53b32be510a0b6f1414e23690767090976d210e6
[mesa.git] / src / mesa / drivers / dri / i965 / brw_cfg.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29
30 /** @file brw_cfg.cpp
31 *
32 * Walks the shader instructions generated and creates a set of basic
33 * blocks with successor/predecessor edges connecting them.
34 */
35
36 static bblock_t *
37 pop_stack(exec_list *list)
38 {
39 bblock_link *link = (bblock_link *)list->get_tail();
40 bblock_t *block = link->block;
41 link->link.remove();
42
43 return block;
44 }
45
46 static exec_node *
47 link(void *mem_ctx, bblock_t *block)
48 {
49 bblock_link *l = new(mem_ctx) bblock_link(block);
50 return &l->link;
51 }
52
53 bblock_t::bblock_t(cfg_t *cfg) :
54 cfg(cfg), idom(NULL), start_ip(0), end_ip(0), num(0)
55 {
56 instructions.make_empty();
57 parents.make_empty();
58 children.make_empty();
59 }
60
61 void
62 bblock_t::add_successor(void *mem_ctx, bblock_t *successor)
63 {
64 successor->parents.push_tail(::link(mem_ctx, this));
65 children.push_tail(::link(mem_ctx, successor));
66 }
67
68 bool
69 bblock_t::is_predecessor_of(const bblock_t *block) const
70 {
71 foreach_list_typed_safe (bblock_link, parent, link, &block->parents) {
72 if (parent->block == this) {
73 return true;
74 }
75 }
76
77 return false;
78 }
79
80 bool
81 bblock_t::is_successor_of(const bblock_t *block) const
82 {
83 foreach_list_typed_safe (bblock_link, child, link, &block->children) {
84 if (child->block == this) {
85 return true;
86 }
87 }
88
89 return false;
90 }
91
92 static bool
93 ends_block(const backend_instruction *inst)
94 {
95 enum opcode op = inst->opcode;
96
97 return op == BRW_OPCODE_IF ||
98 op == BRW_OPCODE_ELSE ||
99 op == BRW_OPCODE_CONTINUE ||
100 op == BRW_OPCODE_BREAK ||
101 op == BRW_OPCODE_WHILE;
102 }
103
104 static bool
105 starts_block(const backend_instruction *inst)
106 {
107 enum opcode op = inst->opcode;
108
109 return op == BRW_OPCODE_DO ||
110 op == BRW_OPCODE_ENDIF;
111 }
112
113 bool
114 bblock_t::can_combine_with(const bblock_t *that) const
115 {
116 if ((const bblock_t *)this->link.next != that)
117 return false;
118
119 if (ends_block(this->end()) ||
120 starts_block(that->start()))
121 return false;
122
123 return true;
124 }
125
126 void
127 bblock_t::combine_with(bblock_t *that)
128 {
129 assert(this->can_combine_with(that));
130 foreach_list_typed (bblock_link, link, link, &this->children) {
131 assert(link->block == that);
132 }
133 foreach_list_typed (bblock_link, link, link, &that->parents) {
134 assert(link->block == this);
135 }
136
137 this->end_ip = that->end_ip;
138 this->instructions.append_list(&that->instructions);
139
140 this->cfg->remove_block(that);
141 }
142
143 void
144 bblock_t::dump(backend_shader *s) const
145 {
146 int ip = this->start_ip;
147 foreach_inst_in_block(backend_instruction, inst, this) {
148 fprintf(stderr, "%5d: ", ip);
149 s->dump_instruction(inst);
150 ip++;
151 }
152 }
153
154 cfg_t::cfg_t(exec_list *instructions)
155 {
156 mem_ctx = ralloc_context(NULL);
157 block_list.make_empty();
158 blocks = NULL;
159 num_blocks = 0;
160 idom_dirty = true;
161
162 bblock_t *cur = NULL;
163 int ip = 0;
164
165 bblock_t *entry = new_block();
166 bblock_t *cur_if = NULL; /**< BB ending with IF. */
167 bblock_t *cur_else = NULL; /**< BB ending with ELSE. */
168 bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */
169 bblock_t *cur_do = NULL; /**< BB starting with DO. */
170 bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */
171 exec_list if_stack, else_stack, do_stack, while_stack;
172 bblock_t *next;
173
174 set_next_block(&cur, entry, ip);
175
176 foreach_in_list_safe(backend_instruction, inst, instructions) {
177 /* set_next_block wants the post-incremented ip */
178 ip++;
179
180 inst->exec_node::remove();
181
182 switch (inst->opcode) {
183 case BRW_OPCODE_IF:
184 cur->instructions.push_tail(inst);
185
186 /* Push our information onto a stack so we can recover from
187 * nested ifs.
188 */
189 if_stack.push_tail(link(mem_ctx, cur_if));
190 else_stack.push_tail(link(mem_ctx, cur_else));
191
192 cur_if = cur;
193 cur_else = NULL;
194 cur_endif = NULL;
195
196 /* Set up our immediately following block, full of "then"
197 * instructions.
198 */
199 next = new_block();
200 cur_if->add_successor(mem_ctx, next);
201
202 set_next_block(&cur, next, ip);
203 break;
204
205 case BRW_OPCODE_ELSE:
206 cur->instructions.push_tail(inst);
207
208 cur_else = cur;
209
210 next = new_block();
211 assert(cur_if != NULL);
212 cur_if->add_successor(mem_ctx, next);
213
214 set_next_block(&cur, next, ip);
215 break;
216
217 case BRW_OPCODE_ENDIF: {
218 if (cur->instructions.is_empty()) {
219 /* New block was just created; use it. */
220 cur_endif = cur;
221 } else {
222 cur_endif = new_block();
223
224 cur->add_successor(mem_ctx, cur_endif);
225
226 set_next_block(&cur, cur_endif, ip - 1);
227 }
228
229 cur->instructions.push_tail(inst);
230
231 if (cur_else) {
232 cur_else->add_successor(mem_ctx, cur_endif);
233 } else {
234 assert(cur_if != NULL);
235 cur_if->add_successor(mem_ctx, cur_endif);
236 }
237
238 assert(cur_if->end()->opcode == BRW_OPCODE_IF);
239 assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE);
240
241 /* Pop the stack so we're in the previous if/else/endif */
242 cur_if = pop_stack(&if_stack);
243 cur_else = pop_stack(&else_stack);
244 break;
245 }
246 case BRW_OPCODE_DO:
247 /* Push our information onto a stack so we can recover from
248 * nested loops.
249 */
250 do_stack.push_tail(link(mem_ctx, cur_do));
251 while_stack.push_tail(link(mem_ctx, cur_while));
252
253 /* Set up the block just after the while. Don't know when exactly
254 * it will start, yet.
255 */
256 cur_while = new_block();
257
258 if (cur->instructions.is_empty()) {
259 /* New block was just created; use it. */
260 cur_do = cur;
261 } else {
262 cur_do = new_block();
263
264 cur->add_successor(mem_ctx, cur_do);
265
266 set_next_block(&cur, cur_do, ip - 1);
267 }
268
269 cur->instructions.push_tail(inst);
270 break;
271
272 case BRW_OPCODE_CONTINUE:
273 cur->instructions.push_tail(inst);
274
275 assert(cur_do != NULL);
276 cur->add_successor(mem_ctx, cur_do);
277
278 next = new_block();
279 if (inst->predicate)
280 cur->add_successor(mem_ctx, next);
281
282 set_next_block(&cur, next, ip);
283 break;
284
285 case BRW_OPCODE_BREAK:
286 cur->instructions.push_tail(inst);
287
288 assert(cur_while != NULL);
289 cur->add_successor(mem_ctx, cur_while);
290
291 next = new_block();
292 if (inst->predicate)
293 cur->add_successor(mem_ctx, next);
294
295 set_next_block(&cur, next, ip);
296 break;
297
298 case BRW_OPCODE_WHILE:
299 cur->instructions.push_tail(inst);
300
301 assert(cur_do != NULL && cur_while != NULL);
302 cur->add_successor(mem_ctx, cur_do);
303
304 if (inst->predicate)
305 cur->add_successor(mem_ctx, cur_while);
306
307 set_next_block(&cur, cur_while, ip);
308
309 /* Pop the stack so we're in the previous loop */
310 cur_do = pop_stack(&do_stack);
311 cur_while = pop_stack(&while_stack);
312 break;
313
314 default:
315 cur->instructions.push_tail(inst);
316 break;
317 }
318 }
319
320 cur->end_ip = ip - 1;
321
322 make_block_array();
323 }
324
325 cfg_t::~cfg_t()
326 {
327 ralloc_free(mem_ctx);
328 }
329
330 void
331 cfg_t::remove_block(bblock_t *block)
332 {
333 foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) {
334 /* Remove block from all of its predecessors' successor lists. */
335 foreach_list_typed_safe (bblock_link, successor, link,
336 &predecessor->block->children) {
337 if (block == successor->block) {
338 successor->link.remove();
339 ralloc_free(successor);
340 }
341 }
342
343 /* Add removed-block's successors to its predecessors' successor lists. */
344 foreach_list_typed (bblock_link, successor, link, &block->children) {
345 if (!successor->block->is_successor_of(predecessor->block)) {
346 predecessor->block->children.push_tail(link(mem_ctx,
347 successor->block));
348 }
349 }
350 }
351
352 foreach_list_typed_safe (bblock_link, successor, link, &block->children) {
353 /* Remove block from all of its childrens' parents lists. */
354 foreach_list_typed_safe (bblock_link, predecessor, link,
355 &successor->block->parents) {
356 if (block == predecessor->block) {
357 predecessor->link.remove();
358 ralloc_free(predecessor);
359 }
360 }
361
362 /* Add removed-block's predecessors to its successors' predecessor lists. */
363 foreach_list_typed (bblock_link, predecessor, link, &block->parents) {
364 if (!predecessor->block->is_predecessor_of(successor->block)) {
365 successor->block->parents.push_tail(link(mem_ctx,
366 predecessor->block));
367 }
368 }
369 }
370
371 block->link.remove();
372
373 for (int b = block->num; b < this->num_blocks - 1; b++) {
374 this->blocks[b] = this->blocks[b + 1];
375 this->blocks[b]->num = b;
376 }
377
378 this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2;
379 this->num_blocks--;
380 idom_dirty = true;
381 }
382
383 bblock_t *
384 cfg_t::new_block()
385 {
386 bblock_t *block = new(mem_ctx) bblock_t(this);
387
388 return block;
389 }
390
391 void
392 cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip)
393 {
394 if (*cur) {
395 (*cur)->end_ip = ip - 1;
396 }
397
398 block->start_ip = ip;
399 block->num = num_blocks++;
400 block_list.push_tail(&block->link);
401 *cur = block;
402 }
403
404 void
405 cfg_t::make_block_array()
406 {
407 blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks);
408
409 int i = 0;
410 foreach_block (block, this) {
411 blocks[i++] = block;
412 }
413 assert(i == num_blocks);
414 }
415
416 void
417 cfg_t::dump(backend_shader *s)
418 {
419 if (idom_dirty)
420 calculate_idom();
421
422 foreach_block (block, this) {
423 if (block->idom)
424 fprintf(stderr, "START B%d IDOM(B%d)", block->num, block->idom->num);
425 else
426 fprintf(stderr, "START B%d IDOM(none)", block->num);
427
428 foreach_list_typed(bblock_link, link, link, &block->parents) {
429 fprintf(stderr, " <-B%d",
430 link->block->num);
431 }
432 fprintf(stderr, "\n");
433 if (s != NULL)
434 block->dump(s);
435 fprintf(stderr, "END B%d", block->num);
436 foreach_list_typed(bblock_link, link, link, &block->children) {
437 fprintf(stderr, " ->B%d",
438 link->block->num);
439 }
440 fprintf(stderr, "\n");
441 }
442 }
443
444 /* Calculates the immediate dominator of each block, according to "A Simple,
445 * Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken
446 * Kennedy.
447 *
448 * The authors claim that for control flow graphs of sizes normally encountered
449 * (less than 1000 nodes) that this algorithm is significantly faster than
450 * others like Lengauer-Tarjan.
451 */
452 void
453 cfg_t::calculate_idom()
454 {
455 foreach_block(block, this) {
456 block->idom = NULL;
457 }
458 blocks[0]->idom = blocks[0];
459
460 bool changed;
461 do {
462 changed = false;
463
464 foreach_block(block, this) {
465 if (block->num == 0)
466 continue;
467
468 bblock_t *new_idom = NULL;
469 foreach_list_typed(bblock_link, parent, link, &block->parents) {
470 if (parent->block->idom) {
471 if (new_idom == NULL) {
472 new_idom = parent->block;
473 } else if (parent->block->idom != NULL) {
474 new_idom = intersect(parent->block, new_idom);
475 }
476 }
477 }
478
479 if (block->idom != new_idom) {
480 block->idom = new_idom;
481 changed = true;
482 }
483 }
484 } while (changed);
485
486 idom_dirty = false;
487 }
488
489 bblock_t *
490 cfg_t::intersect(bblock_t *b1, bblock_t *b2)
491 {
492 /* Note, the comparisons here are the opposite of what the paper says
493 * because we index blocks from beginning -> end (i.e. reverse post-order)
494 * instead of post-order like they assume.
495 */
496 while (b1->num != b2->num) {
497 while (b1->num > b2->num)
498 b1 = b1->idom;
499 while (b2->num > b1->num)
500 b2 = b2->idom;
501 }
502 assert(b1);
503 return b1;
504 }
505
506 void
507 cfg_t::dump_cfg()
508 {
509 printf("digraph CFG {\n");
510 for (int b = 0; b < num_blocks; b++) {
511 bblock_t *block = this->blocks[b];
512
513 foreach_list_typed_safe (bblock_link, child, link, &block->children) {
514 printf("\t%d -> %d\n", b, child->block->num);
515 }
516 }
517 printf("}\n");
518 }
519
520 void
521 cfg_t::dump_domtree()
522 {
523 printf("digraph DominanceTree {\n");
524 foreach_block(block, this) {
525 if (block->idom) {
526 printf("\t%d -> %d\n", block->idom->num, block->num);
527 }
528 }
529 printf("}\n");
530 }