i965/fs: Support compute programs in fs_visitor
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44
45 #include "vbo/vbo_context.h"
46
47 #include "drivers/common/driverfuncs.h"
48 #include "drivers/common/meta.h"
49 #include "utils.h"
50
51 #include "brw_context.h"
52 #include "brw_defines.h"
53 #include "brw_draw.h"
54 #include "brw_state.h"
55
56 #include "intel_batchbuffer.h"
57 #include "intel_buffer_objects.h"
58 #include "intel_buffers.h"
59 #include "intel_fbo.h"
60 #include "intel_mipmap_tree.h"
61 #include "intel_pixel.h"
62 #include "intel_image.h"
63 #include "intel_tex.h"
64 #include "intel_tex_obj.h"
65
66 #include "swrast_setup/swrast_setup.h"
67 #include "tnl/tnl.h"
68 #include "tnl/t_pipeline.h"
69 #include "util/ralloc.h"
70
71 #include "glsl/nir/nir.h"
72
73 /***************************************
74 * Mesa's Driver Functions
75 ***************************************/
76
77 static size_t
78 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
79 GLenum internalFormat, int samples[16])
80 {
81 struct brw_context *brw = brw_context(ctx);
82
83 (void) target;
84
85 switch (brw->gen) {
86 case 9:
87 case 8:
88 samples[0] = 8;
89 samples[1] = 4;
90 samples[2] = 2;
91 return 3;
92
93 case 7:
94 samples[0] = 8;
95 samples[1] = 4;
96 return 2;
97
98 case 6:
99 samples[0] = 4;
100 return 1;
101
102 default:
103 assert(brw->gen < 6);
104 samples[0] = 1;
105 return 1;
106 }
107 }
108
109 const char *const brw_vendor_string = "Intel Open Source Technology Center";
110
111 const char *
112 brw_get_renderer_string(unsigned deviceID)
113 {
114 const char *chipset;
115 static char buffer[128];
116
117 switch (deviceID) {
118 #undef CHIPSET
119 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
120 #include "pci_ids/i965_pci_ids.h"
121 default:
122 chipset = "Unknown Intel Chipset";
123 break;
124 }
125
126 (void) driGetRendererString(buffer, chipset, 0);
127 return buffer;
128 }
129
130 static const GLubyte *
131 intel_get_string(struct gl_context * ctx, GLenum name)
132 {
133 const struct brw_context *const brw = brw_context(ctx);
134
135 switch (name) {
136 case GL_VENDOR:
137 return (GLubyte *) brw_vendor_string;
138
139 case GL_RENDERER:
140 return
141 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
142
143 default:
144 return NULL;
145 }
146 }
147
148 static void
149 intel_viewport(struct gl_context *ctx)
150 {
151 struct brw_context *brw = brw_context(ctx);
152 __DRIcontext *driContext = brw->driContext;
153
154 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
155 dri2InvalidateDrawable(driContext->driDrawablePriv);
156 dri2InvalidateDrawable(driContext->driReadablePriv);
157 }
158 }
159
160 static void
161 intel_update_state(struct gl_context * ctx, GLuint new_state)
162 {
163 struct brw_context *brw = brw_context(ctx);
164 struct intel_texture_object *tex_obj;
165 struct intel_renderbuffer *depth_irb;
166
167 if (ctx->swrast_context)
168 _swrast_InvalidateState(ctx, new_state);
169 _vbo_InvalidateState(ctx, new_state);
170
171 brw->NewGLState |= new_state;
172
173 _mesa_unlock_context_textures(ctx);
174
175 /* Resolve the depth buffer's HiZ buffer. */
176 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
177 if (depth_irb)
178 intel_renderbuffer_resolve_hiz(brw, depth_irb);
179
180 /* Resolve depth buffer and render cache of each enabled texture. */
181 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
182 for (int i = 0; i <= maxEnabledUnit; i++) {
183 if (!ctx->Texture.Unit[i]._Current)
184 continue;
185 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
186 if (!tex_obj || !tex_obj->mt)
187 continue;
188 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
189 intel_miptree_resolve_color(brw, tex_obj->mt);
190 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
191 }
192
193 _mesa_lock_context_textures(ctx);
194 }
195
196 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
197
198 static void
199 intel_flush_front(struct gl_context *ctx)
200 {
201 struct brw_context *brw = brw_context(ctx);
202 __DRIcontext *driContext = brw->driContext;
203 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
204 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
205
206 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
207 if (flushFront(screen) && driDrawable &&
208 driDrawable->loaderPrivate) {
209
210 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
211 *
212 * This potentially resolves both front and back buffer. It
213 * is unnecessary to resolve the back, but harms nothing except
214 * performance. And no one cares about front-buffer render
215 * performance.
216 */
217 intel_resolve_for_dri2_flush(brw, driDrawable);
218 intel_batchbuffer_flush(brw);
219
220 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
221
222 /* We set the dirty bit in intel_prepare_render() if we're
223 * front buffer rendering once we get there.
224 */
225 brw->front_buffer_dirty = false;
226 }
227 }
228 }
229
230 static void
231 intel_glFlush(struct gl_context *ctx)
232 {
233 struct brw_context *brw = brw_context(ctx);
234
235 intel_batchbuffer_flush(brw);
236 intel_flush_front(ctx);
237
238 brw->need_flush_throttle = true;
239 }
240
241 static void
242 intel_finish(struct gl_context * ctx)
243 {
244 struct brw_context *brw = brw_context(ctx);
245
246 intel_glFlush(ctx);
247
248 if (brw->batch.last_bo)
249 drm_intel_bo_wait_rendering(brw->batch.last_bo);
250 }
251
252 static void
253 brw_init_driver_functions(struct brw_context *brw,
254 struct dd_function_table *functions)
255 {
256 _mesa_init_driver_functions(functions);
257
258 /* GLX uses DRI2 invalidate events to handle window resizing.
259 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
260 * which doesn't provide a mechanism for snooping the event queues.
261 *
262 * So EGL still relies on viewport hacks to handle window resizing.
263 * This should go away with DRI3000.
264 */
265 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
266 functions->Viewport = intel_viewport;
267
268 functions->Flush = intel_glFlush;
269 functions->Finish = intel_finish;
270 functions->GetString = intel_get_string;
271 functions->UpdateState = intel_update_state;
272
273 intelInitTextureFuncs(functions);
274 intelInitTextureImageFuncs(functions);
275 intelInitTextureSubImageFuncs(functions);
276 intelInitTextureCopyImageFuncs(functions);
277 intelInitCopyImageFuncs(functions);
278 intelInitClearFuncs(functions);
279 intelInitBufferFuncs(functions);
280 intelInitPixelFuncs(functions);
281 intelInitBufferObjectFuncs(functions);
282 intel_init_syncobj_functions(functions);
283 brw_init_object_purgeable_functions(functions);
284
285 brwInitFragProgFuncs( functions );
286 brw_init_common_queryobj_functions(functions);
287 if (brw->gen >= 6)
288 gen6_init_queryobj_functions(functions);
289 else
290 gen4_init_queryobj_functions(functions);
291
292 functions->QuerySamplesForFormat = brw_query_samples_for_format;
293
294 functions->NewTransformFeedback = brw_new_transform_feedback;
295 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
296 functions->GetTransformFeedbackVertexCount =
297 brw_get_transform_feedback_vertex_count;
298 if (brw->gen >= 7) {
299 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
300 functions->EndTransformFeedback = gen7_end_transform_feedback;
301 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
302 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
303 } else {
304 functions->BeginTransformFeedback = brw_begin_transform_feedback;
305 functions->EndTransformFeedback = brw_end_transform_feedback;
306 }
307
308 if (brw->gen >= 6)
309 functions->GetSamplePosition = gen6_get_sample_position;
310 }
311
312 static void
313 brw_initialize_context_constants(struct brw_context *brw)
314 {
315 struct gl_context *ctx = &brw->ctx;
316
317 unsigned max_samplers =
318 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
319
320 ctx->Const.QueryCounterBits.Timestamp = 36;
321
322 ctx->Const.StripTextureBorder = true;
323
324 ctx->Const.MaxDualSourceDrawBuffers = 1;
325 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
326 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits = max_samplers;
327 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
328 ctx->Const.MaxTextureUnits =
329 MIN2(ctx->Const.MaxTextureCoordUnits,
330 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
331 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits = max_samplers;
332 if (brw->gen >= 6)
333 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = max_samplers;
334 else
335 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = 0;
336 if (_mesa_extension_override_enables.ARB_compute_shader) {
337 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = BRW_MAX_TEX_UNIT;
338 ctx->Const.MaxUniformBufferBindings += 12;
339 } else {
340 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = 0;
341 }
342 ctx->Const.MaxCombinedTextureImageUnits =
343 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits +
344 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits +
345 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits +
346 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
347
348 ctx->Const.MaxTextureLevels = 14; /* 8192 */
349 if (ctx->Const.MaxTextureLevels > MAX_TEXTURE_LEVELS)
350 ctx->Const.MaxTextureLevels = MAX_TEXTURE_LEVELS;
351 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
352 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
353 ctx->Const.MaxTextureMbytes = 1536;
354
355 if (brw->gen >= 7)
356 ctx->Const.MaxArrayTextureLayers = 2048;
357 else
358 ctx->Const.MaxArrayTextureLayers = 512;
359
360 ctx->Const.MaxTextureRectSize = 1 << 12;
361
362 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
363
364 ctx->Const.MaxRenderbufferSize = 8192;
365
366 /* Hardware only supports a limited number of transform feedback buffers.
367 * So we need to override the Mesa default (which is based only on software
368 * limits).
369 */
370 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
371
372 /* On Gen6, in the worst case, we use up one binding table entry per
373 * transform feedback component (see comments above the definition of
374 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
375 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
376 * BRW_MAX_SOL_BINDINGS.
377 *
378 * In "separate components" mode, we need to divide this value by
379 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
380 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
381 */
382 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
383 ctx->Const.MaxTransformFeedbackSeparateComponents =
384 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
385
386 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
387
388 int max_samples;
389 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
390 const int clamp_max_samples =
391 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
392
393 if (clamp_max_samples < 0) {
394 max_samples = msaa_modes[0];
395 } else {
396 /* Select the largest supported MSAA mode that does not exceed
397 * clamp_max_samples.
398 */
399 max_samples = 0;
400 for (int i = 0; msaa_modes[i] != 0; ++i) {
401 if (msaa_modes[i] <= clamp_max_samples) {
402 max_samples = msaa_modes[i];
403 break;
404 }
405 }
406 }
407
408 ctx->Const.MaxSamples = max_samples;
409 ctx->Const.MaxColorTextureSamples = max_samples;
410 ctx->Const.MaxDepthTextureSamples = max_samples;
411 ctx->Const.MaxIntegerSamples = max_samples;
412
413 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
414 * to map indices of rectangular grid to sample numbers within a pixel.
415 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
416 * extension implementation. For more details see the comment above
417 * gen6_set_sample_maps() definition.
418 */
419 gen6_set_sample_maps(ctx);
420
421 if (brw->gen >= 7)
422 ctx->Const.MaxProgramTextureGatherComponents = 4;
423 else if (brw->gen == 6)
424 ctx->Const.MaxProgramTextureGatherComponents = 1;
425
426 ctx->Const.MinLineWidth = 1.0;
427 ctx->Const.MinLineWidthAA = 1.0;
428 if (brw->gen >= 9 || brw->is_cherryview) {
429 ctx->Const.MaxLineWidth = 40.0;
430 ctx->Const.MaxLineWidthAA = 40.0;
431 ctx->Const.LineWidthGranularity = 0.125;
432 } else if (brw->gen >= 6) {
433 ctx->Const.MaxLineWidth = 7.375;
434 ctx->Const.MaxLineWidthAA = 7.375;
435 ctx->Const.LineWidthGranularity = 0.125;
436 } else {
437 ctx->Const.MaxLineWidth = 7.0;
438 ctx->Const.MaxLineWidthAA = 7.0;
439 ctx->Const.LineWidthGranularity = 0.5;
440 }
441
442 ctx->Const.MinPointSize = 1.0;
443 ctx->Const.MinPointSizeAA = 1.0;
444 ctx->Const.MaxPointSize = 255.0;
445 ctx->Const.MaxPointSizeAA = 255.0;
446 ctx->Const.PointSizeGranularity = 1.0;
447
448 if (brw->gen >= 5 || brw->is_g4x)
449 ctx->Const.MaxClipPlanes = 8;
450
451 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
452 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
453 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
454 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
455 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
456 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
457 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
458 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
459 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
460 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
461 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
462 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
463 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
464 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
465
466 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
467 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
468 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
469 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
470 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
471 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
472 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
473 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
474 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
475 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
476 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
477
478 /* Fragment shaders use real, 32-bit twos-complement integers for all
479 * integer types.
480 */
481 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
482 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
483 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
484 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
485 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
486
487 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
488 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
489 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
490 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
491 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
492
493 if (brw->gen >= 7) {
494 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
495 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
496 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
497 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
498 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers = BRW_MAX_ABO;
499 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers = BRW_MAX_ABO;
500 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers = BRW_MAX_ABO;
501 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers = BRW_MAX_ABO;
502 ctx->Const.MaxCombinedAtomicBuffers = 3 * BRW_MAX_ABO;
503 }
504
505 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
506 * but we're not sure how it's actually done for vertex order,
507 * that affect provoking vertex decision. Always use last vertex
508 * convention for quad primitive which works as expected for now.
509 */
510 if (brw->gen >= 6)
511 ctx->Const.QuadsFollowProvokingVertexConvention = false;
512
513 ctx->Const.NativeIntegers = true;
514 ctx->Const.VertexID_is_zero_based = true;
515
516 /* Regarding the CMP instruction, the Ivybridge PRM says:
517 *
518 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
519 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
520 * 0xFFFFFFFF) is assigned to dst."
521 *
522 * but PRMs for earlier generations say
523 *
524 * "In dword format, one GRF may store up to 8 results. When the register
525 * is used later as a vector of Booleans, as only LSB at each channel
526 * contains meaning [sic] data, software should make sure all higher bits
527 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
528 *
529 * We select the representation of a true boolean uniform to be ~0, and fix
530 * the results of Gen <= 5 CMP instruction's with -(result & 1).
531 */
532 ctx->Const.UniformBooleanTrue = ~0;
533
534 /* From the gen4 PRM, volume 4 page 127:
535 *
536 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
537 * the base address of the first element of the surface, computed in
538 * software by adding the surface base address to the byte offset of
539 * the element in the buffer."
540 *
541 * However, unaligned accesses are slower, so enforce buffer alignment.
542 */
543 ctx->Const.UniformBufferOffsetAlignment = 16;
544 ctx->Const.TextureBufferOffsetAlignment = 16;
545
546 if (brw->gen >= 6) {
547 ctx->Const.MaxVarying = 32;
548 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
549 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
550 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
551 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
552 }
553
554 static const nir_shader_compiler_options nir_options = {
555 .native_integers = true,
556 /* In order to help allow for better CSE at the NIR level we tell NIR
557 * to split all ffma instructions during opt_algebraic and we then
558 * re-combine them as a later step.
559 */
560 .lower_ffma = true,
561 .lower_sub = true,
562 };
563
564 /* We want the GLSL compiler to emit code that uses condition codes */
565 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
566 ctx->Const.ShaderCompilerOptions[i].MaxIfDepth = brw->gen < 6 ? 16 : UINT_MAX;
567 ctx->Const.ShaderCompilerOptions[i].EmitCondCodes = true;
568 ctx->Const.ShaderCompilerOptions[i].EmitNoNoise = true;
569 ctx->Const.ShaderCompilerOptions[i].EmitNoMainReturn = true;
570 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectInput = true;
571 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectOutput =
572 (i == MESA_SHADER_FRAGMENT);
573 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectTemp =
574 (i == MESA_SHADER_FRAGMENT);
575 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectUniform = false;
576 ctx->Const.ShaderCompilerOptions[i].LowerClipDistance = true;
577 }
578
579 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS = true;
580 ctx->Const.ShaderCompilerOptions[MESA_SHADER_GEOMETRY].OptimizeForAOS = true;
581
582 if (brw->scalar_vs) {
583 /* If we're using the scalar backend for vertex shaders, we need to
584 * configure these accordingly.
585 */
586 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].EmitNoIndirectOutput = true;
587 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].EmitNoIndirectTemp = true;
588 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS = false;
589
590 if (brw_env_var_as_boolean("INTEL_USE_NIR", false))
591 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].NirOptions = &nir_options;
592 }
593
594 if (brw_env_var_as_boolean("INTEL_USE_NIR", true))
595 ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT].NirOptions = &nir_options;
596
597 ctx->Const.ShaderCompilerOptions[MESA_SHADER_COMPUTE].NirOptions = &nir_options;
598
599 /* ARB_viewport_array */
600 if (brw->gen >= 7 && ctx->API == API_OPENGL_CORE) {
601 ctx->Const.MaxViewports = GEN7_NUM_VIEWPORTS;
602 ctx->Const.ViewportSubpixelBits = 0;
603
604 /* Cast to float before negating because MaxViewportWidth is unsigned.
605 */
606 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
607 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
608 }
609
610 /* ARB_gpu_shader5 */
611 if (brw->gen >= 7)
612 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
613 }
614
615 /**
616 * Process driconf (drirc) options, setting appropriate context flags.
617 *
618 * intelInitExtensions still pokes at optionCache directly, in order to
619 * avoid advertising various extensions. No flags are set, so it makes
620 * sense to continue doing that there.
621 */
622 static void
623 brw_process_driconf_options(struct brw_context *brw)
624 {
625 struct gl_context *ctx = &brw->ctx;
626
627 driOptionCache *options = &brw->optionCache;
628 driParseConfigFiles(options, &brw->intelScreen->optionCache,
629 brw->driContext->driScreenPriv->myNum, "i965");
630
631 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
632 switch (bo_reuse_mode) {
633 case DRI_CONF_BO_REUSE_DISABLED:
634 break;
635 case DRI_CONF_BO_REUSE_ALL:
636 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
637 break;
638 }
639
640 if (!driQueryOptionb(options, "hiz")) {
641 brw->has_hiz = false;
642 /* On gen6, you can only do separate stencil with HIZ. */
643 if (brw->gen == 6)
644 brw->has_separate_stencil = false;
645 }
646
647 if (driQueryOptionb(options, "always_flush_batch")) {
648 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
649 brw->always_flush_batch = true;
650 }
651
652 if (driQueryOptionb(options, "always_flush_cache")) {
653 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
654 brw->always_flush_cache = true;
655 }
656
657 if (driQueryOptionb(options, "disable_throttling")) {
658 fprintf(stderr, "disabling flush throttling\n");
659 brw->disable_throttling = true;
660 }
661
662 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
663
664 ctx->Const.ForceGLSLExtensionsWarn =
665 driQueryOptionb(options, "force_glsl_extensions_warn");
666
667 ctx->Const.DisableGLSLLineContinuations =
668 driQueryOptionb(options, "disable_glsl_line_continuations");
669
670 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
671 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
672 }
673
674 GLboolean
675 brwCreateContext(gl_api api,
676 const struct gl_config *mesaVis,
677 __DRIcontext *driContextPriv,
678 unsigned major_version,
679 unsigned minor_version,
680 uint32_t flags,
681 bool notify_reset,
682 unsigned *dri_ctx_error,
683 void *sharedContextPrivate)
684 {
685 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
686 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
687 struct intel_screen *screen = sPriv->driverPrivate;
688 const struct brw_device_info *devinfo = screen->devinfo;
689 struct dd_function_table functions;
690
691 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
692 * provides us with context reset notifications.
693 */
694 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
695 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
696
697 if (screen->has_context_reset_notification)
698 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
699
700 if (flags & ~allowed_flags) {
701 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
702 return false;
703 }
704
705 struct brw_context *brw = rzalloc(NULL, struct brw_context);
706 if (!brw) {
707 fprintf(stderr, "%s: failed to alloc context\n", __func__);
708 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
709 return false;
710 }
711
712 driContextPriv->driverPrivate = brw;
713 brw->driContext = driContextPriv;
714 brw->intelScreen = screen;
715 brw->bufmgr = screen->bufmgr;
716
717 brw->gen = devinfo->gen;
718 brw->gt = devinfo->gt;
719 brw->is_g4x = devinfo->is_g4x;
720 brw->is_baytrail = devinfo->is_baytrail;
721 brw->is_haswell = devinfo->is_haswell;
722 brw->is_cherryview = devinfo->is_cherryview;
723 brw->has_llc = devinfo->has_llc;
724 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
725 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
726 brw->has_pln = devinfo->has_pln;
727 brw->has_compr4 = devinfo->has_compr4;
728 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
729 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
730 brw->needs_unlit_centroid_workaround =
731 devinfo->needs_unlit_centroid_workaround;
732
733 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
734 brw->has_swizzling = screen->hw_has_swizzling;
735
736 brw->vs.base.stage = MESA_SHADER_VERTEX;
737 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
738 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
739 if (brw->gen >= 8) {
740 gen8_init_vtable_surface_functions(brw);
741 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
742 } else if (brw->gen >= 7) {
743 gen7_init_vtable_surface_functions(brw);
744 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
745 } else if (brw->gen >= 6) {
746 gen6_init_vtable_surface_functions(brw);
747 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
748 } else {
749 gen4_init_vtable_surface_functions(brw);
750 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
751 }
752
753 brw_init_driver_functions(brw, &functions);
754
755 if (notify_reset)
756 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
757
758 struct gl_context *ctx = &brw->ctx;
759
760 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
761 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
762 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
763 intelDestroyContext(driContextPriv);
764 return false;
765 }
766
767 driContextSetFlags(ctx, flags);
768
769 /* Initialize the software rasterizer and helper modules.
770 *
771 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
772 * software fallbacks (which we have to support on legacy GL to do weird
773 * glDrawPixels(), glBitmap(), and other functions).
774 */
775 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
776 _swrast_CreateContext(ctx);
777 }
778
779 _vbo_CreateContext(ctx);
780 if (ctx->swrast_context) {
781 _tnl_CreateContext(ctx);
782 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
783 _swsetup_CreateContext(ctx);
784
785 /* Configure swrast to match hardware characteristics: */
786 _swrast_allow_pixel_fog(ctx, false);
787 _swrast_allow_vertex_fog(ctx, true);
788 }
789
790 _mesa_meta_init(ctx);
791
792 brw_process_driconf_options(brw);
793 brw_process_intel_debug_variable(brw);
794
795 if (brw->gen >= 8 && !(INTEL_DEBUG & DEBUG_VEC4VS))
796 brw->scalar_vs = true;
797
798 brw_initialize_context_constants(brw);
799
800 ctx->Const.ResetStrategy = notify_reset
801 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
802
803 /* Reinitialize the context point state. It depends on ctx->Const values. */
804 _mesa_init_point(ctx);
805
806 intel_fbo_init(brw);
807
808 intel_batchbuffer_init(brw);
809
810 if (brw->gen >= 6) {
811 /* Create a new hardware context. Using a hardware context means that
812 * our GPU state will be saved/restored on context switch, allowing us
813 * to assume that the GPU is in the same state we left it in.
814 *
815 * This is required for transform feedback buffer offsets, query objects,
816 * and also allows us to reduce how much state we have to emit.
817 */
818 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
819
820 if (!brw->hw_ctx) {
821 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
822 intelDestroyContext(driContextPriv);
823 return false;
824 }
825 }
826
827 brw_init_state(brw);
828
829 intelInitExtensions(ctx);
830
831 brw_init_surface_formats(brw);
832
833 brw->max_vs_threads = devinfo->max_vs_threads;
834 brw->max_hs_threads = devinfo->max_hs_threads;
835 brw->max_ds_threads = devinfo->max_ds_threads;
836 brw->max_gs_threads = devinfo->max_gs_threads;
837 brw->max_wm_threads = devinfo->max_wm_threads;
838 brw->urb.size = devinfo->urb.size;
839 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
840 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
841 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
842 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
843 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
844
845 /* Estimate the size of the mappable aperture into the GTT. There's an
846 * ioctl to get the whole GTT size, but not one to get the mappable subset.
847 * It turns out it's basically always 256MB, though some ancient hardware
848 * was smaller.
849 */
850 uint32_t gtt_size = 256 * 1024 * 1024;
851
852 /* We don't want to map two objects such that a memcpy between them would
853 * just fault one mapping in and then the other over and over forever. So
854 * we would need to divide the GTT size by 2. Additionally, some GTT is
855 * taken up by things like the framebuffer and the ringbuffer and such, so
856 * be more conservative.
857 */
858 brw->max_gtt_map_object_size = gtt_size / 4;
859
860 if (brw->gen == 6)
861 brw->urb.gs_present = false;
862
863 brw->prim_restart.in_progress = false;
864 brw->prim_restart.enable_cut_index = false;
865 brw->gs.enabled = false;
866 brw->sf.viewport_transform_enable = true;
867
868 ctx->VertexProgram._MaintainTnlProgram = true;
869 ctx->FragmentProgram._MaintainTexEnvProgram = true;
870
871 brw_draw_init( brw );
872
873 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
874 /* Turn on some extra GL_ARB_debug_output generation. */
875 brw->perf_debug = true;
876 }
877
878 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
879 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
880
881 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
882 brw_init_shader_time(brw);
883
884 _mesa_compute_version(ctx);
885
886 _mesa_initialize_dispatch_tables(ctx);
887 _mesa_initialize_vbo_vtxfmt(ctx);
888
889 if (ctx->Extensions.AMD_performance_monitor) {
890 brw_init_performance_monitors(brw);
891 }
892
893 vbo_use_buffer_objects(ctx);
894 vbo_always_unmap_buffers(ctx);
895
896 return true;
897 }
898
899 void
900 intelDestroyContext(__DRIcontext * driContextPriv)
901 {
902 struct brw_context *brw =
903 (struct brw_context *) driContextPriv->driverPrivate;
904 struct gl_context *ctx = &brw->ctx;
905
906 /* Dump a final BMP in case the application doesn't call SwapBuffers */
907 if (INTEL_DEBUG & DEBUG_AUB) {
908 intel_batchbuffer_flush(brw);
909 aub_dump_bmp(&brw->ctx);
910 }
911
912 _mesa_meta_free(&brw->ctx);
913 brw_meta_fast_clear_free(brw);
914
915 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
916 /* Force a report. */
917 brw->shader_time.report_time = 0;
918
919 brw_collect_and_report_shader_time(brw);
920 brw_destroy_shader_time(brw);
921 }
922
923 brw_destroy_state(brw);
924 brw_draw_destroy(brw);
925
926 drm_intel_bo_unreference(brw->curbe.curbe_bo);
927 if (brw->vs.base.scratch_bo)
928 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
929 if (brw->gs.base.scratch_bo)
930 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
931 if (brw->wm.base.scratch_bo)
932 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
933
934 drm_intel_gem_context_destroy(brw->hw_ctx);
935
936 if (ctx->swrast_context) {
937 _swsetup_DestroyContext(&brw->ctx);
938 _tnl_DestroyContext(&brw->ctx);
939 }
940 _vbo_DestroyContext(&brw->ctx);
941
942 if (ctx->swrast_context)
943 _swrast_DestroyContext(&brw->ctx);
944
945 intel_batchbuffer_free(brw);
946
947 drm_intel_bo_unreference(brw->throttle_batch[1]);
948 drm_intel_bo_unreference(brw->throttle_batch[0]);
949 brw->throttle_batch[1] = NULL;
950 brw->throttle_batch[0] = NULL;
951
952 driDestroyOptionCache(&brw->optionCache);
953
954 /* free the Mesa context */
955 _mesa_free_context_data(&brw->ctx);
956
957 ralloc_free(brw);
958 driContextPriv->driverPrivate = NULL;
959 }
960
961 GLboolean
962 intelUnbindContext(__DRIcontext * driContextPriv)
963 {
964 /* Unset current context and dispath table */
965 _mesa_make_current(NULL, NULL, NULL);
966
967 return true;
968 }
969
970 /**
971 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
972 * on window system framebuffers.
973 *
974 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
975 * your renderbuffer can do sRGB encode, and you can flip a switch that does
976 * sRGB encode if the renderbuffer can handle it. You can ask specifically
977 * for a visual where you're guaranteed to be capable, but it turns out that
978 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
979 * incapable ones, because there's no difference between the two in resources
980 * used. Applications thus get built that accidentally rely on the default
981 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
982 * great...
983 *
984 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
985 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
986 * So they removed the enable knob and made it "if the renderbuffer is sRGB
987 * capable, do sRGB encode". Then, for your window system renderbuffers, you
988 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
989 * and get no sRGB encode (assuming that both kinds of visual are available).
990 * Thus our choice to support sRGB by default on our visuals for desktop would
991 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
992 *
993 * Unfortunately, renderbuffer setup happens before a context is created. So
994 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
995 * context (without an sRGB visual, though we don't have sRGB visuals exposed
996 * yet), we go turn that back off before anyone finds out.
997 */
998 static void
999 intel_gles3_srgb_workaround(struct brw_context *brw,
1000 struct gl_framebuffer *fb)
1001 {
1002 struct gl_context *ctx = &brw->ctx;
1003
1004 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1005 return;
1006
1007 /* Some day when we support the sRGB capable bit on visuals available for
1008 * GLES, we'll need to respect that and not disable things here.
1009 */
1010 fb->Visual.sRGBCapable = false;
1011 for (int i = 0; i < BUFFER_COUNT; i++) {
1012 if (fb->Attachment[i].Renderbuffer &&
1013 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
1014 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
1015 }
1016 }
1017 }
1018
1019 GLboolean
1020 intelMakeCurrent(__DRIcontext * driContextPriv,
1021 __DRIdrawable * driDrawPriv,
1022 __DRIdrawable * driReadPriv)
1023 {
1024 struct brw_context *brw;
1025 GET_CURRENT_CONTEXT(curCtx);
1026
1027 if (driContextPriv)
1028 brw = (struct brw_context *) driContextPriv->driverPrivate;
1029 else
1030 brw = NULL;
1031
1032 /* According to the glXMakeCurrent() man page: "Pending commands to
1033 * the previous context, if any, are flushed before it is released."
1034 * But only flush if we're actually changing contexts.
1035 */
1036 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1037 _mesa_flush(curCtx);
1038 }
1039
1040 if (driContextPriv) {
1041 struct gl_context *ctx = &brw->ctx;
1042 struct gl_framebuffer *fb, *readFb;
1043
1044 if (driDrawPriv == NULL) {
1045 fb = _mesa_get_incomplete_framebuffer();
1046 } else {
1047 fb = driDrawPriv->driverPrivate;
1048 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1049 }
1050
1051 if (driReadPriv == NULL) {
1052 readFb = _mesa_get_incomplete_framebuffer();
1053 } else {
1054 readFb = driReadPriv->driverPrivate;
1055 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1056 }
1057
1058 /* The sRGB workaround changes the renderbuffer's format. We must change
1059 * the format before the renderbuffer's miptree get's allocated, otherwise
1060 * the formats of the renderbuffer and its miptree will differ.
1061 */
1062 intel_gles3_srgb_workaround(brw, fb);
1063 intel_gles3_srgb_workaround(brw, readFb);
1064
1065 /* If the context viewport hasn't been initialized, force a call out to
1066 * the loader to get buffers so we have a drawable size for the initial
1067 * viewport. */
1068 if (!brw->ctx.ViewportInitialized)
1069 intel_prepare_render(brw);
1070
1071 _mesa_make_current(ctx, fb, readFb);
1072 } else {
1073 _mesa_make_current(NULL, NULL, NULL);
1074 }
1075
1076 return true;
1077 }
1078
1079 void
1080 intel_resolve_for_dri2_flush(struct brw_context *brw,
1081 __DRIdrawable *drawable)
1082 {
1083 if (brw->gen < 6) {
1084 /* MSAA and fast color clear are not supported, so don't waste time
1085 * checking whether a resolve is needed.
1086 */
1087 return;
1088 }
1089
1090 struct gl_framebuffer *fb = drawable->driverPrivate;
1091 struct intel_renderbuffer *rb;
1092
1093 /* Usually, only the back buffer will need to be downsampled. However,
1094 * the front buffer will also need it if the user has rendered into it.
1095 */
1096 static const gl_buffer_index buffers[2] = {
1097 BUFFER_BACK_LEFT,
1098 BUFFER_FRONT_LEFT,
1099 };
1100
1101 for (int i = 0; i < 2; ++i) {
1102 rb = intel_get_renderbuffer(fb, buffers[i]);
1103 if (rb == NULL || rb->mt == NULL)
1104 continue;
1105 if (rb->mt->num_samples <= 1)
1106 intel_miptree_resolve_color(brw, rb->mt);
1107 else
1108 intel_renderbuffer_downsample(brw, rb);
1109 }
1110 }
1111
1112 static unsigned
1113 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1114 {
1115 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1116 }
1117
1118 static void
1119 intel_query_dri2_buffers(struct brw_context *brw,
1120 __DRIdrawable *drawable,
1121 __DRIbuffer **buffers,
1122 int *count);
1123
1124 static void
1125 intel_process_dri2_buffer(struct brw_context *brw,
1126 __DRIdrawable *drawable,
1127 __DRIbuffer *buffer,
1128 struct intel_renderbuffer *rb,
1129 const char *buffer_name);
1130
1131 static void
1132 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1133
1134 static void
1135 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1136 {
1137 struct gl_framebuffer *fb = drawable->driverPrivate;
1138 struct intel_renderbuffer *rb;
1139 __DRIbuffer *buffers = NULL;
1140 int i, count;
1141 const char *region_name;
1142
1143 /* Set this up front, so that in case our buffers get invalidated
1144 * while we're getting new buffers, we don't clobber the stamp and
1145 * thus ignore the invalidate. */
1146 drawable->lastStamp = drawable->dri2.stamp;
1147
1148 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1149 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1150
1151 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1152
1153 if (buffers == NULL)
1154 return;
1155
1156 for (i = 0; i < count; i++) {
1157 switch (buffers[i].attachment) {
1158 case __DRI_BUFFER_FRONT_LEFT:
1159 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1160 region_name = "dri2 front buffer";
1161 break;
1162
1163 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1164 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1165 region_name = "dri2 fake front buffer";
1166 break;
1167
1168 case __DRI_BUFFER_BACK_LEFT:
1169 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1170 region_name = "dri2 back buffer";
1171 break;
1172
1173 case __DRI_BUFFER_DEPTH:
1174 case __DRI_BUFFER_HIZ:
1175 case __DRI_BUFFER_DEPTH_STENCIL:
1176 case __DRI_BUFFER_STENCIL:
1177 case __DRI_BUFFER_ACCUM:
1178 default:
1179 fprintf(stderr,
1180 "unhandled buffer attach event, attachment type %d\n",
1181 buffers[i].attachment);
1182 return;
1183 }
1184
1185 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1186 }
1187
1188 }
1189
1190 void
1191 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1192 {
1193 struct brw_context *brw = context->driverPrivate;
1194 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1195
1196 /* Set this up front, so that in case our buffers get invalidated
1197 * while we're getting new buffers, we don't clobber the stamp and
1198 * thus ignore the invalidate. */
1199 drawable->lastStamp = drawable->dri2.stamp;
1200
1201 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1202 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1203
1204 if (screen->image.loader)
1205 intel_update_image_buffers(brw, drawable);
1206 else
1207 intel_update_dri2_buffers(brw, drawable);
1208
1209 driUpdateFramebufferSize(&brw->ctx, drawable);
1210 }
1211
1212 /**
1213 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1214 * state is required.
1215 */
1216 void
1217 intel_prepare_render(struct brw_context *brw)
1218 {
1219 struct gl_context *ctx = &brw->ctx;
1220 __DRIcontext *driContext = brw->driContext;
1221 __DRIdrawable *drawable;
1222
1223 drawable = driContext->driDrawablePriv;
1224 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1225 if (drawable->lastStamp != drawable->dri2.stamp)
1226 intel_update_renderbuffers(driContext, drawable);
1227 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1228 }
1229
1230 drawable = driContext->driReadablePriv;
1231 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1232 if (drawable->lastStamp != drawable->dri2.stamp)
1233 intel_update_renderbuffers(driContext, drawable);
1234 driContext->dri2.read_stamp = drawable->dri2.stamp;
1235 }
1236
1237 /* If we're currently rendering to the front buffer, the rendering
1238 * that will happen next will probably dirty the front buffer. So
1239 * mark it as dirty here.
1240 */
1241 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
1242 brw->front_buffer_dirty = true;
1243 }
1244
1245 /**
1246 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1247 *
1248 * To determine which DRI buffers to request, examine the renderbuffers
1249 * attached to the drawable's framebuffer. Then request the buffers with
1250 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1251 *
1252 * This is called from intel_update_renderbuffers().
1253 *
1254 * \param drawable Drawable whose buffers are queried.
1255 * \param buffers [out] List of buffers returned by DRI2 query.
1256 * \param buffer_count [out] Number of buffers returned.
1257 *
1258 * \see intel_update_renderbuffers()
1259 * \see DRI2GetBuffers()
1260 * \see DRI2GetBuffersWithFormat()
1261 */
1262 static void
1263 intel_query_dri2_buffers(struct brw_context *brw,
1264 __DRIdrawable *drawable,
1265 __DRIbuffer **buffers,
1266 int *buffer_count)
1267 {
1268 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1269 struct gl_framebuffer *fb = drawable->driverPrivate;
1270 int i = 0;
1271 unsigned attachments[8];
1272
1273 struct intel_renderbuffer *front_rb;
1274 struct intel_renderbuffer *back_rb;
1275
1276 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1277 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1278
1279 memset(attachments, 0, sizeof(attachments));
1280 if ((brw_is_front_buffer_drawing(fb) ||
1281 brw_is_front_buffer_reading(fb) ||
1282 !back_rb) && front_rb) {
1283 /* If a fake front buffer is in use, then querying for
1284 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1285 * the real front buffer to the fake front buffer. So before doing the
1286 * query, we need to make sure all the pending drawing has landed in the
1287 * real front buffer.
1288 */
1289 intel_batchbuffer_flush(brw);
1290 intel_flush_front(&brw->ctx);
1291
1292 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1293 attachments[i++] = intel_bits_per_pixel(front_rb);
1294 } else if (front_rb && brw->front_buffer_dirty) {
1295 /* We have pending front buffer rendering, but we aren't querying for a
1296 * front buffer. If the front buffer we have is a fake front buffer,
1297 * the X server is going to throw it away when it processes the query.
1298 * So before doing the query, make sure all the pending drawing has
1299 * landed in the real front buffer.
1300 */
1301 intel_batchbuffer_flush(brw);
1302 intel_flush_front(&brw->ctx);
1303 }
1304
1305 if (back_rb) {
1306 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1307 attachments[i++] = intel_bits_per_pixel(back_rb);
1308 }
1309
1310 assert(i <= ARRAY_SIZE(attachments));
1311
1312 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1313 &drawable->w,
1314 &drawable->h,
1315 attachments, i / 2,
1316 buffer_count,
1317 drawable->loaderPrivate);
1318 }
1319
1320 /**
1321 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1322 *
1323 * This is called from intel_update_renderbuffers().
1324 *
1325 * \par Note:
1326 * DRI buffers whose attachment point is DRI2BufferStencil or
1327 * DRI2BufferDepthStencil are handled as special cases.
1328 *
1329 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1330 * that is passed to drm_intel_bo_gem_create_from_name().
1331 *
1332 * \see intel_update_renderbuffers()
1333 */
1334 static void
1335 intel_process_dri2_buffer(struct brw_context *brw,
1336 __DRIdrawable *drawable,
1337 __DRIbuffer *buffer,
1338 struct intel_renderbuffer *rb,
1339 const char *buffer_name)
1340 {
1341 struct gl_framebuffer *fb = drawable->driverPrivate;
1342 drm_intel_bo *bo;
1343
1344 if (!rb)
1345 return;
1346
1347 unsigned num_samples = rb->Base.Base.NumSamples;
1348
1349 /* We try to avoid closing and reopening the same BO name, because the first
1350 * use of a mapping of the buffer involves a bunch of page faulting which is
1351 * moderately expensive.
1352 */
1353 struct intel_mipmap_tree *last_mt;
1354 if (num_samples == 0)
1355 last_mt = rb->mt;
1356 else
1357 last_mt = rb->singlesample_mt;
1358
1359 uint32_t old_name = 0;
1360 if (last_mt) {
1361 /* The bo already has a name because the miptree was created by a
1362 * previous call to intel_process_dri2_buffer(). If a bo already has a
1363 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1364 * create a new name.
1365 */
1366 drm_intel_bo_flink(last_mt->bo, &old_name);
1367 }
1368
1369 if (old_name == buffer->name)
1370 return;
1371
1372 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1373 fprintf(stderr,
1374 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1375 buffer->name, buffer->attachment,
1376 buffer->cpp, buffer->pitch);
1377 }
1378
1379 intel_miptree_release(&rb->mt);
1380 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1381 buffer->name);
1382 if (!bo) {
1383 fprintf(stderr,
1384 "Failed to open BO for returned DRI2 buffer "
1385 "(%dx%d, %s, named %d).\n"
1386 "This is likely a bug in the X Server that will lead to a "
1387 "crash soon.\n",
1388 drawable->w, drawable->h, buffer_name, buffer->name);
1389 return;
1390 }
1391
1392 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1393 drawable->w, drawable->h,
1394 buffer->pitch);
1395
1396 if (brw_is_front_buffer_drawing(fb) &&
1397 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1398 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1399 rb->Base.Base.NumSamples > 1) {
1400 intel_renderbuffer_upsample(brw, rb);
1401 }
1402
1403 assert(rb->mt);
1404
1405 drm_intel_bo_unreference(bo);
1406 }
1407
1408 /**
1409 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1410 *
1411 * To determine which DRI buffers to request, examine the renderbuffers
1412 * attached to the drawable's framebuffer. Then request the buffers from
1413 * the image loader
1414 *
1415 * This is called from intel_update_renderbuffers().
1416 *
1417 * \param drawable Drawable whose buffers are queried.
1418 * \param buffers [out] List of buffers returned by DRI2 query.
1419 * \param buffer_count [out] Number of buffers returned.
1420 *
1421 * \see intel_update_renderbuffers()
1422 */
1423
1424 static void
1425 intel_update_image_buffer(struct brw_context *intel,
1426 __DRIdrawable *drawable,
1427 struct intel_renderbuffer *rb,
1428 __DRIimage *buffer,
1429 enum __DRIimageBufferMask buffer_type)
1430 {
1431 struct gl_framebuffer *fb = drawable->driverPrivate;
1432
1433 if (!rb || !buffer->bo)
1434 return;
1435
1436 unsigned num_samples = rb->Base.Base.NumSamples;
1437
1438 /* Check and see if we're already bound to the right
1439 * buffer object
1440 */
1441 struct intel_mipmap_tree *last_mt;
1442 if (num_samples == 0)
1443 last_mt = rb->mt;
1444 else
1445 last_mt = rb->singlesample_mt;
1446
1447 if (last_mt && last_mt->bo == buffer->bo)
1448 return;
1449
1450 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1451 buffer->width, buffer->height,
1452 buffer->pitch);
1453
1454 if (brw_is_front_buffer_drawing(fb) &&
1455 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1456 rb->Base.Base.NumSamples > 1) {
1457 intel_renderbuffer_upsample(intel, rb);
1458 }
1459 }
1460
1461 static void
1462 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1463 {
1464 struct gl_framebuffer *fb = drawable->driverPrivate;
1465 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1466 struct intel_renderbuffer *front_rb;
1467 struct intel_renderbuffer *back_rb;
1468 struct __DRIimageList images;
1469 unsigned int format;
1470 uint32_t buffer_mask = 0;
1471
1472 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1473 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1474
1475 if (back_rb)
1476 format = intel_rb_format(back_rb);
1477 else if (front_rb)
1478 format = intel_rb_format(front_rb);
1479 else
1480 return;
1481
1482 if (front_rb && (brw_is_front_buffer_drawing(fb) ||
1483 brw_is_front_buffer_reading(fb) || !back_rb)) {
1484 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1485 }
1486
1487 if (back_rb)
1488 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1489
1490 (*screen->image.loader->getBuffers) (drawable,
1491 driGLFormatToImageFormat(format),
1492 &drawable->dri2.stamp,
1493 drawable->loaderPrivate,
1494 buffer_mask,
1495 &images);
1496
1497 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1498 drawable->w = images.front->width;
1499 drawable->h = images.front->height;
1500 intel_update_image_buffer(brw,
1501 drawable,
1502 front_rb,
1503 images.front,
1504 __DRI_IMAGE_BUFFER_FRONT);
1505 }
1506 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1507 drawable->w = images.back->width;
1508 drawable->h = images.back->height;
1509 intel_update_image_buffer(brw,
1510 drawable,
1511 back_rb,
1512 images.back,
1513 __DRI_IMAGE_BUFFER_BACK);
1514 }
1515 }