i965/vue_map: Stop using GLbitfield types
[mesa.git] / src / mesa / drivers / dri / i965 / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdio.h>
27 #include "common/gen_device_info.h"
28 #include "main/mtypes.h"
29 #include "main/macros.h"
30
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34
35 struct ra_regs;
36 struct nir_shader;
37 struct brw_program;
38 union gl_constant_value;
39
40 struct brw_compiler {
41 const struct gen_device_info *devinfo;
42
43 struct {
44 struct ra_regs *regs;
45
46 /**
47 * Array of the ra classes for the unaligned contiguous register
48 * block sizes used.
49 */
50 int *classes;
51
52 /**
53 * Mapping for register-allocated objects in *regs to the first
54 * GRF for that object.
55 */
56 uint8_t *ra_reg_to_grf;
57 } vec4_reg_set;
58
59 struct {
60 struct ra_regs *regs;
61
62 /**
63 * Array of the ra classes for the unaligned contiguous register
64 * block sizes used, indexed by register size.
65 */
66 int classes[16];
67
68 /**
69 * Mapping from classes to ra_reg ranges. Each of the per-size
70 * classes corresponds to a range of ra_reg nodes. This array stores
71 * those ranges in the form of first ra_reg in each class and the
72 * total number of ra_reg elements in the last array element. This
73 * way the range of the i'th class is given by:
74 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
75 */
76 int class_to_ra_reg_range[17];
77
78 /**
79 * Mapping for register-allocated objects in *regs to the first
80 * GRF for that object.
81 */
82 uint8_t *ra_reg_to_grf;
83
84 /**
85 * ra class for the aligned pairs we use for PLN, which doesn't
86 * appear in *classes.
87 */
88 int aligned_pairs_class;
89 } fs_reg_sets[3];
90
91 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
92 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93
94 bool scalar_stage[MESA_SHADER_STAGES];
95 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
96
97 /**
98 * Apply workarounds for SIN and COS output range problems.
99 * This can negatively impact performance.
100 */
101 bool precise_trig;
102 };
103
104
105 /**
106 * Program key structures.
107 *
108 * When drawing, we look for the currently bound shaders in the program
109 * cache. This is essentially a hash table lookup, and these are the keys.
110 *
111 * Sometimes OpenGL features specified as state need to be simulated via
112 * shader code, due to a mismatch between the API and the hardware. This
113 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
114 * in the program key so it's considered when searching for a program. If
115 * we haven't seen a particular combination before, we have to recompile a
116 * new specialized version.
117 *
118 * Shader compilation should not look up state in gl_context directly, but
119 * instead use the copy in the program key. This guarantees recompiles will
120 * happen correctly.
121 *
122 * @{
123 */
124
125 enum PACKED gen6_gather_sampler_wa {
126 WA_SIGN = 1, /* whether we need to sign extend */
127 WA_8BIT = 2, /* if we have an 8bit format needing wa */
128 WA_16BIT = 4, /* if we have a 16bit format needing wa */
129 };
130
131 /**
132 * Sampler information needed by VS, WM, and GS program cache keys.
133 */
134 struct brw_sampler_prog_key_data {
135 /**
136 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
137 */
138 uint16_t swizzles[MAX_SAMPLERS];
139
140 uint32_t gl_clamp_mask[3];
141
142 /**
143 * For RG32F, gather4's channel select is broken.
144 */
145 uint32_t gather_channel_quirk_mask;
146
147 /**
148 * Whether this sampler uses the compressed multisample surface layout.
149 */
150 uint32_t compressed_multisample_layout_mask;
151
152 /**
153 * Whether this sampler is using 16x multisampling. If so fetching from
154 * this sampler will be handled with a different instruction, ld2dms_w
155 * instead of ld2dms.
156 */
157 uint32_t msaa_16;
158
159 /**
160 * For Sandybridge, which shader w/a we need for gather quirks.
161 */
162 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
163
164 /**
165 * Texture units that have a YUV image bound.
166 */
167 uint32_t y_u_v_image_mask;
168 uint32_t y_uv_image_mask;
169 uint32_t yx_xuxv_image_mask;
170 };
171
172
173 /** The program key for Vertex Shaders. */
174 struct brw_vs_prog_key {
175 unsigned program_string_id;
176
177 /*
178 * Per-attribute workaround flags
179 */
180 uint8_t gl_attrib_wa_flags[VERT_ATTRIB_MAX];
181
182 bool copy_edgeflag:1;
183
184 bool clamp_vertex_color:1;
185
186 /**
187 * How many user clipping planes are being uploaded to the vertex shader as
188 * push constants.
189 *
190 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
191 * clip distances.
192 */
193 unsigned nr_userclip_plane_consts:4;
194
195 /**
196 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
197 * are going to be replaced with point coordinates (as a consequence of a
198 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
199 * our SF thread requires exact matching between VS outputs and FS inputs,
200 * these texture coordinates will need to be unconditionally included in
201 * the VUE, even if they aren't written by the vertex shader.
202 */
203 uint8_t point_coord_replace;
204
205 struct brw_sampler_prog_key_data tex;
206 };
207
208 /** The program key for Tessellation Control Shaders. */
209 struct brw_tcs_prog_key
210 {
211 unsigned program_string_id;
212
213 GLenum tes_primitive_mode;
214
215 unsigned input_vertices;
216
217 /** A bitfield of per-patch outputs written. */
218 uint32_t patch_outputs_written;
219
220 /** A bitfield of per-vertex outputs written. */
221 uint64_t outputs_written;
222
223 bool quads_workaround;
224
225 struct brw_sampler_prog_key_data tex;
226 };
227
228 /** The program key for Tessellation Evaluation Shaders. */
229 struct brw_tes_prog_key
230 {
231 unsigned program_string_id;
232
233 /** A bitfield of per-patch inputs read. */
234 uint32_t patch_inputs_read;
235
236 /** A bitfield of per-vertex inputs read. */
237 uint64_t inputs_read;
238
239 struct brw_sampler_prog_key_data tex;
240 };
241
242 /** The program key for Geometry Shaders. */
243 struct brw_gs_prog_key
244 {
245 unsigned program_string_id;
246
247 struct brw_sampler_prog_key_data tex;
248 };
249
250 /* A big lookup table is used to figure out which and how many
251 * additional regs will inserted before the main payload in the WM
252 * program execution. These mainly relate to depth and stencil
253 * processing and the early-depth-test optimization.
254 */
255 enum brw_wm_iz_bits {
256 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
257 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
258 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
259 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
260 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
261 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
262 BRW_WM_IZ_BIT_MAX = 0x40
263 };
264
265 enum brw_wm_aa_enable {
266 BRW_WM_AA_NEVER,
267 BRW_WM_AA_SOMETIMES,
268 BRW_WM_AA_ALWAYS
269 };
270
271 /** The program key for Fragment/Pixel Shaders. */
272 struct brw_wm_prog_key {
273 /* Some collection of BRW_WM_IZ_* */
274 uint8_t iz_lookup;
275 bool stats_wm:1;
276 bool flat_shade:1;
277 unsigned nr_color_regions:5;
278 bool replicate_alpha:1;
279 bool clamp_fragment_color:1;
280 bool persample_interp:1;
281 bool multisample_fbo:1;
282 enum brw_wm_aa_enable line_aa:2;
283 bool high_quality_derivatives:1;
284 bool force_dual_color_blend:1;
285 bool coherent_fb_fetch:1;
286
287 uint16_t drawable_height;
288 uint64_t input_slots_valid;
289 unsigned program_string_id;
290 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
291 float alpha_test_ref;
292
293 struct brw_sampler_prog_key_data tex;
294 };
295
296 struct brw_cs_prog_key {
297 uint32_t program_string_id;
298 struct brw_sampler_prog_key_data tex;
299 };
300
301 /*
302 * Image metadata structure as laid out in the shader parameter
303 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
304 * able to use them. That's okay because the padding and any unused
305 * entries [most of them except when we're doing untyped surface
306 * access] will be removed by the uniform packing pass.
307 */
308 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
309 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
310 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
311 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
312 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
313 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
314 #define BRW_IMAGE_PARAM_SIZE 24
315
316 struct brw_image_param {
317 /** Surface binding table index. */
318 uint32_t surface_idx;
319
320 /** Offset applied to the X and Y surface coordinates. */
321 uint32_t offset[2];
322
323 /** Surface X, Y and Z dimensions. */
324 uint32_t size[3];
325
326 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
327 * pixels, vertical slice stride in pixels.
328 */
329 uint32_t stride[4];
330
331 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
332 uint32_t tiling[3];
333
334 /**
335 * Right shift to apply for bit 6 address swizzling. Two different
336 * swizzles can be specified and will be applied one after the other. The
337 * resulting address will be:
338 *
339 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
340 * (addr >> swizzling[1])))
341 *
342 * Use \c 0xff if any of the swizzles is not required.
343 */
344 uint32_t swizzling[2];
345 };
346
347 struct brw_stage_prog_data {
348 struct {
349 /** size of our binding table. */
350 uint32_t size_bytes;
351
352 /** @{
353 * surface indices for the various groups of surfaces
354 */
355 uint32_t pull_constants_start;
356 uint32_t texture_start;
357 uint32_t gather_texture_start;
358 uint32_t ubo_start;
359 uint32_t ssbo_start;
360 uint32_t abo_start;
361 uint32_t image_start;
362 uint32_t shader_time_start;
363 uint32_t plane_start[3];
364 /** @} */
365 } binding_table;
366
367 GLuint nr_params; /**< number of float params/constants */
368 GLuint nr_pull_params;
369 unsigned nr_image_params;
370
371 unsigned curb_read_length;
372 unsigned total_scratch;
373 unsigned total_shared;
374
375 /**
376 * Register where the thread expects to find input data from the URB
377 * (typically uniforms, followed by vertex or fragment attributes).
378 */
379 unsigned dispatch_grf_start_reg;
380
381 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
382
383 /* Pointers to tracked values (only valid once
384 * _mesa_load_state_parameters has been called at runtime).
385 */
386 const union gl_constant_value **param;
387 const union gl_constant_value **pull_param;
388
389 /** Image metadata passed to the shader as uniforms. */
390 struct brw_image_param *image_param;
391 };
392
393 /* Data about a particular attempt to compile a program. Note that
394 * there can be many of these, each in a different GL state
395 * corresponding to a different brw_wm_prog_key struct, with different
396 * compiled programs.
397 */
398 struct brw_wm_prog_data {
399 struct brw_stage_prog_data base;
400
401 GLuint num_varying_inputs;
402
403 uint8_t reg_blocks_0;
404 uint8_t reg_blocks_2;
405
406 uint8_t dispatch_grf_start_reg_2;
407 uint32_t prog_offset_2;
408
409 struct {
410 /** @{
411 * surface indices the WM-specific surfaces
412 */
413 uint32_t render_target_start;
414 uint32_t render_target_read_start;
415 /** @} */
416 } binding_table;
417
418 uint8_t computed_depth_mode;
419 bool computed_stencil;
420
421 bool early_fragment_tests;
422 bool post_depth_coverage;
423 bool inner_coverage;
424 bool dispatch_8;
425 bool dispatch_16;
426 bool dual_src_blend;
427 bool persample_dispatch;
428 bool uses_pos_offset;
429 bool uses_omask;
430 bool uses_kill;
431 bool uses_src_depth;
432 bool uses_src_w;
433 bool uses_sample_mask;
434 bool has_side_effects;
435 bool pulls_bary;
436
437 bool contains_flat_varying;
438 bool contains_noperspective_varying;
439
440 /**
441 * Mask of which interpolation modes are required by the fragment shader.
442 * Used in hardware setup on gen6+.
443 */
444 uint32_t barycentric_interp_modes;
445
446 /**
447 * Mask of which FS inputs are marked flat by the shader source. This is
448 * needed for setting up 3DSTATE_SF/SBE.
449 */
450 uint32_t flat_inputs;
451
452 /* Mapping of VUE slots to interpolation modes.
453 * Used by the Gen4-5 clip/sf/wm stages.
454 */
455 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
456
457 /**
458 * Map from gl_varying_slot to the position within the FS setup data
459 * payload where the varying's attribute vertex deltas should be delivered.
460 * For varying slots that are not used by the FS, the value is -1.
461 */
462 int urb_setup[VARYING_SLOT_MAX];
463 };
464
465 struct brw_push_const_block {
466 unsigned dwords; /* Dword count, not reg aligned */
467 unsigned regs;
468 unsigned size; /* Bytes, register aligned */
469 };
470
471 struct brw_cs_prog_data {
472 struct brw_stage_prog_data base;
473
474 GLuint dispatch_grf_start_reg_16;
475 unsigned local_size[3];
476 unsigned simd_size;
477 unsigned threads;
478 bool uses_barrier;
479 bool uses_num_work_groups;
480 int thread_local_id_index;
481
482 struct {
483 struct brw_push_const_block cross_thread;
484 struct brw_push_const_block per_thread;
485 struct brw_push_const_block total;
486 } push;
487
488 struct {
489 /** @{
490 * surface indices the CS-specific surfaces
491 */
492 uint32_t work_groups_start;
493 /** @} */
494 } binding_table;
495 };
496
497 /**
498 * Enum representing the i965-specific vertex results that don't correspond
499 * exactly to any element of gl_varying_slot. The values of this enum are
500 * assigned such that they don't conflict with gl_varying_slot.
501 */
502 typedef enum
503 {
504 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
505 BRW_VARYING_SLOT_PAD,
506 /**
507 * Technically this is not a varying but just a placeholder that
508 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
509 * builtin variable to be compiled correctly. see compile_sf_prog() for
510 * more info.
511 */
512 BRW_VARYING_SLOT_PNTC,
513 BRW_VARYING_SLOT_COUNT
514 } brw_varying_slot;
515
516 /**
517 * We always program SF to start reading at an offset of 1 (2 varying slots)
518 * from the start of the vertex URB entry. This causes it to skip:
519 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
520 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
521 */
522 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
523
524 /**
525 * Bitmask indicating which fragment shader inputs represent varyings (and
526 * hence have to be delivered to the fragment shader by the SF/SBE stage).
527 */
528 #define BRW_FS_VARYING_INPUT_MASK \
529 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
530 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
531
532 /**
533 * Data structure recording the relationship between the gl_varying_slot enum
534 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
535 * single octaword within the VUE (128 bits).
536 *
537 * Note that each BRW register contains 256 bits (2 octawords), so when
538 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
539 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
540 * in a vertex shader), each register corresponds to a single VUE slot, since
541 * it contains data for two separate vertices.
542 */
543 struct brw_vue_map {
544 /**
545 * Bitfield representing all varying slots that are (a) stored in this VUE
546 * map, and (b) actually written by the shader. Does not include any of
547 * the additional varying slots defined in brw_varying_slot.
548 */
549 uint64_t slots_valid;
550
551 /**
552 * Is this VUE map for a separate shader pipeline?
553 *
554 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
555 * without the linker having a chance to dead code eliminate unused varyings.
556 *
557 * This means that we have to use a fixed slot layout, based on the output's
558 * location field, rather than assigning slots in a compact contiguous block.
559 */
560 bool separate;
561
562 /**
563 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
564 * not stored in a slot (because they are not written, or because
565 * additional processing is applied before storing them in the VUE), the
566 * value is -1.
567 */
568 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
569
570 /**
571 * Map from VUE slot to gl_varying_slot value. For slots that do not
572 * directly correspond to a gl_varying_slot, the value comes from
573 * brw_varying_slot.
574 *
575 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
576 */
577 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
578
579 /**
580 * Total number of VUE slots in use
581 */
582 int num_slots;
583
584 /**
585 * Number of per-patch VUE slots. Only valid for tessellation control
586 * shader outputs and tessellation evaluation shader inputs.
587 */
588 int num_per_patch_slots;
589
590 /**
591 * Number of per-vertex VUE slots. Only valid for tessellation control
592 * shader outputs and tessellation evaluation shader inputs.
593 */
594 int num_per_vertex_slots;
595 };
596
597 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
598
599 /**
600 * Convert a VUE slot number into a byte offset within the VUE.
601 */
602 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
603 {
604 return 16*slot;
605 }
606
607 /**
608 * Convert a vertex output (brw_varying_slot) into a byte offset within the
609 * VUE.
610 */
611 static inline
612 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
613 {
614 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
615 }
616
617 void brw_compute_vue_map(const struct gen_device_info *devinfo,
618 struct brw_vue_map *vue_map,
619 uint64_t slots_valid,
620 bool separate_shader);
621
622 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
623 uint64_t slots_valid,
624 uint32_t is_patch);
625
626 /* brw_interpolation_map.c */
627 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
628 struct nir_shader *nir,
629 struct brw_wm_prog_data *prog_data,
630 const struct gen_device_info *devinfo);
631
632 enum shader_dispatch_mode {
633 DISPATCH_MODE_4X1_SINGLE = 0,
634 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
635 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
636 DISPATCH_MODE_SIMD8 = 3,
637 };
638
639 /**
640 * @defgroup Tessellator parameter enumerations.
641 *
642 * These correspond to the hardware values in 3DSTATE_TE, and are provided
643 * as part of the tessellation evaluation shader.
644 *
645 * @{
646 */
647 enum brw_tess_partitioning {
648 BRW_TESS_PARTITIONING_INTEGER = 0,
649 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
650 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
651 };
652
653 enum brw_tess_output_topology {
654 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
655 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
656 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
657 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
658 };
659
660 enum brw_tess_domain {
661 BRW_TESS_DOMAIN_QUAD = 0,
662 BRW_TESS_DOMAIN_TRI = 1,
663 BRW_TESS_DOMAIN_ISOLINE = 2,
664 };
665 /** @} */
666
667 struct brw_vue_prog_data {
668 struct brw_stage_prog_data base;
669 struct brw_vue_map vue_map;
670
671 /** Should the hardware deliver input VUE handles for URB pull loads? */
672 bool include_vue_handles;
673
674 GLuint urb_read_length;
675 GLuint total_grf;
676
677 uint32_t clip_distance_mask;
678 uint32_t cull_distance_mask;
679
680 /* Used for calculating urb partitions. In the VS, this is the size of the
681 * URB entry used for both input and output to the thread. In the GS, this
682 * is the size of the URB entry used for output.
683 */
684 GLuint urb_entry_size;
685
686 enum shader_dispatch_mode dispatch_mode;
687 };
688
689 struct brw_vs_prog_data {
690 struct brw_vue_prog_data base;
691
692 GLbitfield64 inputs_read;
693 GLbitfield64 double_inputs_read;
694
695 unsigned nr_attributes;
696 unsigned nr_attribute_slots;
697
698 bool uses_vertexid;
699 bool uses_instanceid;
700 bool uses_basevertex;
701 bool uses_baseinstance;
702 bool uses_drawid;
703 };
704
705 struct brw_tcs_prog_data
706 {
707 struct brw_vue_prog_data base;
708
709 /** Number vertices in output patch */
710 int instances;
711 };
712
713
714 struct brw_tes_prog_data
715 {
716 struct brw_vue_prog_data base;
717
718 enum brw_tess_partitioning partitioning;
719 enum brw_tess_output_topology output_topology;
720 enum brw_tess_domain domain;
721 };
722
723 struct brw_gs_prog_data
724 {
725 struct brw_vue_prog_data base;
726
727 unsigned vertices_in;
728
729 /**
730 * Size of an output vertex, measured in HWORDS (32 bytes).
731 */
732 unsigned output_vertex_size_hwords;
733
734 unsigned output_topology;
735
736 /**
737 * Size of the control data (cut bits or StreamID bits), in hwords (32
738 * bytes). 0 if there is no control data.
739 */
740 unsigned control_data_header_size_hwords;
741
742 /**
743 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
744 * if the control data is StreamID bits, or
745 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
746 * Ignored if control_data_header_size is 0.
747 */
748 unsigned control_data_format;
749
750 bool include_primitive_id;
751
752 /**
753 * The number of vertices emitted, if constant - otherwise -1.
754 */
755 int static_vertex_count;
756
757 int invocations;
758
759 /**
760 * Gen6: Provoking vertex convention for odd-numbered triangles
761 * in tristrips.
762 */
763 GLuint pv_first:1;
764
765 /**
766 * Gen6: Number of varyings that are output to transform feedback.
767 */
768 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
769
770 /**
771 * Gen6: Map from the index of a transform feedback binding table entry to the
772 * gl_varying_slot that should be streamed out through that binding table
773 * entry.
774 */
775 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
776
777 /**
778 * Gen6: Map from the index of a transform feedback binding table entry to the
779 * swizzles that should be used when streaming out data through that
780 * binding table entry.
781 */
782 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
783 };
784
785 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
786 static inline struct brw_##stage##_prog_data * \
787 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
788 { \
789 return (struct brw_##stage##_prog_data *) prog_data; \
790 }
791 DEFINE_PROG_DATA_DOWNCAST(vue)
792 DEFINE_PROG_DATA_DOWNCAST(vs)
793 DEFINE_PROG_DATA_DOWNCAST(tcs)
794 DEFINE_PROG_DATA_DOWNCAST(tes)
795 DEFINE_PROG_DATA_DOWNCAST(gs)
796 DEFINE_PROG_DATA_DOWNCAST(wm)
797 DEFINE_PROG_DATA_DOWNCAST(cs)
798 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
799 DEFINE_PROG_DATA_DOWNCAST(clip)
800 DEFINE_PROG_DATA_DOWNCAST(sf)
801 #undef DEFINE_PROG_DATA_DOWNCAST
802
803 /** @} */
804
805 struct brw_compiler *
806 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
807
808 /**
809 * Compile a vertex shader.
810 *
811 * Returns the final assembly and the program's size.
812 */
813 const unsigned *
814 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
815 void *mem_ctx,
816 const struct brw_vs_prog_key *key,
817 struct brw_vs_prog_data *prog_data,
818 const struct nir_shader *shader,
819 gl_clip_plane *clip_planes,
820 bool use_legacy_snorm_formula,
821 int shader_time_index,
822 unsigned *final_assembly_size,
823 char **error_str);
824
825 /**
826 * Compile a tessellation control shader.
827 *
828 * Returns the final assembly and the program's size.
829 */
830 const unsigned *
831 brw_compile_tcs(const struct brw_compiler *compiler,
832 void *log_data,
833 void *mem_ctx,
834 const struct brw_tcs_prog_key *key,
835 struct brw_tcs_prog_data *prog_data,
836 const struct nir_shader *nir,
837 int shader_time_index,
838 unsigned *final_assembly_size,
839 char **error_str);
840
841 /**
842 * Compile a tessellation evaluation shader.
843 *
844 * Returns the final assembly and the program's size.
845 */
846 const unsigned *
847 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
848 void *mem_ctx,
849 const struct brw_tes_prog_key *key,
850 const struct brw_vue_map *input_vue_map,
851 struct brw_tes_prog_data *prog_data,
852 const struct nir_shader *shader,
853 struct gl_program *prog,
854 int shader_time_index,
855 unsigned *final_assembly_size,
856 char **error_str);
857
858 /**
859 * Compile a vertex shader.
860 *
861 * Returns the final assembly and the program's size.
862 */
863 const unsigned *
864 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
865 void *mem_ctx,
866 const struct brw_gs_prog_key *key,
867 struct brw_gs_prog_data *prog_data,
868 const struct nir_shader *shader,
869 struct gl_program *prog,
870 int shader_time_index,
871 unsigned *final_assembly_size,
872 char **error_str);
873
874 /**
875 * Compile a fragment shader.
876 *
877 * Returns the final assembly and the program's size.
878 */
879 const unsigned *
880 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
881 void *mem_ctx,
882 const struct brw_wm_prog_key *key,
883 struct brw_wm_prog_data *prog_data,
884 const struct nir_shader *shader,
885 struct gl_program *prog,
886 int shader_time_index8,
887 int shader_time_index16,
888 bool allow_spilling,
889 bool use_rep_send, struct brw_vue_map *vue_map,
890 unsigned *final_assembly_size,
891 char **error_str);
892
893 /**
894 * Compile a compute shader.
895 *
896 * Returns the final assembly and the program's size.
897 */
898 const unsigned *
899 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
900 void *mem_ctx,
901 const struct brw_cs_prog_key *key,
902 struct brw_cs_prog_data *prog_data,
903 const struct nir_shader *shader,
904 int shader_time_index,
905 unsigned *final_assembly_size,
906 char **error_str);
907
908 static inline uint32_t
909 encode_slm_size(unsigned gen, uint32_t bytes)
910 {
911 uint32_t slm_size = 0;
912
913 /* Shared Local Memory is specified as powers of two, and encoded in
914 * INTERFACE_DESCRIPTOR_DATA with the following representations:
915 *
916 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
917 * -------------------------------------------------------------------
918 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
919 * -------------------------------------------------------------------
920 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
921 */
922 assert(bytes <= 64 * 1024);
923
924 if (bytes > 0) {
925 /* Shared Local Memory Size is specified as powers of two. */
926 slm_size = util_next_power_of_two(bytes);
927
928 if (gen >= 9) {
929 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
930 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
931 } else {
932 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
933 slm_size = MAX2(slm_size, 4096) / 4096;
934 }
935 }
936
937 return slm_size;
938 }
939
940 /**
941 * Return true if the given shader stage is dispatched contiguously by the
942 * relevant fixed function starting from channel 0 of the SIMD thread, which
943 * implies that the dispatch mask of a thread can be assumed to have the form
944 * '2^n - 1' for some n.
945 */
946 static inline bool
947 brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo,
948 gl_shader_stage stage,
949 const struct brw_stage_prog_data *prog_data)
950 {
951 /* The code below makes assumptions about the hardware's thread dispatch
952 * behavior that could be proven wrong in future generations -- Make sure
953 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
954 * the NIR front-end before changing this assertion.
955 */
956 assert(devinfo->gen <= 9);
957
958 switch (stage) {
959 case MESA_SHADER_FRAGMENT: {
960 /* The PSD discards subspans coming in with no lit samples, which in the
961 * per-pixel shading case implies that each subspan will either be fully
962 * lit (due to the VMask being used to allow derivative computations),
963 * or not dispatched at all. In per-sample dispatch mode individual
964 * samples from the same subspan have a fixed relative location within
965 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
966 * general and we should return false.
967 */
968 const struct brw_wm_prog_data *wm_prog_data =
969 (const struct brw_wm_prog_data *)prog_data;
970 return !wm_prog_data->persample_dispatch;
971 }
972 case MESA_SHADER_COMPUTE:
973 /* Compute shaders will be spawned with either a fully enabled dispatch
974 * mask or with whatever bottom/right execution mask was given to the
975 * GPGPU walker command to be used along the workgroup edges -- In both
976 * cases the dispatch mask is required to be tightly packed for our
977 * invocation index calculations to work.
978 */
979 return true;
980 default:
981 /* Most remaining fixed functions are limited to use a packed dispatch
982 * mask due to the hardware representation of the dispatch mask as a
983 * single counter representing the number of enabled channels.
984 */
985 return true;
986 }
987 }
988
989 #ifdef __cplusplus
990 } /* extern "C" */
991 #endif