i965/bufmgr: Use write-combine mappings where available
[mesa.git] / src / mesa / drivers / dri / i965 / brw_bufmgr.c
1 /**************************************************************************
2 *
3 * Copyright © 2007 Red Hat Inc.
4 * Copyright © 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30 /*
31 * Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 * Eric Anholt <eric@anholt.net>
34 * Dave Airlie <airlied@linux.ie>
35 */
36
37 #ifdef HAVE_CONFIG_H
38 #include "config.h"
39 #endif
40
41 #include <xf86drm.h>
42 #include <util/u_atomic.h>
43 #include <fcntl.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <assert.h>
49 #include <pthread.h>
50 #include <sys/ioctl.h>
51 #include <sys/stat.h>
52 #include <sys/types.h>
53 #include <stdbool.h>
54
55 #include "errno.h"
56 #ifndef ETIME
57 #define ETIME ETIMEDOUT
58 #endif
59 #include "common/gen_clflush.h"
60 #include "common/gen_debug.h"
61 #include "common/gen_device_info.h"
62 #include "libdrm_macros.h"
63 #include "main/macros.h"
64 #include "util/macros.h"
65 #include "util/hash_table.h"
66 #include "util/list.h"
67 #include "brw_bufmgr.h"
68 #include "brw_context.h"
69 #include "string.h"
70
71 #include "i915_drm.h"
72
73 #ifdef HAVE_VALGRIND
74 #include <valgrind.h>
75 #include <memcheck.h>
76 #define VG(x) x
77 #else
78 #define VG(x)
79 #endif
80
81 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
82 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
83 * leaked. All because it does not call VG(cli_free) from its
84 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
85 * and allocation, we mark it available for use upon mmapping and remove
86 * it upon unmapping.
87 */
88 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
89 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
90
91 #define memclear(s) memset(&s, 0, sizeof(s))
92
93 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
94
95 static inline int
96 atomic_add_unless(int *v, int add, int unless)
97 {
98 int c, old;
99 c = p_atomic_read(v);
100 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
101 c = old;
102 return c == unless;
103 }
104
105 struct bo_cache_bucket {
106 struct list_head head;
107 uint64_t size;
108 };
109
110 struct brw_bufmgr {
111 int fd;
112
113 pthread_mutex_t lock;
114
115 /** Array of lists of cached gem objects of power-of-two sizes */
116 struct bo_cache_bucket cache_bucket[14 * 4];
117 int num_buckets;
118 time_t time;
119
120 struct hash_table *name_table;
121 struct hash_table *handle_table;
122
123 bool has_llc:1;
124 bool has_mmap_wc:1;
125 bool bo_reuse:1;
126 };
127
128 static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
129 uint32_t stride);
130
131 static void bo_free(struct brw_bo *bo);
132
133 static uint32_t
134 key_hash_uint(const void *key)
135 {
136 return _mesa_hash_data(key, 4);
137 }
138
139 static bool
140 key_uint_equal(const void *a, const void *b)
141 {
142 return *((unsigned *) a) == *((unsigned *) b);
143 }
144
145 static struct brw_bo *
146 hash_find_bo(struct hash_table *ht, unsigned int key)
147 {
148 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
149 return entry ? (struct brw_bo *) entry->data : NULL;
150 }
151
152 static uint64_t
153 bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling)
154 {
155 if (tiling == I915_TILING_NONE)
156 return size;
157
158 /* 965+ just need multiples of page size for tiling */
159 return ALIGN(size, 4096);
160 }
161
162 /*
163 * Round a given pitch up to the minimum required for X tiling on a
164 * given chip. We use 512 as the minimum to allow for a later tiling
165 * change.
166 */
167 static uint32_t
168 bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling)
169 {
170 unsigned long tile_width;
171
172 /* If untiled, then just align it so that we can do rendering
173 * to it with the 3D engine.
174 */
175 if (tiling == I915_TILING_NONE)
176 return ALIGN(pitch, 64);
177
178 if (tiling == I915_TILING_X)
179 tile_width = 512;
180 else
181 tile_width = 128;
182
183 /* 965 is flexible */
184 return ALIGN(pitch, tile_width);
185 }
186
187 static struct bo_cache_bucket *
188 bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size)
189 {
190 int i;
191
192 for (i = 0; i < bufmgr->num_buckets; i++) {
193 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
194 if (bucket->size >= size) {
195 return bucket;
196 }
197 }
198
199 return NULL;
200 }
201
202 inline void
203 brw_bo_reference(struct brw_bo *bo)
204 {
205 p_atomic_inc(&bo->refcount);
206 }
207
208 int
209 brw_bo_busy(struct brw_bo *bo)
210 {
211 struct brw_bufmgr *bufmgr = bo->bufmgr;
212 struct drm_i915_gem_busy busy;
213 int ret;
214
215 memclear(busy);
216 busy.handle = bo->gem_handle;
217
218 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
219 if (ret == 0) {
220 bo->idle = !busy.busy;
221 return busy.busy;
222 }
223 return false;
224 }
225
226 int
227 brw_bo_madvise(struct brw_bo *bo, int state)
228 {
229 struct drm_i915_gem_madvise madv;
230
231 memclear(madv);
232 madv.handle = bo->gem_handle;
233 madv.madv = state;
234 madv.retained = 1;
235 drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
236
237 return madv.retained;
238 }
239
240 /* drop the oldest entries that have been purged by the kernel */
241 static void
242 brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr,
243 struct bo_cache_bucket *bucket)
244 {
245 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
246 if (brw_bo_madvise(bo, I915_MADV_DONTNEED))
247 break;
248
249 list_del(&bo->head);
250 bo_free(bo);
251 }
252 }
253
254 static struct brw_bo *
255 bo_alloc_internal(struct brw_bufmgr *bufmgr,
256 const char *name,
257 uint64_t size,
258 unsigned flags,
259 uint32_t tiling_mode,
260 uint32_t stride, uint64_t alignment)
261 {
262 struct brw_bo *bo;
263 unsigned int page_size = getpagesize();
264 int ret;
265 struct bo_cache_bucket *bucket;
266 bool alloc_from_cache;
267 uint64_t bo_size;
268 bool for_render = false;
269 bool zeroed = false;
270
271 if (flags & BO_ALLOC_FOR_RENDER)
272 for_render = true;
273
274 if (flags & BO_ALLOC_ZEROED)
275 zeroed = true;
276
277 /* FOR_RENDER really means "I'm ok with a busy BO". This doesn't really
278 * jive with ZEROED as we have to wait for it to be idle before we can
279 * memset. Just disallow that combination.
280 */
281 assert(!(for_render && zeroed));
282
283 /* Round the allocated size up to a power of two number of pages. */
284 bucket = bucket_for_size(bufmgr, size);
285
286 /* If we don't have caching at this size, don't actually round the
287 * allocation up.
288 */
289 if (bucket == NULL) {
290 bo_size = size;
291 if (bo_size < page_size)
292 bo_size = page_size;
293 } else {
294 bo_size = bucket->size;
295 }
296
297 pthread_mutex_lock(&bufmgr->lock);
298 /* Get a buffer out of the cache if available */
299 retry:
300 alloc_from_cache = false;
301 if (bucket != NULL && !list_empty(&bucket->head)) {
302 if (for_render && !zeroed) {
303 /* Allocate new render-target BOs from the tail (MRU)
304 * of the list, as it will likely be hot in the GPU
305 * cache and in the aperture for us. If the caller
306 * asked us to zero the buffer, we don't want this
307 * because we are going to mmap it.
308 */
309 bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head);
310 list_del(&bo->head);
311 alloc_from_cache = true;
312 bo->align = alignment;
313 } else {
314 assert(alignment == 0);
315 /* For non-render-target BOs (where we're probably
316 * going to map it first thing in order to fill it
317 * with data), check if the last BO in the cache is
318 * unbusy, and only reuse in that case. Otherwise,
319 * allocating a new buffer is probably faster than
320 * waiting for the GPU to finish.
321 */
322 bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head);
323 if (!brw_bo_busy(bo)) {
324 alloc_from_cache = true;
325 list_del(&bo->head);
326 }
327 }
328
329 if (alloc_from_cache) {
330 if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) {
331 bo_free(bo);
332 brw_bo_cache_purge_bucket(bufmgr, bucket);
333 goto retry;
334 }
335
336 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
337 bo_free(bo);
338 goto retry;
339 }
340
341 if (zeroed) {
342 void *map = brw_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
343 if (!map) {
344 bo_free(bo);
345 goto retry;
346 }
347 memset(map, 0, bo_size);
348 }
349 }
350 }
351
352 if (!alloc_from_cache) {
353 struct drm_i915_gem_create create;
354
355 bo = calloc(1, sizeof(*bo));
356 if (!bo)
357 goto err;
358
359 bo->size = bo_size;
360 bo->idle = true;
361
362 memclear(create);
363 create.size = bo_size;
364
365 /* All new BOs we get from the kernel are zeroed, so we don't need to
366 * worry about that here.
367 */
368 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
369 if (ret != 0) {
370 free(bo);
371 goto err;
372 }
373
374 bo->gem_handle = create.handle;
375 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
376
377 bo->bufmgr = bufmgr;
378 bo->align = alignment;
379
380 bo->tiling_mode = I915_TILING_NONE;
381 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
382 bo->stride = 0;
383
384 if (bo_set_tiling_internal(bo, tiling_mode, stride))
385 goto err_free;
386
387 /* Calling set_domain() will allocate pages for the BO outside of the
388 * struct mutex lock in the kernel, which is more efficient than waiting
389 * to create them during the first execbuf that uses the BO.
390 */
391 struct drm_i915_gem_set_domain sd = {
392 .handle = bo->gem_handle,
393 .read_domains = I915_GEM_DOMAIN_CPU,
394 .write_domain = 0,
395 };
396
397 if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
398 goto err_free;
399 }
400
401 bo->name = name;
402 p_atomic_set(&bo->refcount, 1);
403 bo->reusable = true;
404 bo->cache_coherent = bufmgr->has_llc;
405
406 pthread_mutex_unlock(&bufmgr->lock);
407
408 DBG("bo_create: buf %d (%s) %ldb\n", bo->gem_handle, bo->name, size);
409
410 return bo;
411
412 err_free:
413 bo_free(bo);
414 err:
415 pthread_mutex_unlock(&bufmgr->lock);
416 return NULL;
417 }
418
419 struct brw_bo *
420 brw_bo_alloc(struct brw_bufmgr *bufmgr,
421 const char *name, uint64_t size, uint64_t alignment)
422 {
423 return bo_alloc_internal(bufmgr, name, size, 0, I915_TILING_NONE, 0, 0);
424 }
425
426 struct brw_bo *
427 brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name,
428 uint64_t size, uint32_t tiling_mode, uint32_t pitch,
429 unsigned flags)
430 {
431 return bo_alloc_internal(bufmgr, name, size, flags, tiling_mode, pitch, 0);
432 }
433
434 struct brw_bo *
435 brw_bo_alloc_tiled_2d(struct brw_bufmgr *bufmgr, const char *name,
436 int x, int y, int cpp, uint32_t tiling,
437 uint32_t *pitch, unsigned flags)
438 {
439 uint64_t size;
440 uint32_t stride;
441 unsigned long aligned_y, height_alignment;
442
443 /* If we're tiled, our allocations are in 8 or 32-row blocks,
444 * so failure to align our height means that we won't allocate
445 * enough pages.
446 *
447 * If we're untiled, we still have to align to 2 rows high
448 * because the data port accesses 2x2 blocks even if the
449 * bottom row isn't to be rendered, so failure to align means
450 * we could walk off the end of the GTT and fault. This is
451 * documented on 965, and may be the case on older chipsets
452 * too so we try to be careful.
453 */
454 aligned_y = y;
455 height_alignment = 2;
456
457 if (tiling == I915_TILING_X)
458 height_alignment = 8;
459 else if (tiling == I915_TILING_Y)
460 height_alignment = 32;
461 aligned_y = ALIGN(y, height_alignment);
462
463 stride = x * cpp;
464 stride = bo_tile_pitch(bufmgr, stride, tiling);
465 size = stride * aligned_y;
466 size = bo_tile_size(bufmgr, size, tiling);
467 *pitch = stride;
468
469 if (tiling == I915_TILING_NONE)
470 stride = 0;
471
472 return bo_alloc_internal(bufmgr, name, size, flags, tiling, stride, 0);
473 }
474
475 /**
476 * Returns a brw_bo wrapping the given buffer object handle.
477 *
478 * This can be used when one application needs to pass a buffer object
479 * to another.
480 */
481 struct brw_bo *
482 brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr,
483 const char *name, unsigned int handle)
484 {
485 struct brw_bo *bo;
486 int ret;
487 struct drm_gem_open open_arg;
488 struct drm_i915_gem_get_tiling get_tiling;
489
490 /* At the moment most applications only have a few named bo.
491 * For instance, in a DRI client only the render buffers passed
492 * between X and the client are named. And since X returns the
493 * alternating names for the front/back buffer a linear search
494 * provides a sufficiently fast match.
495 */
496 pthread_mutex_lock(&bufmgr->lock);
497 bo = hash_find_bo(bufmgr->name_table, handle);
498 if (bo) {
499 brw_bo_reference(bo);
500 goto out;
501 }
502
503 memclear(open_arg);
504 open_arg.name = handle;
505 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
506 if (ret != 0) {
507 DBG("Couldn't reference %s handle 0x%08x: %s\n",
508 name, handle, strerror(errno));
509 bo = NULL;
510 goto out;
511 }
512 /* Now see if someone has used a prime handle to get this
513 * object from the kernel before by looking through the list
514 * again for a matching gem_handle
515 */
516 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
517 if (bo) {
518 brw_bo_reference(bo);
519 goto out;
520 }
521
522 bo = calloc(1, sizeof(*bo));
523 if (!bo)
524 goto out;
525
526 p_atomic_set(&bo->refcount, 1);
527
528 bo->size = open_arg.size;
529 bo->offset64 = 0;
530 bo->bufmgr = bufmgr;
531 bo->gem_handle = open_arg.handle;
532 bo->name = name;
533 bo->global_name = handle;
534 bo->reusable = false;
535 bo->external = true;
536
537 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
538 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
539
540 memclear(get_tiling);
541 get_tiling.handle = bo->gem_handle;
542 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
543 if (ret != 0)
544 goto err_unref;
545
546 bo->tiling_mode = get_tiling.tiling_mode;
547 bo->swizzle_mode = get_tiling.swizzle_mode;
548 /* XXX stride is unknown */
549 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
550
551 out:
552 pthread_mutex_unlock(&bufmgr->lock);
553 return bo;
554
555 err_unref:
556 bo_free(bo);
557 pthread_mutex_unlock(&bufmgr->lock);
558 return NULL;
559 }
560
561 static void
562 bo_free(struct brw_bo *bo)
563 {
564 struct brw_bufmgr *bufmgr = bo->bufmgr;
565 struct drm_gem_close close;
566 struct hash_entry *entry;
567 int ret;
568
569 if (bo->map_cpu) {
570 VG_NOACCESS(bo->map_cpu, bo->size);
571 drm_munmap(bo->map_cpu, bo->size);
572 }
573 if (bo->map_wc) {
574 VG_NOACCESS(bo->map_wc, bo->size);
575 drm_munmap(bo->map_wc, bo->size);
576 }
577 if (bo->map_gtt) {
578 VG_NOACCESS(bo->map_gtt, bo->size);
579 drm_munmap(bo->map_gtt, bo->size);
580 }
581
582 if (bo->global_name) {
583 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
584 _mesa_hash_table_remove(bufmgr->name_table, entry);
585 }
586 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
587 _mesa_hash_table_remove(bufmgr->handle_table, entry);
588
589 /* Close this object */
590 memclear(close);
591 close.handle = bo->gem_handle;
592 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
593 if (ret != 0) {
594 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
595 bo->gem_handle, bo->name, strerror(errno));
596 }
597 free(bo);
598 }
599
600 /** Frees all cached buffers significantly older than @time. */
601 static void
602 cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time)
603 {
604 int i;
605
606 if (bufmgr->time == time)
607 return;
608
609 for (i = 0; i < bufmgr->num_buckets; i++) {
610 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
611
612 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
613 if (time - bo->free_time <= 1)
614 break;
615
616 list_del(&bo->head);
617
618 bo_free(bo);
619 }
620 }
621
622 bufmgr->time = time;
623 }
624
625 static void
626 bo_unreference_final(struct brw_bo *bo, time_t time)
627 {
628 struct brw_bufmgr *bufmgr = bo->bufmgr;
629 struct bo_cache_bucket *bucket;
630
631 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
632
633 bucket = bucket_for_size(bufmgr, bo->size);
634 /* Put the buffer into our internal cache for reuse if we can. */
635 if (bufmgr->bo_reuse && bo->reusable && bucket != NULL &&
636 brw_bo_madvise(bo, I915_MADV_DONTNEED)) {
637 bo->free_time = time;
638
639 bo->name = NULL;
640 bo->kflags = 0;
641
642 list_addtail(&bo->head, &bucket->head);
643 } else {
644 bo_free(bo);
645 }
646 }
647
648 void
649 brw_bo_unreference(struct brw_bo *bo)
650 {
651 if (bo == NULL)
652 return;
653
654 assert(p_atomic_read(&bo->refcount) > 0);
655
656 if (atomic_add_unless(&bo->refcount, -1, 1)) {
657 struct brw_bufmgr *bufmgr = bo->bufmgr;
658 struct timespec time;
659
660 clock_gettime(CLOCK_MONOTONIC, &time);
661
662 pthread_mutex_lock(&bufmgr->lock);
663
664 if (p_atomic_dec_zero(&bo->refcount)) {
665 bo_unreference_final(bo, time.tv_sec);
666 cleanup_bo_cache(bufmgr, time.tv_sec);
667 }
668
669 pthread_mutex_unlock(&bufmgr->lock);
670 }
671 }
672
673 static void
674 bo_wait_with_stall_warning(struct brw_context *brw,
675 struct brw_bo *bo,
676 const char *action)
677 {
678 double elapsed = unlikely(brw && brw->perf_debug) ? -get_time() : 0.0;
679
680 brw_bo_wait_rendering(bo);
681
682 if (unlikely(brw && brw->perf_debug)) {
683 elapsed += get_time();
684 if (elapsed > 1e-5) /* 0.01ms */
685 perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n",
686 action, bo->name, elapsed * 1000);
687 }
688 }
689
690 static void
691 print_flags(unsigned flags)
692 {
693 if (flags & MAP_READ)
694 DBG("READ ");
695 if (flags & MAP_WRITE)
696 DBG("WRITE ");
697 if (flags & MAP_ASYNC)
698 DBG("ASYNC ");
699 if (flags & MAP_PERSISTENT)
700 DBG("PERSISTENT ");
701 if (flags & MAP_COHERENT)
702 DBG("COHERENT ");
703 if (flags & MAP_RAW)
704 DBG("RAW ");
705 DBG("\n");
706 }
707
708 static void *
709 brw_bo_map_cpu(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
710 {
711 struct brw_bufmgr *bufmgr = bo->bufmgr;
712
713 /* We disallow CPU maps for writing to non-coherent buffers, as the
714 * CPU map can become invalidated when a batch is flushed out, which
715 * can happen at unpredictable times. You should use WC maps instead.
716 */
717 assert(bo->cache_coherent || !(flags & MAP_WRITE));
718
719 if (!bo->map_cpu) {
720 struct drm_i915_gem_mmap mmap_arg;
721 void *map;
722
723 DBG("brw_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
724
725 memclear(mmap_arg);
726 mmap_arg.handle = bo->gem_handle;
727 mmap_arg.size = bo->size;
728 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
729 if (ret != 0) {
730 ret = -errno;
731 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
732 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
733 return NULL;
734 }
735 map = (void *) (uintptr_t) mmap_arg.addr_ptr;
736 VG_DEFINED(map, bo->size);
737
738 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
739 VG_NOACCESS(map, bo->size);
740 drm_munmap(map, bo->size);
741 }
742 }
743 assert(bo->map_cpu);
744
745 DBG("brw_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
746 bo->map_cpu);
747 print_flags(flags);
748
749 if (!(flags & MAP_ASYNC)) {
750 bo_wait_with_stall_warning(brw, bo, "CPU mapping");
751 }
752
753 if (!bo->cache_coherent) {
754 /* If we're reusing an existing CPU mapping, the CPU caches may
755 * contain stale data from the last time we read from that mapping.
756 * (With the BO cache, it might even be data from a previous buffer!)
757 * Even if it's a brand new mapping, the kernel may have zeroed the
758 * buffer via CPU writes.
759 *
760 * We need to invalidate those cachelines so that we see the latest
761 * contents, and so long as we only read from the CPU mmap we do not
762 * need to write those cachelines back afterwards.
763 */
764 gen_invalidate_range(bo->map_cpu, bo->size);
765 }
766
767 return bo->map_cpu;
768 }
769
770 static void *
771 brw_bo_map_wc(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
772 {
773 struct brw_bufmgr *bufmgr = bo->bufmgr;
774
775 if (!bufmgr->has_mmap_wc)
776 return NULL;
777
778 if (!bo->map_wc) {
779 struct drm_i915_gem_mmap mmap_arg;
780 void *map;
781
782 DBG("brw_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
783
784 memclear(mmap_arg);
785 mmap_arg.handle = bo->gem_handle;
786 mmap_arg.size = bo->size;
787 mmap_arg.flags = I915_MMAP_WC;
788 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
789 if (ret != 0) {
790 ret = -errno;
791 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
792 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
793 return NULL;
794 }
795
796 map = (void *) (uintptr_t) mmap_arg.addr_ptr;
797 VG_DEFINED(map, bo->size);
798
799 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
800 VG_NOACCESS(map, bo->size);
801 drm_munmap(map, bo->size);
802 }
803 }
804 assert(bo->map_wc);
805
806 DBG("brw_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
807 print_flags(flags);
808
809 if (!(flags & MAP_ASYNC)) {
810 bo_wait_with_stall_warning(brw, bo, "WC mapping");
811 }
812
813 return bo->map_wc;
814 }
815
816 static void *
817 brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
818 {
819 struct brw_bufmgr *bufmgr = bo->bufmgr;
820
821 /* Get a mapping of the buffer if we haven't before. */
822 if (bo->map_gtt == NULL) {
823 struct drm_i915_gem_mmap_gtt mmap_arg;
824 void *map;
825
826 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
827
828 memclear(mmap_arg);
829 mmap_arg.handle = bo->gem_handle;
830
831 /* Get the fake offset back... */
832 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
833 if (ret != 0) {
834 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
835 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
836 return NULL;
837 }
838
839 /* and mmap it. */
840 map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
841 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
842 if (map == MAP_FAILED) {
843 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
844 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
845 return NULL;
846 }
847
848 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
849 * already intercept this mmap call. However, for consistency between
850 * all the mmap paths, we mark the pointer as defined now and mark it
851 * as inaccessible afterwards.
852 */
853 VG_DEFINED(map, bo->size);
854
855 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
856 VG_NOACCESS(map, bo->size);
857 drm_munmap(map, bo->size);
858 }
859 }
860 assert(bo->map_gtt);
861
862 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
863 print_flags(flags);
864
865 if (!(flags & MAP_ASYNC)) {
866 bo_wait_with_stall_warning(brw, bo, "GTT mapping");
867 }
868
869 return bo->map_gtt;
870 }
871
872 static bool
873 can_map_cpu(struct brw_bo *bo, unsigned flags)
874 {
875 if (bo->cache_coherent)
876 return true;
877
878 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
879 * across batch flushes where the kernel will change cache domains of the
880 * bo, invalidating continued access to the CPU mmap on non-LLC device.
881 *
882 * Similarly, ASYNC typically means that the buffer will be accessed via
883 * both the CPU and the GPU simultaneously. Batches may be executed that
884 * use the BO even while it is mapped. While OpenGL technically disallows
885 * most drawing while non-persistent mappings are active, we may still use
886 * the GPU for blits or other operations, causing batches to happen at
887 * inconvenient times.
888 */
889 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC))
890 return false;
891
892 return !(flags & MAP_WRITE);
893 }
894
895 void *
896 brw_bo_map(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
897 {
898 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
899 return brw_bo_map_gtt(brw, bo, flags);
900
901 void *map;
902
903 if (can_map_cpu(bo, flags))
904 map = brw_bo_map_cpu(brw, bo, flags);
905 else
906 map = brw_bo_map_wc(brw, bo, flags);
907
908 /* Allow the attempt to fail by falling back to the GTT where necessary.
909 *
910 * Not every buffer can be mmaped directly using the CPU (or WC), for
911 * example buffers that wrap stolen memory or are imported from other
912 * devices. For those, we have little choice but to use a GTT mmapping.
913 * However, if we use a slow GTT mmapping for reads where we expected fast
914 * access, that order of magnitude difference in throughput will be clearly
915 * expressed by angry users.
916 *
917 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
918 */
919 if (!map && !(flags & MAP_RAW)) {
920 perf_debug("Fallback GTT mapping for %s with access flags %x\n",
921 bo->name, flags);
922 map = brw_bo_map_gtt(brw, bo, flags);
923 }
924
925 return map;
926 }
927
928 int
929 brw_bo_subdata(struct brw_bo *bo, uint64_t offset,
930 uint64_t size, const void *data)
931 {
932 struct brw_bufmgr *bufmgr = bo->bufmgr;
933 struct drm_i915_gem_pwrite pwrite;
934 int ret;
935
936 memclear(pwrite);
937 pwrite.handle = bo->gem_handle;
938 pwrite.offset = offset;
939 pwrite.size = size;
940 pwrite.data_ptr = (uint64_t) (uintptr_t) data;
941 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite);
942 if (ret != 0) {
943 ret = -errno;
944 DBG("%s:%d: Error writing data to buffer %d: "
945 "(%"PRIu64" %"PRIu64") %s .\n",
946 __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
947 }
948
949 return ret;
950 }
951
952 /** Waits for all GPU rendering with the object to have completed. */
953 void
954 brw_bo_wait_rendering(struct brw_bo *bo)
955 {
956 /* We require a kernel recent enough for WAIT_IOCTL support.
957 * See intel_init_bufmgr()
958 */
959 brw_bo_wait(bo, -1);
960 }
961
962 /**
963 * Waits on a BO for the given amount of time.
964 *
965 * @bo: buffer object to wait for
966 * @timeout_ns: amount of time to wait in nanoseconds.
967 * If value is less than 0, an infinite wait will occur.
968 *
969 * Returns 0 if the wait was successful ie. the last batch referencing the
970 * object has completed within the allotted time. Otherwise some negative return
971 * value describes the error. Of particular interest is -ETIME when the wait has
972 * failed to yield the desired result.
973 *
974 * Similar to brw_bo_wait_rendering except a timeout parameter allows
975 * the operation to give up after a certain amount of time. Another subtle
976 * difference is the internal locking semantics are different (this variant does
977 * not hold the lock for the duration of the wait). This makes the wait subject
978 * to a larger userspace race window.
979 *
980 * The implementation shall wait until the object is no longer actively
981 * referenced within a batch buffer at the time of the call. The wait will
982 * not guarantee that the buffer is re-issued via another thread, or an flinked
983 * handle. Userspace must make sure this race does not occur if such precision
984 * is important.
985 *
986 * Note that some kernels have broken the inifite wait for negative values
987 * promise, upgrade to latest stable kernels if this is the case.
988 */
989 int
990 brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns)
991 {
992 struct brw_bufmgr *bufmgr = bo->bufmgr;
993 struct drm_i915_gem_wait wait;
994 int ret;
995
996 /* If we know it's idle, don't bother with the kernel round trip */
997 if (bo->idle && !bo->external)
998 return 0;
999
1000 memclear(wait);
1001 wait.bo_handle = bo->gem_handle;
1002 wait.timeout_ns = timeout_ns;
1003 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1004 if (ret == -1)
1005 return -errno;
1006
1007 return ret;
1008 }
1009
1010 void
1011 brw_bufmgr_destroy(struct brw_bufmgr *bufmgr)
1012 {
1013 pthread_mutex_destroy(&bufmgr->lock);
1014
1015 /* Free any cached buffer objects we were going to reuse */
1016 for (int i = 0; i < bufmgr->num_buckets; i++) {
1017 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1018
1019 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
1020 list_del(&bo->head);
1021
1022 bo_free(bo);
1023 }
1024 }
1025
1026 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1027 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1028
1029 free(bufmgr);
1030 }
1031
1032 static int
1033 bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
1034 uint32_t stride)
1035 {
1036 struct brw_bufmgr *bufmgr = bo->bufmgr;
1037 struct drm_i915_gem_set_tiling set_tiling;
1038 int ret;
1039
1040 if (bo->global_name == 0 &&
1041 tiling_mode == bo->tiling_mode && stride == bo->stride)
1042 return 0;
1043
1044 memset(&set_tiling, 0, sizeof(set_tiling));
1045 do {
1046 /* set_tiling is slightly broken and overwrites the
1047 * input on the error path, so we have to open code
1048 * rmIoctl.
1049 */
1050 set_tiling.handle = bo->gem_handle;
1051 set_tiling.tiling_mode = tiling_mode;
1052 set_tiling.stride = stride;
1053
1054 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1055 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1056 if (ret == -1)
1057 return -errno;
1058
1059 bo->tiling_mode = set_tiling.tiling_mode;
1060 bo->swizzle_mode = set_tiling.swizzle_mode;
1061 bo->stride = set_tiling.stride;
1062 return 0;
1063 }
1064
1065 int
1066 brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode,
1067 uint32_t *swizzle_mode)
1068 {
1069 *tiling_mode = bo->tiling_mode;
1070 *swizzle_mode = bo->swizzle_mode;
1071 return 0;
1072 }
1073
1074 struct brw_bo *
1075 brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd)
1076 {
1077 int ret;
1078 uint32_t handle;
1079 struct brw_bo *bo;
1080 struct drm_i915_gem_get_tiling get_tiling;
1081
1082 pthread_mutex_lock(&bufmgr->lock);
1083 ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1084 if (ret) {
1085 DBG("create_from_prime: failed to obtain handle from fd: %s\n",
1086 strerror(errno));
1087 pthread_mutex_unlock(&bufmgr->lock);
1088 return NULL;
1089 }
1090
1091 /*
1092 * See if the kernel has already returned this buffer to us. Just as
1093 * for named buffers, we must not create two bo's pointing at the same
1094 * kernel object
1095 */
1096 bo = hash_find_bo(bufmgr->handle_table, handle);
1097 if (bo) {
1098 brw_bo_reference(bo);
1099 goto out;
1100 }
1101
1102 bo = calloc(1, sizeof(*bo));
1103 if (!bo)
1104 goto out;
1105
1106 p_atomic_set(&bo->refcount, 1);
1107
1108 /* Determine size of bo. The fd-to-handle ioctl really should
1109 * return the size, but it doesn't. If we have kernel 3.12 or
1110 * later, we can lseek on the prime fd to get the size. Older
1111 * kernels will just fail, in which case we fall back to the
1112 * provided (estimated or guess size). */
1113 ret = lseek(prime_fd, 0, SEEK_END);
1114 if (ret != -1)
1115 bo->size = ret;
1116
1117 bo->bufmgr = bufmgr;
1118
1119 bo->gem_handle = handle;
1120 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1121
1122 bo->name = "prime";
1123 bo->reusable = false;
1124 bo->external = true;
1125
1126 memclear(get_tiling);
1127 get_tiling.handle = bo->gem_handle;
1128 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1129 goto err;
1130
1131 bo->tiling_mode = get_tiling.tiling_mode;
1132 bo->swizzle_mode = get_tiling.swizzle_mode;
1133 /* XXX stride is unknown */
1134
1135 out:
1136 pthread_mutex_unlock(&bufmgr->lock);
1137 return bo;
1138
1139 err:
1140 bo_free(bo);
1141 pthread_mutex_unlock(&bufmgr->lock);
1142 return NULL;
1143 }
1144
1145 int
1146 brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd)
1147 {
1148 struct brw_bufmgr *bufmgr = bo->bufmgr;
1149
1150 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1151 DRM_CLOEXEC, prime_fd) != 0)
1152 return -errno;
1153
1154 bo->reusable = false;
1155 bo->external = true;
1156
1157 return 0;
1158 }
1159
1160 int
1161 brw_bo_flink(struct brw_bo *bo, uint32_t *name)
1162 {
1163 struct brw_bufmgr *bufmgr = bo->bufmgr;
1164
1165 if (!bo->global_name) {
1166 struct drm_gem_flink flink;
1167
1168 memclear(flink);
1169 flink.handle = bo->gem_handle;
1170 if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1171 return -errno;
1172
1173 pthread_mutex_lock(&bufmgr->lock);
1174 if (!bo->global_name) {
1175 bo->global_name = flink.name;
1176 bo->reusable = false;
1177 bo->external = true;
1178
1179 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1180 }
1181 pthread_mutex_unlock(&bufmgr->lock);
1182 }
1183
1184 *name = bo->global_name;
1185 return 0;
1186 }
1187
1188 /**
1189 * Enables unlimited caching of buffer objects for reuse.
1190 *
1191 * This is potentially very memory expensive, as the cache at each bucket
1192 * size is only bounded by how many buffers of that size we've managed to have
1193 * in flight at once.
1194 */
1195 void
1196 brw_bufmgr_enable_reuse(struct brw_bufmgr *bufmgr)
1197 {
1198 bufmgr->bo_reuse = true;
1199 }
1200
1201 static void
1202 add_bucket(struct brw_bufmgr *bufmgr, int size)
1203 {
1204 unsigned int i = bufmgr->num_buckets;
1205
1206 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1207
1208 list_inithead(&bufmgr->cache_bucket[i].head);
1209 bufmgr->cache_bucket[i].size = size;
1210 bufmgr->num_buckets++;
1211 }
1212
1213 static void
1214 init_cache_buckets(struct brw_bufmgr *bufmgr)
1215 {
1216 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1217
1218 /* OK, so power of two buckets was too wasteful of memory.
1219 * Give 3 other sizes between each power of two, to hopefully
1220 * cover things accurately enough. (The alternative is
1221 * probably to just go for exact matching of sizes, and assume
1222 * that for things like composited window resize the tiled
1223 * width/height alignment and rounding of sizes to pages will
1224 * get us useful cache hit rates anyway)
1225 */
1226 add_bucket(bufmgr, 4096);
1227 add_bucket(bufmgr, 4096 * 2);
1228 add_bucket(bufmgr, 4096 * 3);
1229
1230 /* Initialize the linked lists for BO reuse cache. */
1231 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
1232 add_bucket(bufmgr, size);
1233
1234 add_bucket(bufmgr, size + size * 1 / 4);
1235 add_bucket(bufmgr, size + size * 2 / 4);
1236 add_bucket(bufmgr, size + size * 3 / 4);
1237 }
1238 }
1239
1240 uint32_t
1241 brw_create_hw_context(struct brw_bufmgr *bufmgr)
1242 {
1243 struct drm_i915_gem_context_create create;
1244 int ret;
1245
1246 memclear(create);
1247 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1248 if (ret != 0) {
1249 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1250 return 0;
1251 }
1252
1253 return create.ctx_id;
1254 }
1255
1256 void
1257 brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id)
1258 {
1259 struct drm_i915_gem_context_destroy d = {.ctx_id = ctx_id };
1260
1261 if (ctx_id != 0 &&
1262 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1263 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1264 strerror(errno));
1265 }
1266 }
1267
1268 int
1269 brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1270 {
1271 struct drm_i915_reg_read reg_read;
1272 int ret;
1273
1274 memclear(reg_read);
1275 reg_read.offset = offset;
1276
1277 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1278
1279 *result = reg_read.val;
1280 return ret;
1281 }
1282
1283 static int
1284 gem_param(int fd, int name)
1285 {
1286 drm_i915_getparam_t gp;
1287 int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
1288
1289 memset(&gp, 0, sizeof(gp));
1290 gp.param = name;
1291 gp.value = &v;
1292 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
1293 return -1;
1294
1295 return v;
1296 }
1297
1298 /**
1299 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1300 * and manage map buffer objections.
1301 *
1302 * \param fd File descriptor of the opened DRM device.
1303 */
1304 struct brw_bufmgr *
1305 brw_bufmgr_init(struct gen_device_info *devinfo, int fd, int batch_size)
1306 {
1307 struct brw_bufmgr *bufmgr;
1308
1309 bufmgr = calloc(1, sizeof(*bufmgr));
1310 if (bufmgr == NULL)
1311 return NULL;
1312
1313 /* Handles to buffer objects belong to the device fd and are not
1314 * reference counted by the kernel. If the same fd is used by
1315 * multiple parties (threads sharing the same screen bufmgr, or
1316 * even worse the same device fd passed to multiple libraries)
1317 * ownership of those handles is shared by those independent parties.
1318 *
1319 * Don't do this! Ensure that each library/bufmgr has its own device
1320 * fd so that its namespace does not clash with another.
1321 */
1322 bufmgr->fd = fd;
1323
1324 if (pthread_mutex_init(&bufmgr->lock, NULL) != 0) {
1325 free(bufmgr);
1326 return NULL;
1327 }
1328
1329 bufmgr->has_llc = devinfo->has_llc;
1330 bufmgr->has_mmap_wc = gem_param(fd, I915_PARAM_MMAP_VERSION) > 0;
1331
1332 init_cache_buckets(bufmgr);
1333
1334 bufmgr->name_table =
1335 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1336 bufmgr->handle_table =
1337 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1338
1339 return bufmgr;
1340 }