected fast
947 * access, that order of magnitude difference in throughput will be clearly
948 * expressed by angry users.
949 *
950 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
951 */
952 if (!map && !(flags & MAP_RAW)) {
953 if (brw) {
954 perf_debug("Fallback GTT mapping for %s with access flags %x\n",
955 bo->name, flags);
956 }
957 map = brw_bo_map_gtt(brw, bo, flags);
958 }
959
960 return map;
961 }
962
963 int
964 brw_bo_subdata(struct brw_bo *bo, uint64_t offset,
965 uint64_t size, const void *data)
966 {
967 struct brw_bufmgr *bufmgr = bo->bufmgr;
968
969 struct drm_i915_gem_pwrite pwrite = {
970 .handle = bo->gem_handle,
971 .offset = offset,
972 .size = size,
973 .data_ptr = (uint64_t) (uintptr_t) data,
974 };
975
976 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite);
977 if (ret != 0) {
978 ret = -errno;
979 DBG("%s:%d: Error writing data to buffer %d: "
980 "(%"PRIu64" %"PRIu64") %s .\n",
981 __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
982 }
983
984 return ret;
985 }
986
987 /** Waits for all GPU rendering with the object to have completed. */
988 void
989 brw_bo_wait_rendering(struct brw_bo *bo)
990 {
991 /* We require a kernel recent enough for WAIT_IOCTL support.
992 * See intel_init_bufmgr()
993 */
994 brw_bo_wait(bo, -1);
995 }
996
997 /**
998 * Waits on a BO for the given amount of time.
999 *
1000 * @bo: buffer object to wait for
1001 * @timeout_ns: amount of time to wait in nanoseconds.
1002 * If value is less than 0, an infinite wait will occur.
1003 *
1004 * Returns 0 if the wait was successful ie. the last batch referencing the
1005 * object has completed within the allotted time. Otherwise some negative return
1006 * value describes the error. Of particular interest is -ETIME when the wait has
1007 * failed to yield the desired result.
1008 *
1009 * Similar to brw_bo_wait_rendering except a timeout parameter allows
1010 * the operation to give up after a certain amount of time. Another subtle
1011 * difference is the internal locking semantics are different (this variant does
1012 * not hold the lock for the duration of the wait). This makes the wait subject
1013 * to a larger userspace race window.
1014 *
1015 * The implementation shall wait until the object is no longer actively
1016 * referenced within a batch buffer at the time of the call. The wait will
1017 * not guarantee that the buffer is re-issued via another thread, or an flinked
1018 * handle. Userspace must make sure this race does not occur if such precision
1019 * is important.
1020 *
1021 * Note that some kernels have broken the inifite wait for negative values
1022 * promise, upgrade to latest stable kernels if this is the case.
1023 */
1024 int
1025 brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns)
1026 {
1027 struct brw_bufmgr *bufmgr = bo->bufmgr;
1028
1029 /* If we know it's idle, don't bother with the kernel round trip */
1030 if (bo->idle && !bo->external)
1031 return 0;
1032
1033 struct drm_i915_gem_wait wait = {
1034 .bo_handle = bo->gem_handle,
1035 .timeout_ns = timeout_ns,
1036 };
1037 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1038 if (ret == -1)
1039 return -errno;
1040
1041 bo->idle = true;
1042
1043 return ret;
1044 }
1045
1046 void
1047 brw_bufmgr_destroy(struct brw_bufmgr *bufmgr)
1048 {
1049 mtx_destroy(&bufmgr->lock);
1050
1051 /* Free any cached buffer objects we were going to reuse */
1052 for (int i = 0; i < bufmgr->num_buckets; i++) {
1053 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1054
1055 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
1056 list_del(&bo->head);
1057
1058 bo_free(bo);
1059 }
1060 }
1061
1062 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1063 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1064
1065 free(bufmgr);
1066 }
1067
1068 static int
1069 bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
1070 uint32_t stride)
1071 {
1072 struct brw_bufmgr *bufmgr = bo->bufmgr;
1073 struct drm_i915_gem_set_tiling set_tiling;
1074 int ret;
1075
1076 if (bo->global_name == 0 &&
1077 tiling_mode == bo->tiling_mode && stride == bo->stride)
1078 return 0;
1079
1080 memset(&set_tiling, 0, sizeof(set_tiling));
1081 do {
1082 /* set_tiling is slightly broken and overwrites the
1083 * input on the error path, so we have to open code
1084 * rmIoctl.
1085 */
1086 set_tiling.handle = bo->gem_handle;
1087 set_tiling.tiling_mode = tiling_mode;
1088 set_tiling.stride = stride;
1089
1090 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1091 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1092 if (ret == -1)
1093 return -errno;
1094
1095 bo->tiling_mode = set_tiling.tiling_mode;
1096 bo->swizzle_mode = set_tiling.swizzle_mode;
1097 bo->stride = set_tiling.stride;
1098 return 0;
1099 }
1100
1101 int
1102 brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode,
1103 uint32_t *swizzle_mode)
1104 {
1105 *tiling_mode = bo->tiling_mode;
1106 *swizzle_mode = bo->swizzle_mode;
1107 return 0;
1108 }
1109
1110 struct brw_bo *
1111 brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd)
1112 {
1113 uint32_t handle;
1114 struct brw_bo *bo;
1115
1116 mtx_lock(&bufmgr->lock);
1117 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1118 if (ret) {
1119 DBG("create_from_prime: failed to obtain handle from fd: %s\n",
1120 strerror(errno));
1121 mtx_unlock(&bufmgr->lock);
1122 return NULL;
1123 }
1124
1125 /*
1126 * See if the kernel has already returned this buffer to us. Just as
1127 * for named buffers, we must not create two bo's pointing at the same
1128 * kernel object
1129 */
1130 bo = hash_find_bo(bufmgr->handle_table, handle);
1131 if (bo) {
1132 brw_bo_reference(bo);
1133 goto out;
1134 }
1135
1136 bo = calloc(1, sizeof(*bo));
1137 if (!bo)
1138 goto out;
1139
1140 p_atomic_set(&bo->refcount, 1);
1141
1142 /* Determine size of bo. The fd-to-handle ioctl really should
1143 * return the size, but it doesn't. If we have kernel 3.12 or
1144 * later, we can lseek on the prime fd to get the size. Older
1145 * kernels will just fail, in which case we fall back to the
1146 * provided (estimated or guess size). */
1147 ret = lseek(prime_fd, 0, SEEK_END);
1148 if (ret != -1)
1149 bo->size = ret;
1150
1151 bo->bufmgr = bufmgr;
1152
1153 bo->gem_handle = handle;
1154 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1155
1156 bo->name = "prime";
1157 bo->reusable = false;
1158 bo->external = true;
1159
1160 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1161 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1162 goto err;
1163
1164 bo->tiling_mode = get_tiling.tiling_mode;
1165 bo->swizzle_mode = get_tiling.swizzle_mode;
1166 /* XXX stride is unknown */
1167
1168 out:
1169 mtx_unlock(&bufmgr->lock);
1170 return bo;
1171
1172 err:
1173 bo_free(bo);
1174 mtx_unlock(&bufmgr->lock);
1175 return NULL;
1176 }
1177
1178 static void
1179 brw_bo_make_external(struct brw_bo *bo)
1180 {
1181 struct brw_bufmgr *bufmgr = bo->bufmgr;
1182
1183 if (!bo->external) {
1184 mtx_lock(&bufmgr->lock);
1185 if (!bo->external) {
1186 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1187 bo->external = true;
1188 }
1189 mtx_unlock(&bufmgr->lock);
1190 }
1191 }
1192
1193 int
1194 brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd)
1195 {
1196 struct brw_bufmgr *bufmgr = bo->bufmgr;
1197
1198 brw_bo_make_external(bo);
1199
1200 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1201 DRM_CLOEXEC, prime_fd) != 0)
1202 return -errno;
1203
1204 bo->reusable = false;
1205
1206 return 0;
1207 }
1208
1209 uint32_t
1210 brw_bo_export_gem_handle(struct brw_bo *bo)
1211 {
1212 brw_bo_make_external(bo);
1213
1214 return bo->gem_handle;
1215 }
1216
1217 int
1218 brw_bo_flink(struct brw_bo *bo, uint32_t *name)
1219 {
1220 struct brw_bufmgr *bufmgr = bo->bufmgr;
1221
1222 if (!bo->global_name) {
1223 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1224
1225 if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1226 return -errno;
1227
1228 brw_bo_make_external(bo);
1229 mtx_lock(&bufmgr->lock);
1230 if (!bo->global_name) {
1231 bo->global_name = flink.name;
1232 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1233 }
1234 mtx_unlock(&bufmgr->lock);
1235
1236 bo->reusable = false;
1237 }
1238
1239 *name = bo->global_name;
1240 return 0;
1241 }
1242
1243 /**
1244 * Enables unlimited caching of buffer objects for reuse.
1245 *
1246 * This is potentially very memory expensive, as the cache at each bucket
1247 * size is only bounded by how many buffers of that size we've managed to have
1248 * in flight at once.
1249 */
1250 void
1251 brw_bufmgr_enable_reuse(struct brw_bufmgr *bufmgr)
1252 {
1253 bufmgr->bo_reuse = true;
1254 }
1255
1256 static void
1257 add_bucket(struct brw_bufmgr *bufmgr, int size)
1258 {
1259 unsigned int i = bufmgr->num_buckets;
1260
1261 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1262
1263 list_inithead(&bufmgr->cache_bucket[i].head);
1264 bufmgr->cache_bucket[i].size = size;
1265 bufmgr->num_buckets++;
1266
1267 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1268 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1269 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1270 }
1271
1272 static void
1273 init_cache_buckets(struct brw_bufmgr *bufmgr)
1274 {
1275 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1276
1277 /* OK, so power of two buckets was too wasteful of memory.
1278 * Give 3 other sizes between each power of two, to hopefully
1279 * cover things accurately enough. (The alternative is
1280 * probably to just go for exact matching of sizes, and assume
1281 * that for things like composited window resize the tiled
1282 * width/height alignment and rounding of sizes to pages will
1283 * get us useful cache hit rates anyway)
1284 */
1285 add_bucket(bufmgr, 4096);
1286 add_bucket(bufmgr, 4096 * 2);
1287 add_bucket(bufmgr, 4096 * 3);
1288
1289 /* Initialize the linked lists for BO reuse cache. */
1290 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
1291 add_bucket(bufmgr, size);
1292
1293 add_bucket(bufmgr, size + size * 1 / 4);
1294 add_bucket(bufmgr, size + size * 2 / 4);
1295 add_bucket(bufmgr, size + size * 3 / 4);
1296 }
1297 }
1298
1299 uint32_t
1300 brw_create_hw_context(struct brw_bufmgr *bufmgr)
1301 {
1302 struct drm_i915_gem_context_create create = { };
1303 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1304 if (ret != 0) {
1305 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1306 return 0;
1307 }
1308
1309 return create.ctx_id;
1310 }
1311
1312 int
1313 brw_hw_context_set_priority(struct brw_bufmgr *bufmgr,
1314 uint32_t ctx_id,
1315 int priority)
1316 {
1317 struct drm_i915_gem_context_param p = {
1318 .ctx_id = ctx_id,
1319 .param = I915_CONTEXT_PARAM_PRIORITY,
1320 .value = priority,
1321 };
1322 int err;
1323
1324 err = 0;
1325 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1326 err = -errno;
1327
1328 return err;
1329 }
1330
1331 void
1332 brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id)
1333 {
1334 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1335
1336 if (ctx_id != 0 &&
1337 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1338 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1339 strerror(errno));
1340 }
1341 }
1342
1343 int
1344 brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1345 {
1346 struct drm_i915_reg_read reg_read = { .offset = offset };
1347 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1348
1349 *result = reg_read.val;
1350 return ret;
1351 }
1352
1353 static int
1354 gem_param(int fd, int name)
1355 {
1356 int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
1357
1358 struct drm_i915_getparam gp = { .param = name, .value = &v };
1359 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
1360 return -1;
1361
1362 return v;
1363 }
1364
1365 /**
1366 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1367 * and manage map buffer objections.
1368 *
1369 * \param fd File descriptor of the opened DRM device.
1370 */
1371 struct brw_bufmgr *
1372 brw_bufmgr_init(struct gen_device_info *devinfo, int fd)
1373 {
1374 struct brw_bufmgr *bufmgr;
1375
1376 bufmgr = calloc(1, sizeof(*bufmgr));
1377 if (bufmgr == NULL)
1378 return NULL;
1379
1380 /* Handles to buffer objects belong to the device fd and are not
1381 * reference counted by the kernel. If the same fd is used by
1382 * multiple parties (threads sharing the same screen bufmgr, or
1383 * even worse the same device fd passed to multiple libraries)
1384 * ownership of those handles is shared by those independent parties.
1385 *
1386 * Don't do this! Ensure that each library/bufmgr has its own device
1387 * fd so that its namespace does not clash with another.
1388 */
1389 bufmgr->fd = fd;
1390
1391 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1392 free(bufmgr);
1393 return NULL;
1394 }
1395
1396 bufmgr->has_llc = devinfo->has_llc;
1397 bufmgr->has_mmap_wc = gem_param(fd, I915_PARAM_MMAP_VERSION) > 0;
1398
1399 init_cache_buckets(bufmgr);
1400
1401 bufmgr->name_table =
1402 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1403 bufmgr->handle_table =
1404 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1405
1406 return bufmgr;
1407 }