i965: Allocate VMA in userspace for full-PPGTT systems.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_bufmgr.c
1 /*
2 * Copyright © 2007 Red Hat Inc.
3 * Copyright © 2007-2017 Intel Corporation
4 * Copyright © 2006 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * IN THE SOFTWARE.
25 */
26
27 /*
28 * Authors: Thomas Hellström <thellstrom@vmware.com>
29 * Keith Whitwell <keithw@vmware.com>
30 * Eric Anholt <eric@anholt.net>
31 * Dave Airlie <airlied@linux.ie>
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/stat.h>
48 #include <sys/types.h>
49 #include <stdbool.h>
50
51 #include "errno.h"
52 #ifndef ETIME
53 #define ETIME ETIMEDOUT
54 #endif
55 #include "common/gen_clflush.h"
56 #include "common/gen_debug.h"
57 #include "common/gen_gem.h"
58 #include "dev/gen_device_info.h"
59 #include "libdrm_macros.h"
60 #include "main/macros.h"
61 #include "util/macros.h"
62 #include "util/hash_table.h"
63 #include "util/list.h"
64 #include "util/u_dynarray.h"
65 #include "util/vma.h"
66 #include "brw_bufmgr.h"
67 #include "brw_context.h"
68 #include "string.h"
69
70 #include "i915_drm.h"
71
72 #ifdef HAVE_VALGRIND
73 #include <valgrind.h>
74 #include <memcheck.h>
75 #define VG(x) x
76 #else
77 #define VG(x)
78 #endif
79
80 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
81 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
82 * leaked. All because it does not call VG(cli_free) from its
83 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
84 * and allocation, we mark it available for use upon mmapping and remove
85 * it upon unmapping.
86 */
87 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
88 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
89
90 #define PAGE_SIZE 4096
91
92 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
93
94 static inline int
95 atomic_add_unless(int *v, int add, int unless)
96 {
97 int c, old;
98 c = p_atomic_read(v);
99 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
100 c = old;
101 return c == unless;
102 }
103
104 /**
105 * i965 fixed-size bucketing VMA allocator.
106 *
107 * The BO cache maintains "cache buckets" for buffers of various sizes.
108 * All buffers in a given bucket are identically sized - when allocating,
109 * we always round up to the bucket size. This means that virtually all
110 * allocations are fixed-size; only buffers which are too large to fit in
111 * a bucket can be variably-sized.
112 *
113 * We create an allocator for each bucket. Each contains a free-list, where
114 * each node contains a <starting address, 64-bit bitmap> pair. Each bit
115 * represents a bucket-sized block of memory. (At the first level, each
116 * bit corresponds to a page. For the second bucket, bits correspond to
117 * two pages, and so on.) 1 means a block is free, and 0 means it's in-use.
118 * The lowest bit in the bitmap is for the first block.
119 *
120 * This makes allocations cheap - any bit of any node will do. We can pick
121 * the head of the list and use ffs() to find a free block. If there are
122 * none, we allocate 64 blocks from a larger allocator - either a bigger
123 * bucketing allocator, or a fallback top-level allocator for large objects.
124 */
125 struct vma_bucket_node {
126 uint64_t start_address;
127 uint64_t bitmap;
128 };
129
130 struct bo_cache_bucket {
131 /** List of cached BOs. */
132 struct list_head head;
133
134 /** Size of this bucket, in bytes. */
135 uint64_t size;
136
137 /** List of vma_bucket_nodes. */
138 struct util_dynarray vma_list[BRW_MEMZONE_COUNT];
139 };
140
141 struct brw_bufmgr {
142 int fd;
143
144 mtx_t lock;
145
146 /** Array of lists of cached gem objects of power-of-two sizes */
147 struct bo_cache_bucket cache_bucket[14 * 4];
148 int num_buckets;
149 time_t time;
150
151 struct hash_table *name_table;
152 struct hash_table *handle_table;
153
154 struct util_vma_heap vma_allocator[BRW_MEMZONE_COUNT];
155
156 bool has_llc:1;
157 bool has_mmap_wc:1;
158 bool bo_reuse:1;
159
160 uint64_t initial_kflags;
161 };
162
163 static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
164 uint32_t stride);
165
166 static void bo_free(struct brw_bo *bo);
167
168 static uint64_t vma_alloc(struct brw_bufmgr *bufmgr,
169 enum brw_memory_zone memzone,
170 uint64_t size, uint64_t alignment);
171
172 static uint32_t
173 key_hash_uint(const void *key)
174 {
175 return _mesa_hash_data(key, 4);
176 }
177
178 static bool
179 key_uint_equal(const void *a, const void *b)
180 {
181 return *((unsigned *) a) == *((unsigned *) b);
182 }
183
184 static struct brw_bo *
185 hash_find_bo(struct hash_table *ht, unsigned int key)
186 {
187 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
188 return entry ? (struct brw_bo *) entry->data : NULL;
189 }
190
191 static uint64_t
192 bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling)
193 {
194 if (tiling == I915_TILING_NONE)
195 return size;
196
197 /* 965+ just need multiples of page size for tiling */
198 return ALIGN(size, 4096);
199 }
200
201 /*
202 * Round a given pitch up to the minimum required for X tiling on a
203 * given chip. We use 512 as the minimum to allow for a later tiling
204 * change.
205 */
206 static uint32_t
207 bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling)
208 {
209 unsigned long tile_width;
210
211 /* If untiled, then just align it so that we can do rendering
212 * to it with the 3D engine.
213 */
214 if (tiling == I915_TILING_NONE)
215 return ALIGN(pitch, 64);
216
217 if (tiling == I915_TILING_X)
218 tile_width = 512;
219 else
220 tile_width = 128;
221
222 /* 965 is flexible */
223 return ALIGN(pitch, tile_width);
224 }
225
226 /**
227 * This function finds the correct bucket fit for the input size.
228 * The function works with O(1) complexity when the requested size
229 * was queried instead of iterating the size through all the buckets.
230 */
231 static struct bo_cache_bucket *
232 bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size)
233 {
234 /* Calculating the pages and rounding up to the page size. */
235 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
236
237 /* Row Bucket sizes clz((x-1) | 3) Row Column
238 * in pages stride size
239 * 0: 1 2 3 4 -> 30 30 30 30 4 1
240 * 1: 5 6 7 8 -> 29 29 29 29 4 1
241 * 2: 10 12 14 16 -> 28 28 28 28 8 2
242 * 3: 20 24 28 32 -> 27 27 27 27 16 4
243 */
244 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
245 const unsigned row_max_pages = 4 << row;
246
247 /* The '& ~2' is the special case for row 1. In row 1, max pages /
248 * 2 is 2, but the previous row maximum is zero (because there is
249 * no previous row). All row maximum sizes are power of 2, so that
250 * is the only case where that bit will be set.
251 */
252 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
253 int col_size_log2 = row - 1;
254 col_size_log2 += (col_size_log2 < 0);
255
256 const unsigned col = (pages - prev_row_max_pages +
257 ((1 << col_size_log2) - 1)) >> col_size_log2;
258
259 /* Calculating the index based on the row and column. */
260 const unsigned index = (row * 4) + (col - 1);
261
262 return (index < bufmgr->num_buckets) ?
263 &bufmgr->cache_bucket[index] : NULL;
264 }
265
266 static enum brw_memory_zone
267 memzone_for_address(uint64_t address)
268 {
269 const uint64_t _4GB = 1ull << 32;
270
271 if (address >= _4GB)
272 return BRW_MEMZONE_OTHER;
273
274 return BRW_MEMZONE_LOW_4G;
275 }
276
277 static uint64_t
278 bucket_vma_alloc(struct brw_bufmgr *bufmgr,
279 struct bo_cache_bucket *bucket,
280 enum brw_memory_zone memzone)
281 {
282 struct util_dynarray *vma_list = &bucket->vma_list[memzone];
283 struct vma_bucket_node *node;
284
285 if (vma_list->size == 0) {
286 /* This bucket allocator is out of space - allocate a new block of
287 * memory for 64 blocks from a larger allocator (either a larger
288 * bucket or util_vma).
289 *
290 * We align the address to the node size (64 blocks) so that
291 * bucket_vma_free can easily compute the starting address of this
292 * block by rounding any address we return down to the node size.
293 *
294 * Set the first bit used, and return the start address.
295 */
296 uint64_t node_size = 64ull * bucket->size;
297 node = util_dynarray_grow(vma_list, sizeof(struct vma_bucket_node));
298
299 if (unlikely(!node))
300 return 0ull;
301
302 uint64_t addr = vma_alloc(bufmgr, memzone, node_size, node_size);
303 node->start_address = gen_48b_address(addr);
304 node->bitmap = ~1ull;
305 return node->start_address;
306 }
307
308 /* Pick any bit from any node - they're all the right size and free. */
309 node = util_dynarray_top_ptr(vma_list, struct vma_bucket_node);
310 int bit = ffsll(node->bitmap) - 1;
311 assert(bit >= 0 && bit <= 63);
312
313 /* Reserve the memory by clearing the bit. */
314 assert((node->bitmap & (1ull << bit)) != 0ull);
315 node->bitmap &= ~(1ull << bit);
316
317 uint64_t addr = node->start_address + bit * bucket->size;
318
319 /* If this node is now completely full, remove it from the free list. */
320 if (node->bitmap == 0ull) {
321 (void) util_dynarray_pop(vma_list, struct vma_bucket_node);
322 }
323
324 return addr;
325 }
326
327 static void
328 bucket_vma_free(struct bo_cache_bucket *bucket, uint64_t address)
329 {
330 enum brw_memory_zone memzone = memzone_for_address(address);
331 struct util_dynarray *vma_list = &bucket->vma_list[memzone];
332 const uint64_t node_bytes = 64ull * bucket->size;
333 struct vma_bucket_node *node = NULL;
334
335 /* bucket_vma_alloc allocates 64 blocks at a time, and aligns it to
336 * that 64 block size. So, we can round down to get the starting address.
337 */
338 uint64_t start = (address / node_bytes) * node_bytes;
339
340 /* Dividing the offset from start by bucket size gives us the bit index. */
341 int bit = (address - start) / bucket->size;
342
343 assert(start + bit * bucket->size == address);
344
345 util_dynarray_foreach(vma_list, struct vma_bucket_node, cur) {
346 if (cur->start_address == start) {
347 node = cur;
348 break;
349 }
350 }
351
352 if (!node) {
353 /* No node - the whole group of 64 blocks must have been in-use. */
354 node = util_dynarray_grow(vma_list, sizeof(struct vma_bucket_node));
355
356 if (unlikely(!node))
357 return; /* bogus, leaks some GPU VMA, but nothing we can do... */
358
359 node->start_address = start;
360 node->bitmap = 0ull;
361 }
362
363 /* Set the bit to return the memory. */
364 assert((node->bitmap & (1ull << bit)) == 0ull);
365 node->bitmap |= 1ull << bit;
366
367 /* The block might be entirely free now, and if so, we could return it
368 * to the larger allocator. But we may as well hang on to it, in case
369 * we get more allocations at this block size.
370 */
371 }
372
373 static struct bo_cache_bucket *
374 get_bucket_allocator(struct brw_bufmgr *bufmgr, uint64_t size)
375 {
376 /* Skip using the bucket allocator for very large sizes, as it allocates
377 * 64 of them and this can balloon rather quickly.
378 */
379 if (size > 1024 * PAGE_SIZE)
380 return NULL;
381
382 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
383
384 if (bucket && bucket->size == size)
385 return bucket;
386
387 return NULL;
388 }
389
390 /**
391 * Allocate a section of virtual memory for a buffer, assigning an address.
392 *
393 * This uses either the bucket allocator for the given size, or the large
394 * object allocator (util_vma).
395 */
396 static uint64_t
397 vma_alloc(struct brw_bufmgr *bufmgr,
398 enum brw_memory_zone memzone,
399 uint64_t size,
400 uint64_t alignment)
401 {
402 /* Without softpin support, we let the kernel assign addresses. */
403 assert(brw_using_softpin(bufmgr));
404
405 struct bo_cache_bucket *bucket = get_bucket_allocator(bufmgr, size);
406 uint64_t addr;
407
408 if (bucket) {
409 addr = bucket_vma_alloc(bufmgr, bucket, memzone);
410 } else {
411 addr = util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size,
412 alignment);
413 }
414
415 assert((addr >> 48ull) == 0);
416 assert((addr % alignment) == 0);
417
418 return gen_canonical_address(addr);
419 }
420
421 /**
422 * Free a virtual memory area, allowing the address to be reused.
423 */
424 static void
425 vma_free(struct brw_bufmgr *bufmgr,
426 uint64_t address,
427 uint64_t size)
428 {
429 assert(brw_using_softpin(bufmgr));
430
431 /* Un-canonicalize the address. */
432 address = gen_48b_address(address);
433
434 if (address == 0ull)
435 return;
436
437 struct bo_cache_bucket *bucket = get_bucket_allocator(bufmgr, size);
438
439 if (bucket) {
440 bucket_vma_free(bucket, address);
441 } else {
442 enum brw_memory_zone memzone = memzone_for_address(address);
443 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
444 }
445 }
446
447 int
448 brw_bo_busy(struct brw_bo *bo)
449 {
450 struct brw_bufmgr *bufmgr = bo->bufmgr;
451 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
452
453 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
454 if (ret == 0) {
455 bo->idle = !busy.busy;
456 return busy.busy;
457 }
458 return false;
459 }
460
461 int
462 brw_bo_madvise(struct brw_bo *bo, int state)
463 {
464 struct drm_i915_gem_madvise madv = {
465 .handle = bo->gem_handle,
466 .madv = state,
467 .retained = 1,
468 };
469
470 drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
471
472 return madv.retained;
473 }
474
475 /* drop the oldest entries that have been purged by the kernel */
476 static void
477 brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr,
478 struct bo_cache_bucket *bucket)
479 {
480 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
481 if (brw_bo_madvise(bo, I915_MADV_DONTNEED))
482 break;
483
484 list_del(&bo->head);
485 bo_free(bo);
486 }
487 }
488
489 static struct brw_bo *
490 bo_alloc_internal(struct brw_bufmgr *bufmgr,
491 const char *name,
492 uint64_t size,
493 enum brw_memory_zone memzone,
494 unsigned flags,
495 uint32_t tiling_mode,
496 uint32_t stride)
497 {
498 struct brw_bo *bo;
499 unsigned int page_size = getpagesize();
500 int ret;
501 struct bo_cache_bucket *bucket;
502 bool alloc_from_cache;
503 uint64_t bo_size;
504 bool busy = false;
505 bool zeroed = false;
506
507 if (flags & BO_ALLOC_BUSY)
508 busy = true;
509
510 if (flags & BO_ALLOC_ZEROED)
511 zeroed = true;
512
513 /* BUSY does doesn't really jive with ZEROED as we have to wait for it to
514 * be idle before we can memset. Just disallow that combination.
515 */
516 assert(!(busy && zeroed));
517
518 /* Round the allocated size up to a power of two number of pages. */
519 bucket = bucket_for_size(bufmgr, size);
520
521 /* If we don't have caching at this size, don't actually round the
522 * allocation up.
523 */
524 if (bucket == NULL) {
525 bo_size = size;
526 if (bo_size < page_size)
527 bo_size = page_size;
528 } else {
529 bo_size = bucket->size;
530 }
531
532 mtx_lock(&bufmgr->lock);
533 /* Get a buffer out of the cache if available */
534 retry:
535 alloc_from_cache = false;
536 if (bucket != NULL && !list_empty(&bucket->head)) {
537 if (busy && !zeroed) {
538 /* Allocate new render-target BOs from the tail (MRU)
539 * of the list, as it will likely be hot in the GPU
540 * cache and in the aperture for us. If the caller
541 * asked us to zero the buffer, we don't want this
542 * because we are going to mmap it.
543 */
544 bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head);
545 list_del(&bo->head);
546 alloc_from_cache = true;
547 } else {
548 /* For non-render-target BOs (where we're probably
549 * going to map it first thing in order to fill it
550 * with data), check if the last BO in the cache is
551 * unbusy, and only reuse in that case. Otherwise,
552 * allocating a new buffer is probably faster than
553 * waiting for the GPU to finish.
554 */
555 bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head);
556 if (!brw_bo_busy(bo)) {
557 alloc_from_cache = true;
558 list_del(&bo->head);
559 }
560 }
561
562 if (alloc_from_cache) {
563 if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) {
564 bo_free(bo);
565 brw_bo_cache_purge_bucket(bufmgr, bucket);
566 goto retry;
567 }
568
569 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
570 bo_free(bo);
571 goto retry;
572 }
573
574 if (zeroed) {
575 void *map = brw_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
576 if (!map) {
577 bo_free(bo);
578 goto retry;
579 }
580 memset(map, 0, bo_size);
581 }
582 }
583 }
584
585 if (alloc_from_cache) {
586 /* If the cache BO isn't in the right memory zone, free the old
587 * memory and assign it a new address.
588 */
589 if ((bo->kflags & EXEC_OBJECT_PINNED) &&
590 memzone != memzone_for_address(bo->gtt_offset)) {
591 vma_free(bufmgr, bo->gtt_offset, bo->size);
592 bo->gtt_offset = 0ull;
593 }
594 } else {
595 bo = calloc(1, sizeof(*bo));
596 if (!bo)
597 goto err;
598
599 bo->size = bo_size;
600 bo->idle = true;
601
602 struct drm_i915_gem_create create = { .size = bo_size };
603
604 /* All new BOs we get from the kernel are zeroed, so we don't need to
605 * worry about that here.
606 */
607 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
608 if (ret != 0) {
609 free(bo);
610 goto err;
611 }
612
613 bo->gem_handle = create.handle;
614
615 bo->bufmgr = bufmgr;
616
617 bo->tiling_mode = I915_TILING_NONE;
618 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
619 bo->stride = 0;
620
621 if (bo_set_tiling_internal(bo, tiling_mode, stride))
622 goto err_free;
623
624 /* Calling set_domain() will allocate pages for the BO outside of the
625 * struct mutex lock in the kernel, which is more efficient than waiting
626 * to create them during the first execbuf that uses the BO.
627 */
628 struct drm_i915_gem_set_domain sd = {
629 .handle = bo->gem_handle,
630 .read_domains = I915_GEM_DOMAIN_CPU,
631 .write_domain = 0,
632 };
633
634 if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
635 goto err_free;
636 }
637
638 bo->name = name;
639 p_atomic_set(&bo->refcount, 1);
640 bo->reusable = true;
641 bo->cache_coherent = bufmgr->has_llc;
642 bo->index = -1;
643 bo->kflags = bufmgr->initial_kflags;
644
645 if ((bo->kflags & EXEC_OBJECT_PINNED) && bo->gtt_offset == 0ull) {
646 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1);
647
648 if (bo->gtt_offset == 0ull)
649 goto err_free;
650 }
651
652 mtx_unlock(&bufmgr->lock);
653
654 DBG("bo_create: buf %d (%s) %llub\n", bo->gem_handle, bo->name,
655 (unsigned long long) size);
656
657 return bo;
658
659 err_free:
660 bo_free(bo);
661 err:
662 mtx_unlock(&bufmgr->lock);
663 return NULL;
664 }
665
666 struct brw_bo *
667 brw_bo_alloc(struct brw_bufmgr *bufmgr,
668 const char *name, uint64_t size,
669 enum brw_memory_zone memzone)
670 {
671 return bo_alloc_internal(bufmgr, name, size, memzone,
672 0, I915_TILING_NONE, 0);
673 }
674
675 struct brw_bo *
676 brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name,
677 uint64_t size, enum brw_memory_zone memzone,
678 uint32_t tiling_mode, uint32_t pitch,
679 unsigned flags)
680 {
681 return bo_alloc_internal(bufmgr, name, size, memzone,
682 flags, tiling_mode, pitch);
683 }
684
685 struct brw_bo *
686 brw_bo_alloc_tiled_2d(struct brw_bufmgr *bufmgr, const char *name,
687 int x, int y, int cpp, enum brw_memory_zone memzone,
688 uint32_t tiling, uint32_t *pitch, unsigned flags)
689 {
690 uint64_t size;
691 uint32_t stride;
692 unsigned long aligned_y, height_alignment;
693
694 /* If we're tiled, our allocations are in 8 or 32-row blocks,
695 * so failure to align our height means that we won't allocate
696 * enough pages.
697 *
698 * If we're untiled, we still have to align to 2 rows high
699 * because the data port accesses 2x2 blocks even if the
700 * bottom row isn't to be rendered, so failure to align means
701 * we could walk off the end of the GTT and fault. This is
702 * documented on 965, and may be the case on older chipsets
703 * too so we try to be careful.
704 */
705 aligned_y = y;
706 height_alignment = 2;
707
708 if (tiling == I915_TILING_X)
709 height_alignment = 8;
710 else if (tiling == I915_TILING_Y)
711 height_alignment = 32;
712 aligned_y = ALIGN(y, height_alignment);
713
714 stride = x * cpp;
715 stride = bo_tile_pitch(bufmgr, stride, tiling);
716 size = stride * aligned_y;
717 size = bo_tile_size(bufmgr, size, tiling);
718 *pitch = stride;
719
720 if (tiling == I915_TILING_NONE)
721 stride = 0;
722
723 return bo_alloc_internal(bufmgr, name, size, flags,
724 memzone, tiling, stride);
725 }
726
727 /**
728 * Returns a brw_bo wrapping the given buffer object handle.
729 *
730 * This can be used when one application needs to pass a buffer object
731 * to another.
732 */
733 struct brw_bo *
734 brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr,
735 const char *name, unsigned int handle)
736 {
737 struct brw_bo *bo;
738
739 /* At the moment most applications only have a few named bo.
740 * For instance, in a DRI client only the render buffers passed
741 * between X and the client are named. And since X returns the
742 * alternating names for the front/back buffer a linear search
743 * provides a sufficiently fast match.
744 */
745 mtx_lock(&bufmgr->lock);
746 bo = hash_find_bo(bufmgr->name_table, handle);
747 if (bo) {
748 brw_bo_reference(bo);
749 goto out;
750 }
751
752 struct drm_gem_open open_arg = { .name = handle };
753 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
754 if (ret != 0) {
755 DBG("Couldn't reference %s handle 0x%08x: %s\n",
756 name, handle, strerror(errno));
757 bo = NULL;
758 goto out;
759 }
760 /* Now see if someone has used a prime handle to get this
761 * object from the kernel before by looking through the list
762 * again for a matching gem_handle
763 */
764 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
765 if (bo) {
766 brw_bo_reference(bo);
767 goto out;
768 }
769
770 bo = calloc(1, sizeof(*bo));
771 if (!bo)
772 goto out;
773
774 p_atomic_set(&bo->refcount, 1);
775
776 bo->size = open_arg.size;
777 bo->gtt_offset = 0;
778 bo->bufmgr = bufmgr;
779 bo->gem_handle = open_arg.handle;
780 bo->name = name;
781 bo->global_name = handle;
782 bo->reusable = false;
783 bo->external = true;
784 bo->kflags = bufmgr->initial_kflags;
785
786 if (bo->kflags & EXEC_OBJECT_PINNED)
787 bo->gtt_offset = vma_alloc(bufmgr, BRW_MEMZONE_OTHER, bo->size, 1);
788
789 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
790 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
791
792 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
793 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
794 if (ret != 0)
795 goto err_unref;
796
797 bo->tiling_mode = get_tiling.tiling_mode;
798 bo->swizzle_mode = get_tiling.swizzle_mode;
799 /* XXX stride is unknown */
800 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
801
802 out:
803 mtx_unlock(&bufmgr->lock);
804 return bo;
805
806 err_unref:
807 bo_free(bo);
808 mtx_unlock(&bufmgr->lock);
809 return NULL;
810 }
811
812 static void
813 bo_free(struct brw_bo *bo)
814 {
815 struct brw_bufmgr *bufmgr = bo->bufmgr;
816
817 if (bo->map_cpu) {
818 VG_NOACCESS(bo->map_cpu, bo->size);
819 drm_munmap(bo->map_cpu, bo->size);
820 }
821 if (bo->map_wc) {
822 VG_NOACCESS(bo->map_wc, bo->size);
823 drm_munmap(bo->map_wc, bo->size);
824 }
825 if (bo->map_gtt) {
826 VG_NOACCESS(bo->map_gtt, bo->size);
827 drm_munmap(bo->map_gtt, bo->size);
828 }
829
830 if (bo->external) {
831 struct hash_entry *entry;
832
833 if (bo->global_name) {
834 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
835 _mesa_hash_table_remove(bufmgr->name_table, entry);
836 }
837
838 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
839 _mesa_hash_table_remove(bufmgr->handle_table, entry);
840 }
841
842 /* Close this object */
843 struct drm_gem_close close = { .handle = bo->gem_handle };
844 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
845 if (ret != 0) {
846 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
847 bo->gem_handle, bo->name, strerror(errno));
848 }
849
850 if (bo->kflags & EXEC_OBJECT_PINNED)
851 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
852
853 free(bo);
854 }
855
856 /** Frees all cached buffers significantly older than @time. */
857 static void
858 cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time)
859 {
860 int i;
861
862 if (bufmgr->time == time)
863 return;
864
865 for (i = 0; i < bufmgr->num_buckets; i++) {
866 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
867
868 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
869 if (time - bo->free_time <= 1)
870 break;
871
872 list_del(&bo->head);
873
874 bo_free(bo);
875 }
876 }
877
878 bufmgr->time = time;
879 }
880
881 static void
882 bo_unreference_final(struct brw_bo *bo, time_t time)
883 {
884 struct brw_bufmgr *bufmgr = bo->bufmgr;
885 struct bo_cache_bucket *bucket;
886
887 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
888
889 bucket = bucket_for_size(bufmgr, bo->size);
890 /* Put the buffer into our internal cache for reuse if we can. */
891 if (bufmgr->bo_reuse && bo->reusable && bucket != NULL &&
892 brw_bo_madvise(bo, I915_MADV_DONTNEED)) {
893 bo->free_time = time;
894
895 bo->name = NULL;
896
897 list_addtail(&bo->head, &bucket->head);
898 } else {
899 bo_free(bo);
900 }
901 }
902
903 void
904 brw_bo_unreference(struct brw_bo *bo)
905 {
906 if (bo == NULL)
907 return;
908
909 assert(p_atomic_read(&bo->refcount) > 0);
910
911 if (atomic_add_unless(&bo->refcount, -1, 1)) {
912 struct brw_bufmgr *bufmgr = bo->bufmgr;
913 struct timespec time;
914
915 clock_gettime(CLOCK_MONOTONIC, &time);
916
917 mtx_lock(&bufmgr->lock);
918
919 if (p_atomic_dec_zero(&bo->refcount)) {
920 bo_unreference_final(bo, time.tv_sec);
921 cleanup_bo_cache(bufmgr, time.tv_sec);
922 }
923
924 mtx_unlock(&bufmgr->lock);
925 }
926 }
927
928 static void
929 bo_wait_with_stall_warning(struct brw_context *brw,
930 struct brw_bo *bo,
931 const char *action)
932 {
933 bool busy = brw && brw->perf_debug && !bo->idle;
934 double elapsed = unlikely(busy) ? -get_time() : 0.0;
935
936 brw_bo_wait_rendering(bo);
937
938 if (unlikely(busy)) {
939 elapsed += get_time();
940 if (elapsed > 1e-5) /* 0.01ms */
941 perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n",
942 action, bo->name, elapsed * 1000);
943 }
944 }
945
946 static void
947 print_flags(unsigned flags)
948 {
949 if (flags & MAP_READ)
950 DBG("READ ");
951 if (flags & MAP_WRITE)
952 DBG("WRITE ");
953 if (flags & MAP_ASYNC)
954 DBG("ASYNC ");
955 if (flags & MAP_PERSISTENT)
956 DBG("PERSISTENT ");
957 if (flags & MAP_COHERENT)
958 DBG("COHERENT ");
959 if (flags & MAP_RAW)
960 DBG("RAW ");
961 DBG("\n");
962 }
963
964 static void *
965 brw_bo_map_cpu(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
966 {
967 struct brw_bufmgr *bufmgr = bo->bufmgr;
968
969 /* We disallow CPU maps for writing to non-coherent buffers, as the
970 * CPU map can become invalidated when a batch is flushed out, which
971 * can happen at unpredictable times. You should use WC maps instead.
972 */
973 assert(bo->cache_coherent || !(flags & MAP_WRITE));
974
975 if (!bo->map_cpu) {
976 DBG("brw_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
977
978 struct drm_i915_gem_mmap mmap_arg = {
979 .handle = bo->gem_handle,
980 .size = bo->size,
981 };
982 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
983 if (ret != 0) {
984 ret = -errno;
985 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
986 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
987 return NULL;
988 }
989 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
990 VG_DEFINED(map, bo->size);
991
992 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
993 VG_NOACCESS(map, bo->size);
994 drm_munmap(map, bo->size);
995 }
996 }
997 assert(bo->map_cpu);
998
999 DBG("brw_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
1000 bo->map_cpu);
1001 print_flags(flags);
1002
1003 if (!(flags & MAP_ASYNC)) {
1004 bo_wait_with_stall_warning(brw, bo, "CPU mapping");
1005 }
1006
1007 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
1008 /* If we're reusing an existing CPU mapping, the CPU caches may
1009 * contain stale data from the last time we read from that mapping.
1010 * (With the BO cache, it might even be data from a previous buffer!)
1011 * Even if it's a brand new mapping, the kernel may have zeroed the
1012 * buffer via CPU writes.
1013 *
1014 * We need to invalidate those cachelines so that we see the latest
1015 * contents, and so long as we only read from the CPU mmap we do not
1016 * need to write those cachelines back afterwards.
1017 *
1018 * On LLC, the emprical evidence suggests that writes from the GPU
1019 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
1020 * cachelines. (Other reads, such as the display engine, bypass the
1021 * LLC entirely requiring us to keep dirty pixels for the scanout
1022 * out of any cache.)
1023 */
1024 gen_invalidate_range(bo->map_cpu, bo->size);
1025 }
1026
1027 return bo->map_cpu;
1028 }
1029
1030 static void *
1031 brw_bo_map_wc(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
1032 {
1033 struct brw_bufmgr *bufmgr = bo->bufmgr;
1034
1035 if (!bufmgr->has_mmap_wc)
1036 return NULL;
1037
1038 if (!bo->map_wc) {
1039 DBG("brw_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
1040
1041 struct drm_i915_gem_mmap mmap_arg = {
1042 .handle = bo->gem_handle,
1043 .size = bo->size,
1044 .flags = I915_MMAP_WC,
1045 };
1046 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
1047 if (ret != 0) {
1048 ret = -errno;
1049 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1050 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1051 return NULL;
1052 }
1053
1054 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
1055 VG_DEFINED(map, bo->size);
1056
1057 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
1058 VG_NOACCESS(map, bo->size);
1059 drm_munmap(map, bo->size);
1060 }
1061 }
1062 assert(bo->map_wc);
1063
1064 DBG("brw_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
1065 print_flags(flags);
1066
1067 if (!(flags & MAP_ASYNC)) {
1068 bo_wait_with_stall_warning(brw, bo, "WC mapping");
1069 }
1070
1071 return bo->map_wc;
1072 }
1073
1074 /**
1075 * Perform an uncached mapping via the GTT.
1076 *
1077 * Write access through the GTT is not quite fully coherent. On low power
1078 * systems especially, like modern Atoms, we can observe reads from RAM before
1079 * the write via GTT has landed. A write memory barrier that flushes the Write
1080 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
1081 * read after the write as the GTT write suffers a small delay through the GTT
1082 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
1083 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
1084 * flushes prior to execbuf submission. However, if we are not informing the
1085 * kernel about our GTT writes, it will not flush before earlier access, such
1086 * as when using the cmdparser. Similarly, we need to be careful if we should
1087 * ever issue a CPU read immediately following a GTT write.
1088 *
1089 * Telling the kernel about write access also has one more important
1090 * side-effect. Upon receiving notification about the write, it cancels any
1091 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
1092 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
1093 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
1094 * tracking is handled on the buffer exchange instead.
1095 */
1096 static void *
1097 brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
1098 {
1099 struct brw_bufmgr *bufmgr = bo->bufmgr;
1100
1101 /* Get a mapping of the buffer if we haven't before. */
1102 if (bo->map_gtt == NULL) {
1103 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
1104
1105 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
1106
1107 /* Get the fake offset back... */
1108 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
1109 if (ret != 0) {
1110 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1111 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1112 return NULL;
1113 }
1114
1115 /* and mmap it. */
1116 void *map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1117 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
1118 if (map == MAP_FAILED) {
1119 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1120 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1121 return NULL;
1122 }
1123
1124 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1125 * already intercept this mmap call. However, for consistency between
1126 * all the mmap paths, we mark the pointer as defined now and mark it
1127 * as inaccessible afterwards.
1128 */
1129 VG_DEFINED(map, bo->size);
1130
1131 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1132 VG_NOACCESS(map, bo->size);
1133 drm_munmap(map, bo->size);
1134 }
1135 }
1136 assert(bo->map_gtt);
1137
1138 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1139 print_flags(flags);
1140
1141 if (!(flags & MAP_ASYNC)) {
1142 bo_wait_with_stall_warning(brw, bo, "GTT mapping");
1143 }
1144
1145 return bo->map_gtt;
1146 }
1147
1148 static bool
1149 can_map_cpu(struct brw_bo *bo, unsigned flags)
1150 {
1151 if (bo->cache_coherent)
1152 return true;
1153
1154 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1155 * an LLC platform reads always are coherent (as they are performed via the
1156 * central system agent). It is just the writes that we need to take special
1157 * care to ensure that land in main memory and not stick in the CPU cache.
1158 */
1159 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1160 return true;
1161
1162 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1163 * across batch flushes where the kernel will change cache domains of the
1164 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1165 *
1166 * Similarly, ASYNC typically means that the buffer will be accessed via
1167 * both the CPU and the GPU simultaneously. Batches may be executed that
1168 * use the BO even while it is mapped. While OpenGL technically disallows
1169 * most drawing while non-persistent mappings are active, we may still use
1170 * the GPU for blits or other operations, causing batches to happen at
1171 * inconvenient times.
1172 */
1173 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC))
1174 return false;
1175
1176 return !(flags & MAP_WRITE);
1177 }
1178
1179 void *
1180 brw_bo_map(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
1181 {
1182 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1183 return brw_bo_map_gtt(brw, bo, flags);
1184
1185 void *map;
1186
1187 if (can_map_cpu(bo, flags))
1188 map = brw_bo_map_cpu(brw, bo, flags);
1189 else
1190 map = brw_bo_map_wc(brw, bo, flags);
1191
1192 /* Allow the attempt to fail by falling back to the GTT where necessary.
1193 *
1194 * Not every buffer can be mmaped directly using the CPU (or WC), for
1195 * example buffers that wrap stolen memory or are imported from other
1196 * devices. For those, we have little choice but to use a GTT mmapping.
1197 * However, if we use a slow GTT mmapping for reads where we expected fast
1198 * access, that order of magnitude difference in throughput will be clearly
1199 * expressed by angry users.
1200 *
1201 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1202 */
1203 if (!map && !(flags & MAP_RAW)) {
1204 if (brw) {
1205 perf_debug("Fallback GTT mapping for %s with access flags %x\n",
1206 bo->name, flags);
1207 }
1208 map = brw_bo_map_gtt(brw, bo, flags);
1209 }
1210
1211 return map;
1212 }
1213
1214 int
1215 brw_bo_subdata(struct brw_bo *bo, uint64_t offset,
1216 uint64_t size, const void *data)
1217 {
1218 struct brw_bufmgr *bufmgr = bo->bufmgr;
1219
1220 struct drm_i915_gem_pwrite pwrite = {
1221 .handle = bo->gem_handle,
1222 .offset = offset,
1223 .size = size,
1224 .data_ptr = (uint64_t) (uintptr_t) data,
1225 };
1226
1227 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite);
1228 if (ret != 0) {
1229 ret = -errno;
1230 DBG("%s:%d: Error writing data to buffer %d: "
1231 "(%"PRIu64" %"PRIu64") %s .\n",
1232 __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
1233 }
1234
1235 return ret;
1236 }
1237
1238 /** Waits for all GPU rendering with the object to have completed. */
1239 void
1240 brw_bo_wait_rendering(struct brw_bo *bo)
1241 {
1242 /* We require a kernel recent enough for WAIT_IOCTL support.
1243 * See intel_init_bufmgr()
1244 */
1245 brw_bo_wait(bo, -1);
1246 }
1247
1248 /**
1249 * Waits on a BO for the given amount of time.
1250 *
1251 * @bo: buffer object to wait for
1252 * @timeout_ns: amount of time to wait in nanoseconds.
1253 * If value is less than 0, an infinite wait will occur.
1254 *
1255 * Returns 0 if the wait was successful ie. the last batch referencing the
1256 * object has completed within the allotted time. Otherwise some negative return
1257 * value describes the error. Of particular interest is -ETIME when the wait has
1258 * failed to yield the desired result.
1259 *
1260 * Similar to brw_bo_wait_rendering except a timeout parameter allows
1261 * the operation to give up after a certain amount of time. Another subtle
1262 * difference is the internal locking semantics are different (this variant does
1263 * not hold the lock for the duration of the wait). This makes the wait subject
1264 * to a larger userspace race window.
1265 *
1266 * The implementation shall wait until the object is no longer actively
1267 * referenced within a batch buffer at the time of the call. The wait will
1268 * not guarantee that the buffer is re-issued via another thread, or an flinked
1269 * handle. Userspace must make sure this race does not occur if such precision
1270 * is important.
1271 *
1272 * Note that some kernels have broken the inifite wait for negative values
1273 * promise, upgrade to latest stable kernels if this is the case.
1274 */
1275 int
1276 brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns)
1277 {
1278 struct brw_bufmgr *bufmgr = bo->bufmgr;
1279
1280 /* If we know it's idle, don't bother with the kernel round trip */
1281 if (bo->idle && !bo->external)
1282 return 0;
1283
1284 struct drm_i915_gem_wait wait = {
1285 .bo_handle = bo->gem_handle,
1286 .timeout_ns = timeout_ns,
1287 };
1288 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1289 if (ret != 0)
1290 return -errno;
1291
1292 bo->idle = true;
1293
1294 return ret;
1295 }
1296
1297 void
1298 brw_bufmgr_destroy(struct brw_bufmgr *bufmgr)
1299 {
1300 mtx_destroy(&bufmgr->lock);
1301
1302 /* Free any cached buffer objects we were going to reuse */
1303 for (int i = 0; i < bufmgr->num_buckets; i++) {
1304 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1305
1306 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
1307 list_del(&bo->head);
1308
1309 bo_free(bo);
1310 }
1311
1312 if (brw_using_softpin(bufmgr)) {
1313 for (int z = 0; z < BRW_MEMZONE_COUNT; z++) {
1314 util_dynarray_fini(&bucket->vma_list[z]);
1315 }
1316 }
1317 }
1318
1319 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1320 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1321
1322 if (brw_using_softpin(bufmgr)) {
1323 for (int z = 0; z < BRW_MEMZONE_COUNT; z++) {
1324 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1325 }
1326 }
1327
1328 free(bufmgr);
1329 }
1330
1331 static int
1332 bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
1333 uint32_t stride)
1334 {
1335 struct brw_bufmgr *bufmgr = bo->bufmgr;
1336 struct drm_i915_gem_set_tiling set_tiling;
1337 int ret;
1338
1339 if (bo->global_name == 0 &&
1340 tiling_mode == bo->tiling_mode && stride == bo->stride)
1341 return 0;
1342
1343 memset(&set_tiling, 0, sizeof(set_tiling));
1344 do {
1345 /* set_tiling is slightly broken and overwrites the
1346 * input on the error path, so we have to open code
1347 * rmIoctl.
1348 */
1349 set_tiling.handle = bo->gem_handle;
1350 set_tiling.tiling_mode = tiling_mode;
1351 set_tiling.stride = stride;
1352
1353 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1354 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1355 if (ret == -1)
1356 return -errno;
1357
1358 bo->tiling_mode = set_tiling.tiling_mode;
1359 bo->swizzle_mode = set_tiling.swizzle_mode;
1360 bo->stride = set_tiling.stride;
1361 return 0;
1362 }
1363
1364 int
1365 brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode,
1366 uint32_t *swizzle_mode)
1367 {
1368 *tiling_mode = bo->tiling_mode;
1369 *swizzle_mode = bo->swizzle_mode;
1370 return 0;
1371 }
1372
1373 static struct brw_bo *
1374 brw_bo_gem_create_from_prime_internal(struct brw_bufmgr *bufmgr, int prime_fd,
1375 int tiling_mode, uint32_t stride)
1376 {
1377 uint32_t handle;
1378 struct brw_bo *bo;
1379
1380 mtx_lock(&bufmgr->lock);
1381 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1382 if (ret) {
1383 DBG("create_from_prime: failed to obtain handle from fd: %s\n",
1384 strerror(errno));
1385 mtx_unlock(&bufmgr->lock);
1386 return NULL;
1387 }
1388
1389 /*
1390 * See if the kernel has already returned this buffer to us. Just as
1391 * for named buffers, we must not create two bo's pointing at the same
1392 * kernel object
1393 */
1394 bo = hash_find_bo(bufmgr->handle_table, handle);
1395 if (bo) {
1396 brw_bo_reference(bo);
1397 goto out;
1398 }
1399
1400 bo = calloc(1, sizeof(*bo));
1401 if (!bo)
1402 goto out;
1403
1404 p_atomic_set(&bo->refcount, 1);
1405
1406 /* Determine size of bo. The fd-to-handle ioctl really should
1407 * return the size, but it doesn't. If we have kernel 3.12 or
1408 * later, we can lseek on the prime fd to get the size. Older
1409 * kernels will just fail, in which case we fall back to the
1410 * provided (estimated or guess size). */
1411 ret = lseek(prime_fd, 0, SEEK_END);
1412 if (ret != -1)
1413 bo->size = ret;
1414
1415 bo->bufmgr = bufmgr;
1416
1417 bo->gem_handle = handle;
1418 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1419
1420 bo->name = "prime";
1421 bo->reusable = false;
1422 bo->external = true;
1423 bo->kflags = bufmgr->initial_kflags;
1424
1425 if (bo->kflags & EXEC_OBJECT_PINNED) {
1426 assert(bo->size > 0);
1427 bo->gtt_offset = vma_alloc(bufmgr, BRW_MEMZONE_OTHER, bo->size, 1);
1428 }
1429
1430 if (tiling_mode < 0) {
1431 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1432 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1433 goto err;
1434
1435 bo->tiling_mode = get_tiling.tiling_mode;
1436 bo->swizzle_mode = get_tiling.swizzle_mode;
1437 /* XXX stride is unknown */
1438 } else {
1439 bo_set_tiling_internal(bo, tiling_mode, stride);
1440 }
1441
1442 out:
1443 mtx_unlock(&bufmgr->lock);
1444 return bo;
1445
1446 err:
1447 bo_free(bo);
1448 mtx_unlock(&bufmgr->lock);
1449 return NULL;
1450 }
1451
1452 struct brw_bo *
1453 brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd)
1454 {
1455 return brw_bo_gem_create_from_prime_internal(bufmgr, prime_fd, -1, 0);
1456 }
1457
1458 struct brw_bo *
1459 brw_bo_gem_create_from_prime_tiled(struct brw_bufmgr *bufmgr, int prime_fd,
1460 uint32_t tiling_mode, uint32_t stride)
1461 {
1462 assert(tiling_mode == I915_TILING_NONE ||
1463 tiling_mode == I915_TILING_X ||
1464 tiling_mode == I915_TILING_Y);
1465
1466 return brw_bo_gem_create_from_prime_internal(bufmgr, prime_fd,
1467 tiling_mode, stride);
1468 }
1469
1470 static void
1471 brw_bo_make_external(struct brw_bo *bo)
1472 {
1473 struct brw_bufmgr *bufmgr = bo->bufmgr;
1474
1475 if (!bo->external) {
1476 mtx_lock(&bufmgr->lock);
1477 if (!bo->external) {
1478 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1479 bo->external = true;
1480 }
1481 mtx_unlock(&bufmgr->lock);
1482 }
1483 }
1484
1485 int
1486 brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd)
1487 {
1488 struct brw_bufmgr *bufmgr = bo->bufmgr;
1489
1490 brw_bo_make_external(bo);
1491
1492 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1493 DRM_CLOEXEC, prime_fd) != 0)
1494 return -errno;
1495
1496 bo->reusable = false;
1497
1498 return 0;
1499 }
1500
1501 uint32_t
1502 brw_bo_export_gem_handle(struct brw_bo *bo)
1503 {
1504 brw_bo_make_external(bo);
1505
1506 return bo->gem_handle;
1507 }
1508
1509 int
1510 brw_bo_flink(struct brw_bo *bo, uint32_t *name)
1511 {
1512 struct brw_bufmgr *bufmgr = bo->bufmgr;
1513
1514 if (!bo->global_name) {
1515 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1516
1517 if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1518 return -errno;
1519
1520 brw_bo_make_external(bo);
1521 mtx_lock(&bufmgr->lock);
1522 if (!bo->global_name) {
1523 bo->global_name = flink.name;
1524 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1525 }
1526 mtx_unlock(&bufmgr->lock);
1527
1528 bo->reusable = false;
1529 }
1530
1531 *name = bo->global_name;
1532 return 0;
1533 }
1534
1535 /**
1536 * Enables unlimited caching of buffer objects for reuse.
1537 *
1538 * This is potentially very memory expensive, as the cache at each bucket
1539 * size is only bounded by how many buffers of that size we've managed to have
1540 * in flight at once.
1541 */
1542 void
1543 brw_bufmgr_enable_reuse(struct brw_bufmgr *bufmgr)
1544 {
1545 bufmgr->bo_reuse = true;
1546 }
1547
1548 static void
1549 add_bucket(struct brw_bufmgr *bufmgr, int size)
1550 {
1551 unsigned int i = bufmgr->num_buckets;
1552
1553 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1554
1555 list_inithead(&bufmgr->cache_bucket[i].head);
1556 if (brw_using_softpin(bufmgr)) {
1557 for (int z = 0; z < BRW_MEMZONE_COUNT; z++)
1558 util_dynarray_init(&bufmgr->cache_bucket[i].vma_list[z], NULL);
1559 }
1560 bufmgr->cache_bucket[i].size = size;
1561 bufmgr->num_buckets++;
1562
1563 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1564 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1565 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1566 }
1567
1568 static void
1569 init_cache_buckets(struct brw_bufmgr *bufmgr)
1570 {
1571 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1572
1573 /* OK, so power of two buckets was too wasteful of memory.
1574 * Give 3 other sizes between each power of two, to hopefully
1575 * cover things accurately enough. (The alternative is
1576 * probably to just go for exact matching of sizes, and assume
1577 * that for things like composited window resize the tiled
1578 * width/height alignment and rounding of sizes to pages will
1579 * get us useful cache hit rates anyway)
1580 */
1581 add_bucket(bufmgr, 4096);
1582 add_bucket(bufmgr, 4096 * 2);
1583 add_bucket(bufmgr, 4096 * 3);
1584
1585 /* Initialize the linked lists for BO reuse cache. */
1586 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
1587 add_bucket(bufmgr, size);
1588
1589 add_bucket(bufmgr, size + size * 1 / 4);
1590 add_bucket(bufmgr, size + size * 2 / 4);
1591 add_bucket(bufmgr, size + size * 3 / 4);
1592 }
1593 }
1594
1595 uint32_t
1596 brw_create_hw_context(struct brw_bufmgr *bufmgr)
1597 {
1598 struct drm_i915_gem_context_create create = { };
1599 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1600 if (ret != 0) {
1601 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1602 return 0;
1603 }
1604
1605 return create.ctx_id;
1606 }
1607
1608 int
1609 brw_hw_context_set_priority(struct brw_bufmgr *bufmgr,
1610 uint32_t ctx_id,
1611 int priority)
1612 {
1613 struct drm_i915_gem_context_param p = {
1614 .ctx_id = ctx_id,
1615 .param = I915_CONTEXT_PARAM_PRIORITY,
1616 .value = priority,
1617 };
1618 int err;
1619
1620 err = 0;
1621 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1622 err = -errno;
1623
1624 return err;
1625 }
1626
1627 void
1628 brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id)
1629 {
1630 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1631
1632 if (ctx_id != 0 &&
1633 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1634 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1635 strerror(errno));
1636 }
1637 }
1638
1639 int
1640 brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1641 {
1642 struct drm_i915_reg_read reg_read = { .offset = offset };
1643 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1644
1645 *result = reg_read.val;
1646 return ret;
1647 }
1648
1649 static int
1650 gem_param(int fd, int name)
1651 {
1652 int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
1653
1654 struct drm_i915_getparam gp = { .param = name, .value = &v };
1655 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
1656 return -1;
1657
1658 return v;
1659 }
1660
1661 static int
1662 gem_context_getparam(int fd, uint32_t context, uint64_t param, uint64_t *value)
1663 {
1664 struct drm_i915_gem_context_param gp = {
1665 .ctx_id = context,
1666 .param = param,
1667 };
1668
1669 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &gp))
1670 return -1;
1671
1672 *value = gp.value;
1673
1674 return 0;
1675 }
1676
1677 bool
1678 brw_using_softpin(struct brw_bufmgr *bufmgr)
1679 {
1680 return bufmgr->initial_kflags & EXEC_OBJECT_PINNED;
1681 }
1682
1683 /**
1684 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1685 * and manage map buffer objections.
1686 *
1687 * \param fd File descriptor of the opened DRM device.
1688 */
1689 struct brw_bufmgr *
1690 brw_bufmgr_init(struct gen_device_info *devinfo, int fd)
1691 {
1692 struct brw_bufmgr *bufmgr;
1693
1694 bufmgr = calloc(1, sizeof(*bufmgr));
1695 if (bufmgr == NULL)
1696 return NULL;
1697
1698 /* Handles to buffer objects belong to the device fd and are not
1699 * reference counted by the kernel. If the same fd is used by
1700 * multiple parties (threads sharing the same screen bufmgr, or
1701 * even worse the same device fd passed to multiple libraries)
1702 * ownership of those handles is shared by those independent parties.
1703 *
1704 * Don't do this! Ensure that each library/bufmgr has its own device
1705 * fd so that its namespace does not clash with another.
1706 */
1707 bufmgr->fd = fd;
1708
1709 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1710 free(bufmgr);
1711 return NULL;
1712 }
1713
1714 uint64_t gtt_size;
1715 if (gem_context_getparam(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE, &gtt_size))
1716 gtt_size = 0;
1717
1718 bufmgr->has_llc = devinfo->has_llc;
1719 bufmgr->has_mmap_wc = gem_param(fd, I915_PARAM_MMAP_VERSION) > 0;
1720
1721 const uint64_t _4GB = 4ull << 30;
1722
1723 if (devinfo->gen >= 8 && gtt_size > _4GB) {
1724 bufmgr->initial_kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1725
1726 /* Allocate VMA in userspace if we have softpin and full PPGTT. */
1727 if (gem_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN) > 0 &&
1728 gem_param(fd, I915_PARAM_HAS_ALIASING_PPGTT) > 1) {
1729 bufmgr->initial_kflags |= EXEC_OBJECT_PINNED;
1730
1731 util_vma_heap_init(&bufmgr->vma_allocator[BRW_MEMZONE_LOW_4G],
1732 4096, _4GB);
1733 util_vma_heap_init(&bufmgr->vma_allocator[BRW_MEMZONE_OTHER],
1734 1 * _4GB, gtt_size - 1 * _4GB);
1735 }
1736 }
1737
1738 init_cache_buckets(bufmgr);
1739
1740 bufmgr->name_table =
1741 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1742 bufmgr->handle_table =
1743 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1744
1745 return bufmgr;
1746 }