328662da82e803f2c64945c388ee95cad4d3ebd6
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44
45 #include "vbo/vbo_context.h"
46
47 #include "drivers/common/driverfuncs.h"
48 #include "drivers/common/meta.h"
49 #include "utils.h"
50
51 #include "brw_context.h"
52 #include "brw_defines.h"
53 #include "brw_shader.h"
54 #include "brw_draw.h"
55 #include "brw_state.h"
56
57 #include "intel_batchbuffer.h"
58 #include "intel_buffer_objects.h"
59 #include "intel_buffers.h"
60 #include "intel_fbo.h"
61 #include "intel_mipmap_tree.h"
62 #include "intel_pixel.h"
63 #include "intel_image.h"
64 #include "intel_tex.h"
65 #include "intel_tex_obj.h"
66
67 #include "swrast_setup/swrast_setup.h"
68 #include "tnl/tnl.h"
69 #include "tnl/t_pipeline.h"
70 #include "util/ralloc.h"
71
72 /***************************************
73 * Mesa's Driver Functions
74 ***************************************/
75
76 static size_t
77 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
78 GLenum internalFormat, int samples[16])
79 {
80 struct brw_context *brw = brw_context(ctx);
81
82 (void) target;
83
84 switch (brw->gen) {
85 case 9:
86 case 8:
87 samples[0] = 8;
88 samples[1] = 4;
89 samples[2] = 2;
90 return 3;
91
92 case 7:
93 samples[0] = 8;
94 samples[1] = 4;
95 return 2;
96
97 case 6:
98 samples[0] = 4;
99 return 1;
100
101 default:
102 assert(brw->gen < 6);
103 samples[0] = 1;
104 return 1;
105 }
106 }
107
108 const char *const brw_vendor_string = "Intel Open Source Technology Center";
109
110 const char *
111 brw_get_renderer_string(unsigned deviceID)
112 {
113 const char *chipset;
114 static char buffer[128];
115
116 switch (deviceID) {
117 #undef CHIPSET
118 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
119 #include "pci_ids/i965_pci_ids.h"
120 default:
121 chipset = "Unknown Intel Chipset";
122 break;
123 }
124
125 (void) driGetRendererString(buffer, chipset, 0);
126 return buffer;
127 }
128
129 static const GLubyte *
130 intel_get_string(struct gl_context * ctx, GLenum name)
131 {
132 const struct brw_context *const brw = brw_context(ctx);
133
134 switch (name) {
135 case GL_VENDOR:
136 return (GLubyte *) brw_vendor_string;
137
138 case GL_RENDERER:
139 return
140 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
141
142 default:
143 return NULL;
144 }
145 }
146
147 static void
148 intel_viewport(struct gl_context *ctx)
149 {
150 struct brw_context *brw = brw_context(ctx);
151 __DRIcontext *driContext = brw->driContext;
152
153 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
154 dri2InvalidateDrawable(driContext->driDrawablePriv);
155 dri2InvalidateDrawable(driContext->driReadablePriv);
156 }
157 }
158
159 static void
160 intel_update_state(struct gl_context * ctx, GLuint new_state)
161 {
162 struct brw_context *brw = brw_context(ctx);
163 struct intel_texture_object *tex_obj;
164 struct intel_renderbuffer *depth_irb;
165
166 if (ctx->swrast_context)
167 _swrast_InvalidateState(ctx, new_state);
168 _vbo_InvalidateState(ctx, new_state);
169
170 brw->NewGLState |= new_state;
171
172 _mesa_unlock_context_textures(ctx);
173
174 /* Resolve the depth buffer's HiZ buffer. */
175 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
176 if (depth_irb)
177 intel_renderbuffer_resolve_hiz(brw, depth_irb);
178
179 /* Resolve depth buffer and render cache of each enabled texture. */
180 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
181 for (int i = 0; i <= maxEnabledUnit; i++) {
182 if (!ctx->Texture.Unit[i]._Current)
183 continue;
184 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
185 if (!tex_obj || !tex_obj->mt)
186 continue;
187 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
188 intel_miptree_resolve_color(brw, tex_obj->mt);
189 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
190 }
191
192 _mesa_lock_context_textures(ctx);
193 }
194
195 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
196
197 static void
198 intel_flush_front(struct gl_context *ctx)
199 {
200 struct brw_context *brw = brw_context(ctx);
201 __DRIcontext *driContext = brw->driContext;
202 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
203 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
204
205 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
206 if (flushFront(screen) && driDrawable &&
207 driDrawable->loaderPrivate) {
208
209 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
210 *
211 * This potentially resolves both front and back buffer. It
212 * is unnecessary to resolve the back, but harms nothing except
213 * performance. And no one cares about front-buffer render
214 * performance.
215 */
216 intel_resolve_for_dri2_flush(brw, driDrawable);
217 intel_batchbuffer_flush(brw);
218
219 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
220
221 /* We set the dirty bit in intel_prepare_render() if we're
222 * front buffer rendering once we get there.
223 */
224 brw->front_buffer_dirty = false;
225 }
226 }
227 }
228
229 static void
230 intel_glFlush(struct gl_context *ctx)
231 {
232 struct brw_context *brw = brw_context(ctx);
233
234 intel_batchbuffer_flush(brw);
235 intel_flush_front(ctx);
236
237 brw->need_flush_throttle = true;
238 }
239
240 static void
241 intel_finish(struct gl_context * ctx)
242 {
243 struct brw_context *brw = brw_context(ctx);
244
245 intel_glFlush(ctx);
246
247 if (brw->batch.last_bo)
248 drm_intel_bo_wait_rendering(brw->batch.last_bo);
249 }
250
251 static void
252 brw_init_driver_functions(struct brw_context *brw,
253 struct dd_function_table *functions)
254 {
255 _mesa_init_driver_functions(functions);
256
257 /* GLX uses DRI2 invalidate events to handle window resizing.
258 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
259 * which doesn't provide a mechanism for snooping the event queues.
260 *
261 * So EGL still relies on viewport hacks to handle window resizing.
262 * This should go away with DRI3000.
263 */
264 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
265 functions->Viewport = intel_viewport;
266
267 functions->Flush = intel_glFlush;
268 functions->Finish = intel_finish;
269 functions->GetString = intel_get_string;
270 functions->UpdateState = intel_update_state;
271
272 intelInitTextureFuncs(functions);
273 intelInitTextureImageFuncs(functions);
274 intelInitTextureSubImageFuncs(functions);
275 intelInitTextureCopyImageFuncs(functions);
276 intelInitCopyImageFuncs(functions);
277 intelInitClearFuncs(functions);
278 intelInitBufferFuncs(functions);
279 intelInitPixelFuncs(functions);
280 intelInitBufferObjectFuncs(functions);
281 intel_init_syncobj_functions(functions);
282 brw_init_object_purgeable_functions(functions);
283
284 brwInitFragProgFuncs( functions );
285 brw_init_common_queryobj_functions(functions);
286 if (brw->gen >= 6)
287 gen6_init_queryobj_functions(functions);
288 else
289 gen4_init_queryobj_functions(functions);
290 brw_init_compute_functions(functions);
291 if (brw->gen >= 7)
292 brw_init_conditional_render_functions(functions);
293
294 functions->QuerySamplesForFormat = brw_query_samples_for_format;
295
296 functions->NewTransformFeedback = brw_new_transform_feedback;
297 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
298 functions->GetTransformFeedbackVertexCount =
299 brw_get_transform_feedback_vertex_count;
300 if (brw->gen >= 7) {
301 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
302 functions->EndTransformFeedback = gen7_end_transform_feedback;
303 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
304 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
305 } else {
306 functions->BeginTransformFeedback = brw_begin_transform_feedback;
307 functions->EndTransformFeedback = brw_end_transform_feedback;
308 }
309
310 if (brw->gen >= 6)
311 functions->GetSamplePosition = gen6_get_sample_position;
312 }
313
314 void
315 brw_initialize_context_constants(struct brw_context *brw)
316 {
317 struct gl_context *ctx = &brw->ctx;
318
319 unsigned max_samplers =
320 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
321
322 ctx->Const.QueryCounterBits.Timestamp = 36;
323
324 ctx->Const.StripTextureBorder = true;
325
326 ctx->Const.MaxDualSourceDrawBuffers = 1;
327 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
328 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits = max_samplers;
329 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
330 ctx->Const.MaxTextureUnits =
331 MIN2(ctx->Const.MaxTextureCoordUnits,
332 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
333 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits = max_samplers;
334 if (brw->gen >= 6)
335 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = max_samplers;
336 else
337 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = 0;
338 if (_mesa_extension_override_enables.ARB_compute_shader) {
339 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = BRW_MAX_TEX_UNIT;
340 ctx->Const.MaxUniformBufferBindings += 12;
341 } else {
342 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = 0;
343 }
344 ctx->Const.MaxCombinedTextureImageUnits =
345 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits +
346 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits +
347 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits +
348 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
349
350 ctx->Const.MaxTextureLevels = 14; /* 8192 */
351 if (ctx->Const.MaxTextureLevels > MAX_TEXTURE_LEVELS)
352 ctx->Const.MaxTextureLevels = MAX_TEXTURE_LEVELS;
353 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
354 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
355 ctx->Const.MaxTextureMbytes = 1536;
356
357 if (brw->gen >= 7)
358 ctx->Const.MaxArrayTextureLayers = 2048;
359 else
360 ctx->Const.MaxArrayTextureLayers = 512;
361
362 ctx->Const.MaxTextureRectSize = 1 << 12;
363
364 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
365
366 ctx->Const.MaxRenderbufferSize = 8192;
367
368 /* Hardware only supports a limited number of transform feedback buffers.
369 * So we need to override the Mesa default (which is based only on software
370 * limits).
371 */
372 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
373
374 /* On Gen6, in the worst case, we use up one binding table entry per
375 * transform feedback component (see comments above the definition of
376 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
377 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
378 * BRW_MAX_SOL_BINDINGS.
379 *
380 * In "separate components" mode, we need to divide this value by
381 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
382 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
383 */
384 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
385 ctx->Const.MaxTransformFeedbackSeparateComponents =
386 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
387
388 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
389
390 int max_samples;
391 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
392 const int clamp_max_samples =
393 brw->optionCache.info != NULL ?
394 driQueryOptioni(&brw->optionCache, "clamp_max_samples") : -1;
395
396 if (clamp_max_samples < 0) {
397 max_samples = msaa_modes[0];
398 } else {
399 /* Select the largest supported MSAA mode that does not exceed
400 * clamp_max_samples.
401 */
402 max_samples = 0;
403 for (int i = 0; msaa_modes[i] != 0; ++i) {
404 if (msaa_modes[i] <= clamp_max_samples) {
405 max_samples = msaa_modes[i];
406 break;
407 }
408 }
409 }
410
411 ctx->Const.MaxSamples = max_samples;
412 ctx->Const.MaxColorTextureSamples = max_samples;
413 ctx->Const.MaxDepthTextureSamples = max_samples;
414 ctx->Const.MaxIntegerSamples = max_samples;
415
416 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
417 * to map indices of rectangular grid to sample numbers within a pixel.
418 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
419 * extension implementation. For more details see the comment above
420 * gen6_set_sample_maps() definition.
421 */
422 gen6_set_sample_maps(ctx);
423
424 if (brw->gen >= 7)
425 ctx->Const.MaxProgramTextureGatherComponents = 4;
426 else if (brw->gen == 6)
427 ctx->Const.MaxProgramTextureGatherComponents = 1;
428
429 ctx->Const.MinLineWidth = 1.0;
430 ctx->Const.MinLineWidthAA = 1.0;
431 if (brw->gen >= 6) {
432 ctx->Const.MaxLineWidth = 7.375;
433 ctx->Const.MaxLineWidthAA = 7.375;
434 ctx->Const.LineWidthGranularity = 0.125;
435 } else {
436 ctx->Const.MaxLineWidth = 7.0;
437 ctx->Const.MaxLineWidthAA = 7.0;
438 ctx->Const.LineWidthGranularity = 0.5;
439 }
440
441 /* For non-antialiased lines, we have to round the line width to the
442 * nearest whole number. Make sure that we don't advertise a line
443 * width that, when rounded, will be beyond the actual hardware
444 * maximum.
445 */
446 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
447
448 ctx->Const.MinPointSize = 1.0;
449 ctx->Const.MinPointSizeAA = 1.0;
450 ctx->Const.MaxPointSize = 255.0;
451 ctx->Const.MaxPointSizeAA = 255.0;
452 ctx->Const.PointSizeGranularity = 1.0;
453
454 if (brw->gen >= 5 || brw->is_g4x)
455 ctx->Const.MaxClipPlanes = 8;
456
457 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
458 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
459 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
460 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
461 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
462 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
463 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
464 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
465 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
466 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
467 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
468 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
469 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
470 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
471
472 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
473 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
474 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
475 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
476 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
477 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
478 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
479 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
480 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
481 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
482 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
483
484 /* Fragment shaders use real, 32-bit twos-complement integers for all
485 * integer types.
486 */
487 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
488 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
489 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
490 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
491 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
492
493 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
494 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
495 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
496 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
497 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
498
499 if (brw->gen >= 7) {
500 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
501 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
502 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
503 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
504 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers = BRW_MAX_ABO;
505 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers = BRW_MAX_ABO;
506 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers = BRW_MAX_ABO;
507 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers = BRW_MAX_ABO;
508 ctx->Const.MaxCombinedAtomicBuffers = 3 * BRW_MAX_ABO;
509
510 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxImageUniforms =
511 BRW_MAX_IMAGES;
512 ctx->Const.Program[MESA_SHADER_VERTEX].MaxImageUniforms =
513 (brw->intelScreen->compiler->scalar_vs ? BRW_MAX_IMAGES : 0);
514 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxImageUniforms =
515 BRW_MAX_IMAGES;
516 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
517 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs =
518 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
519 ctx->Const.MaxImageSamples = 0;
520 ctx->Const.MaxCombinedImageUniforms = 3 * BRW_MAX_IMAGES;
521 }
522
523 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
524 * but we're not sure how it's actually done for vertex order,
525 * that affect provoking vertex decision. Always use last vertex
526 * convention for quad primitive which works as expected for now.
527 */
528 if (brw->gen >= 6)
529 ctx->Const.QuadsFollowProvokingVertexConvention = false;
530
531 ctx->Const.NativeIntegers = true;
532 ctx->Const.VertexID_is_zero_based = true;
533
534 /* Regarding the CMP instruction, the Ivybridge PRM says:
535 *
536 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
537 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
538 * 0xFFFFFFFF) is assigned to dst."
539 *
540 * but PRMs for earlier generations say
541 *
542 * "In dword format, one GRF may store up to 8 results. When the register
543 * is used later as a vector of Booleans, as only LSB at each channel
544 * contains meaning [sic] data, software should make sure all higher bits
545 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
546 *
547 * We select the representation of a true boolean uniform to be ~0, and fix
548 * the results of Gen <= 5 CMP instruction's with -(result & 1).
549 */
550 ctx->Const.UniformBooleanTrue = ~0;
551
552 /* From the gen4 PRM, volume 4 page 127:
553 *
554 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
555 * the base address of the first element of the surface, computed in
556 * software by adding the surface base address to the byte offset of
557 * the element in the buffer."
558 *
559 * However, unaligned accesses are slower, so enforce buffer alignment.
560 */
561 ctx->Const.UniformBufferOffsetAlignment = 16;
562 ctx->Const.TextureBufferOffsetAlignment = 16;
563 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
564
565 if (brw->gen >= 6) {
566 ctx->Const.MaxVarying = 32;
567 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
568 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
569 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
570 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
571 }
572
573 /* We want the GLSL compiler to emit code that uses condition codes */
574 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
575 ctx->Const.ShaderCompilerOptions[i] =
576 brw->intelScreen->compiler->glsl_compiler_options[i];
577 }
578
579 /* ARB_viewport_array */
580 if (brw->gen >= 6 && ctx->API == API_OPENGL_CORE) {
581 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
582 ctx->Const.ViewportSubpixelBits = 0;
583
584 /* Cast to float before negating because MaxViewportWidth is unsigned.
585 */
586 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
587 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
588 }
589
590 /* ARB_gpu_shader5 */
591 if (brw->gen >= 7)
592 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
593
594 /* ARB_framebuffer_no_attachments */
595 ctx->Const.MaxFramebufferWidth = ctx->Const.MaxViewportWidth;
596 ctx->Const.MaxFramebufferHeight = ctx->Const.MaxViewportHeight;
597 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
598 ctx->Const.MaxFramebufferSamples = max_samples;
599 }
600
601 static void
602 brw_adjust_cs_context_constants(struct brw_context *brw)
603 {
604 struct gl_context *ctx = &brw->ctx;
605
606 /* For ES, we set these constants based on SIMD8.
607 *
608 * TODO: Once we can always generate SIMD16, we should update this.
609 *
610 * For GL, we assume we can generate a SIMD16 program, but this currently
611 * is not always true. This allows us to run more test cases, and will be
612 * required based on desktop GL compute shader requirements.
613 */
614 const int simd_size = ctx->API == API_OPENGL_CORE ? 16 : 8;
615
616 const uint32_t max_invocations = simd_size * brw->max_cs_threads;
617 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
618 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
619 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
620 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
621 }
622
623 /**
624 * Process driconf (drirc) options, setting appropriate context flags.
625 *
626 * intelInitExtensions still pokes at optionCache directly, in order to
627 * avoid advertising various extensions. No flags are set, so it makes
628 * sense to continue doing that there.
629 */
630 static void
631 brw_process_driconf_options(struct brw_context *brw)
632 {
633 struct gl_context *ctx = &brw->ctx;
634
635 driOptionCache *options = &brw->optionCache;
636 driParseConfigFiles(options, &brw->intelScreen->optionCache,
637 brw->driContext->driScreenPriv->myNum, "i965");
638
639 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
640 switch (bo_reuse_mode) {
641 case DRI_CONF_BO_REUSE_DISABLED:
642 break;
643 case DRI_CONF_BO_REUSE_ALL:
644 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
645 break;
646 }
647
648 if (!driQueryOptionb(options, "hiz")) {
649 brw->has_hiz = false;
650 /* On gen6, you can only do separate stencil with HIZ. */
651 if (brw->gen == 6)
652 brw->has_separate_stencil = false;
653 }
654
655 if (driQueryOptionb(options, "always_flush_batch")) {
656 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
657 brw->always_flush_batch = true;
658 }
659
660 if (driQueryOptionb(options, "always_flush_cache")) {
661 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
662 brw->always_flush_cache = true;
663 }
664
665 if (driQueryOptionb(options, "disable_throttling")) {
666 fprintf(stderr, "disabling flush throttling\n");
667 brw->disable_throttling = true;
668 }
669
670 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
671
672 ctx->Const.ForceGLSLExtensionsWarn =
673 driQueryOptionb(options, "force_glsl_extensions_warn");
674
675 ctx->Const.DisableGLSLLineContinuations =
676 driQueryOptionb(options, "disable_glsl_line_continuations");
677
678 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
679 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
680 }
681
682 GLboolean
683 brwCreateContext(gl_api api,
684 const struct gl_config *mesaVis,
685 __DRIcontext *driContextPriv,
686 unsigned major_version,
687 unsigned minor_version,
688 uint32_t flags,
689 bool notify_reset,
690 unsigned *dri_ctx_error,
691 void *sharedContextPrivate)
692 {
693 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
694 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
695 struct intel_screen *screen = sPriv->driverPrivate;
696 const struct brw_device_info *devinfo = screen->devinfo;
697 struct dd_function_table functions;
698
699 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
700 * provides us with context reset notifications.
701 */
702 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
703 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
704
705 if (screen->has_context_reset_notification)
706 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
707
708 if (flags & ~allowed_flags) {
709 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
710 return false;
711 }
712
713 struct brw_context *brw = rzalloc(NULL, struct brw_context);
714 if (!brw) {
715 fprintf(stderr, "%s: failed to alloc context\n", __func__);
716 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
717 return false;
718 }
719
720 driContextPriv->driverPrivate = brw;
721 brw->driContext = driContextPriv;
722 brw->intelScreen = screen;
723 brw->bufmgr = screen->bufmgr;
724
725 brw->gen = devinfo->gen;
726 brw->gt = devinfo->gt;
727 brw->is_g4x = devinfo->is_g4x;
728 brw->is_baytrail = devinfo->is_baytrail;
729 brw->is_haswell = devinfo->is_haswell;
730 brw->is_cherryview = devinfo->is_cherryview;
731 brw->is_broxton = devinfo->is_broxton;
732 brw->has_llc = devinfo->has_llc;
733 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
734 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
735 brw->has_pln = devinfo->has_pln;
736 brw->has_compr4 = devinfo->has_compr4;
737 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
738 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
739 brw->needs_unlit_centroid_workaround =
740 devinfo->needs_unlit_centroid_workaround;
741
742 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
743 brw->has_swizzling = screen->hw_has_swizzling;
744
745 brw->vs.base.stage = MESA_SHADER_VERTEX;
746 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
747 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
748 if (brw->gen >= 8) {
749 gen8_init_vtable_surface_functions(brw);
750 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
751 } else if (brw->gen >= 7) {
752 gen7_init_vtable_surface_functions(brw);
753 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
754 } else if (brw->gen >= 6) {
755 gen6_init_vtable_surface_functions(brw);
756 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
757 } else {
758 gen4_init_vtable_surface_functions(brw);
759 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
760 }
761
762 brw_init_driver_functions(brw, &functions);
763
764 if (notify_reset)
765 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
766
767 struct gl_context *ctx = &brw->ctx;
768
769 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
770 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
771 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
772 intelDestroyContext(driContextPriv);
773 return false;
774 }
775
776 driContextSetFlags(ctx, flags);
777
778 /* Initialize the software rasterizer and helper modules.
779 *
780 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
781 * software fallbacks (which we have to support on legacy GL to do weird
782 * glDrawPixels(), glBitmap(), and other functions).
783 */
784 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
785 _swrast_CreateContext(ctx);
786 }
787
788 _vbo_CreateContext(ctx);
789 if (ctx->swrast_context) {
790 _tnl_CreateContext(ctx);
791 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
792 _swsetup_CreateContext(ctx);
793
794 /* Configure swrast to match hardware characteristics: */
795 _swrast_allow_pixel_fog(ctx, false);
796 _swrast_allow_vertex_fog(ctx, true);
797 }
798
799 _mesa_meta_init(ctx);
800
801 brw_process_driconf_options(brw);
802
803 if (INTEL_DEBUG & DEBUG_PERF)
804 brw->perf_debug = true;
805
806 brw_initialize_context_constants(brw);
807
808 ctx->Const.ResetStrategy = notify_reset
809 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
810
811 /* Reinitialize the context point state. It depends on ctx->Const values. */
812 _mesa_init_point(ctx);
813
814 intel_fbo_init(brw);
815
816 intel_batchbuffer_init(brw);
817
818 #if 0
819 if (brw->gen >= 6) {
820 /* Create a new hardware context. Using a hardware context means that
821 * our GPU state will be saved/restored on context switch, allowing us
822 * to assume that the GPU is in the same state we left it in.
823 *
824 * This is required for transform feedback buffer offsets, query objects,
825 * and also allows us to reduce how much state we have to emit.
826 */
827 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
828
829 if (!brw->hw_ctx) {
830 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
831 intelDestroyContext(driContextPriv);
832 return false;
833 }
834 }
835
836 if (brw_init_pipe_control(brw, devinfo)) {
837 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
838 intelDestroyContext(driContextPriv);
839 return false;
840 }
841
842 brw_init_state(brw);
843 #endif
844
845 intelInitExtensions(ctx);
846
847 brw_init_surface_formats(brw);
848
849 brw->max_vs_threads = devinfo->max_vs_threads;
850 brw->max_hs_threads = devinfo->max_hs_threads;
851 brw->max_ds_threads = devinfo->max_ds_threads;
852 brw->max_gs_threads = devinfo->max_gs_threads;
853 brw->max_wm_threads = devinfo->max_wm_threads;
854 brw->max_cs_threads = devinfo->max_cs_threads;
855 brw->urb.size = devinfo->urb.size;
856 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
857 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
858 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
859 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
860 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
861
862 brw_adjust_cs_context_constants(brw);
863
864 /* Estimate the size of the mappable aperture into the GTT. There's an
865 * ioctl to get the whole GTT size, but not one to get the mappable subset.
866 * It turns out it's basically always 256MB, though some ancient hardware
867 * was smaller.
868 */
869 uint32_t gtt_size = 256 * 1024 * 1024;
870
871 /* We don't want to map two objects such that a memcpy between them would
872 * just fault one mapping in and then the other over and over forever. So
873 * we would need to divide the GTT size by 2. Additionally, some GTT is
874 * taken up by things like the framebuffer and the ringbuffer and such, so
875 * be more conservative.
876 */
877 brw->max_gtt_map_object_size = gtt_size / 4;
878
879 if (brw->gen == 6)
880 brw->urb.gs_present = false;
881
882 brw->prim_restart.in_progress = false;
883 brw->prim_restart.enable_cut_index = false;
884 brw->gs.enabled = false;
885 brw->sf.viewport_transform_enable = true;
886
887 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
888
889 brw->use_resource_streamer = screen->has_resource_streamer &&
890 (brw_env_var_as_boolean("INTEL_USE_HW_BT", false) ||
891 brw_env_var_as_boolean("INTEL_USE_GATHER", false));
892
893 ctx->VertexProgram._MaintainTnlProgram = true;
894 ctx->FragmentProgram._MaintainTexEnvProgram = true;
895
896 brw_draw_init( brw );
897
898 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
899 /* Turn on some extra GL_ARB_debug_output generation. */
900 brw->perf_debug = true;
901 }
902
903 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
904 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
905
906 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
907 brw_init_shader_time(brw);
908
909 _mesa_compute_version(ctx);
910
911 #if 0
912 _mesa_initialize_dispatch_tables(ctx);
913 _mesa_initialize_vbo_vtxfmt(ctx);
914 #endif
915
916 if (ctx->Extensions.AMD_performance_monitor) {
917 brw_init_performance_monitors(brw);
918 }
919
920 vbo_use_buffer_objects(ctx);
921 vbo_always_unmap_buffers(ctx);
922
923 return true;
924 }
925
926 void
927 intelDestroyContext(__DRIcontext * driContextPriv)
928 {
929 struct brw_context *brw =
930 (struct brw_context *) driContextPriv->driverPrivate;
931 struct gl_context *ctx = &brw->ctx;
932
933 /* Dump a final BMP in case the application doesn't call SwapBuffers */
934 if (INTEL_DEBUG & DEBUG_AUB) {
935 intel_batchbuffer_flush(brw);
936 aub_dump_bmp(&brw->ctx);
937 }
938
939 _mesa_meta_free(&brw->ctx);
940 brw_meta_fast_clear_free(brw);
941
942 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
943 /* Force a report. */
944 brw->shader_time.report_time = 0;
945
946 brw_collect_and_report_shader_time(brw);
947 brw_destroy_shader_time(brw);
948 }
949
950 brw_destroy_state(brw);
951 brw_draw_destroy(brw);
952
953 drm_intel_bo_unreference(brw->curbe.curbe_bo);
954 if (brw->vs.base.scratch_bo)
955 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
956 if (brw->gs.base.scratch_bo)
957 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
958 if (brw->wm.base.scratch_bo)
959 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
960
961 gen7_reset_hw_bt_pool_offsets(brw);
962 drm_intel_bo_unreference(brw->hw_bt_pool.bo);
963 brw->hw_bt_pool.bo = NULL;
964
965 drm_intel_gem_context_destroy(brw->hw_ctx);
966
967 if (ctx->swrast_context) {
968 _swsetup_DestroyContext(&brw->ctx);
969 _tnl_DestroyContext(&brw->ctx);
970 }
971 _vbo_DestroyContext(&brw->ctx);
972
973 if (ctx->swrast_context)
974 _swrast_DestroyContext(&brw->ctx);
975
976 brw_fini_pipe_control(brw);
977 intel_batchbuffer_free(brw);
978
979 drm_intel_bo_unreference(brw->throttle_batch[1]);
980 drm_intel_bo_unreference(brw->throttle_batch[0]);
981 brw->throttle_batch[1] = NULL;
982 brw->throttle_batch[0] = NULL;
983
984 driDestroyOptionCache(&brw->optionCache);
985
986 /* free the Mesa context */
987 _mesa_free_context_data(&brw->ctx);
988
989 ralloc_free(brw);
990 driContextPriv->driverPrivate = NULL;
991 }
992
993 GLboolean
994 intelUnbindContext(__DRIcontext * driContextPriv)
995 {
996 /* Unset current context and dispath table */
997 _mesa_make_current(NULL, NULL, NULL);
998
999 return true;
1000 }
1001
1002 /**
1003 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1004 * on window system framebuffers.
1005 *
1006 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1007 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1008 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1009 * for a visual where you're guaranteed to be capable, but it turns out that
1010 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1011 * incapable ones, because there's no difference between the two in resources
1012 * used. Applications thus get built that accidentally rely on the default
1013 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1014 * great...
1015 *
1016 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1017 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1018 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1019 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1020 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1021 * and get no sRGB encode (assuming that both kinds of visual are available).
1022 * Thus our choice to support sRGB by default on our visuals for desktop would
1023 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1024 *
1025 * Unfortunately, renderbuffer setup happens before a context is created. So
1026 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1027 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1028 * yet), we go turn that back off before anyone finds out.
1029 */
1030 static void
1031 intel_gles3_srgb_workaround(struct brw_context *brw,
1032 struct gl_framebuffer *fb)
1033 {
1034 struct gl_context *ctx = &brw->ctx;
1035
1036 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1037 return;
1038
1039 /* Some day when we support the sRGB capable bit on visuals available for
1040 * GLES, we'll need to respect that and not disable things here.
1041 */
1042 fb->Visual.sRGBCapable = false;
1043 for (int i = 0; i < BUFFER_COUNT; i++) {
1044 if (fb->Attachment[i].Renderbuffer &&
1045 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
1046 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
1047 }
1048 }
1049 }
1050
1051 GLboolean
1052 intelMakeCurrent(__DRIcontext * driContextPriv,
1053 __DRIdrawable * driDrawPriv,
1054 __DRIdrawable * driReadPriv)
1055 {
1056 struct brw_context *brw;
1057 GET_CURRENT_CONTEXT(curCtx);
1058
1059 if (driContextPriv)
1060 brw = (struct brw_context *) driContextPriv->driverPrivate;
1061 else
1062 brw = NULL;
1063
1064 /* According to the glXMakeCurrent() man page: "Pending commands to
1065 * the previous context, if any, are flushed before it is released."
1066 * But only flush if we're actually changing contexts.
1067 */
1068 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1069 _mesa_flush(curCtx);
1070 }
1071
1072 if (driContextPriv) {
1073 struct gl_context *ctx = &brw->ctx;
1074 struct gl_framebuffer *fb, *readFb;
1075
1076 if (driDrawPriv == NULL) {
1077 fb = _mesa_get_incomplete_framebuffer();
1078 } else {
1079 fb = driDrawPriv->driverPrivate;
1080 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1081 }
1082
1083 if (driReadPriv == NULL) {
1084 readFb = _mesa_get_incomplete_framebuffer();
1085 } else {
1086 readFb = driReadPriv->driverPrivate;
1087 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1088 }
1089
1090 /* The sRGB workaround changes the renderbuffer's format. We must change
1091 * the format before the renderbuffer's miptree get's allocated, otherwise
1092 * the formats of the renderbuffer and its miptree will differ.
1093 */
1094 intel_gles3_srgb_workaround(brw, fb);
1095 intel_gles3_srgb_workaround(brw, readFb);
1096
1097 /* If the context viewport hasn't been initialized, force a call out to
1098 * the loader to get buffers so we have a drawable size for the initial
1099 * viewport. */
1100 if (!brw->ctx.ViewportInitialized)
1101 intel_prepare_render(brw);
1102
1103 _mesa_make_current(ctx, fb, readFb);
1104 } else {
1105 _mesa_make_current(NULL, NULL, NULL);
1106 }
1107
1108 return true;
1109 }
1110
1111 void
1112 intel_resolve_for_dri2_flush(struct brw_context *brw,
1113 __DRIdrawable *drawable)
1114 {
1115 if (brw->gen < 6) {
1116 /* MSAA and fast color clear are not supported, so don't waste time
1117 * checking whether a resolve is needed.
1118 */
1119 return;
1120 }
1121
1122 struct gl_framebuffer *fb = drawable->driverPrivate;
1123 struct intel_renderbuffer *rb;
1124
1125 /* Usually, only the back buffer will need to be downsampled. However,
1126 * the front buffer will also need it if the user has rendered into it.
1127 */
1128 static const gl_buffer_index buffers[2] = {
1129 BUFFER_BACK_LEFT,
1130 BUFFER_FRONT_LEFT,
1131 };
1132
1133 for (int i = 0; i < 2; ++i) {
1134 rb = intel_get_renderbuffer(fb, buffers[i]);
1135 if (rb == NULL || rb->mt == NULL)
1136 continue;
1137 if (rb->mt->num_samples <= 1)
1138 intel_miptree_resolve_color(brw, rb->mt);
1139 else
1140 intel_renderbuffer_downsample(brw, rb);
1141 }
1142 }
1143
1144 static unsigned
1145 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1146 {
1147 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1148 }
1149
1150 static void
1151 intel_query_dri2_buffers(struct brw_context *brw,
1152 __DRIdrawable *drawable,
1153 __DRIbuffer **buffers,
1154 int *count);
1155
1156 static void
1157 intel_process_dri2_buffer(struct brw_context *brw,
1158 __DRIdrawable *drawable,
1159 __DRIbuffer *buffer,
1160 struct intel_renderbuffer *rb,
1161 const char *buffer_name);
1162
1163 static void
1164 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1165
1166 static void
1167 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1168 {
1169 struct gl_framebuffer *fb = drawable->driverPrivate;
1170 struct intel_renderbuffer *rb;
1171 __DRIbuffer *buffers = NULL;
1172 int i, count;
1173 const char *region_name;
1174
1175 /* Set this up front, so that in case our buffers get invalidated
1176 * while we're getting new buffers, we don't clobber the stamp and
1177 * thus ignore the invalidate. */
1178 drawable->lastStamp = drawable->dri2.stamp;
1179
1180 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1181 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1182
1183 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1184
1185 if (buffers == NULL)
1186 return;
1187
1188 for (i = 0; i < count; i++) {
1189 switch (buffers[i].attachment) {
1190 case __DRI_BUFFER_FRONT_LEFT:
1191 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1192 region_name = "dri2 front buffer";
1193 break;
1194
1195 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1196 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1197 region_name = "dri2 fake front buffer";
1198 break;
1199
1200 case __DRI_BUFFER_BACK_LEFT:
1201 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1202 region_name = "dri2 back buffer";
1203 break;
1204
1205 case __DRI_BUFFER_DEPTH:
1206 case __DRI_BUFFER_HIZ:
1207 case __DRI_BUFFER_DEPTH_STENCIL:
1208 case __DRI_BUFFER_STENCIL:
1209 case __DRI_BUFFER_ACCUM:
1210 default:
1211 fprintf(stderr,
1212 "unhandled buffer attach event, attachment type %d\n",
1213 buffers[i].attachment);
1214 return;
1215 }
1216
1217 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1218 }
1219
1220 }
1221
1222 void
1223 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1224 {
1225 struct brw_context *brw = context->driverPrivate;
1226 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1227
1228 /* Set this up front, so that in case our buffers get invalidated
1229 * while we're getting new buffers, we don't clobber the stamp and
1230 * thus ignore the invalidate. */
1231 drawable->lastStamp = drawable->dri2.stamp;
1232
1233 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1234 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1235
1236 if (screen->image.loader)
1237 intel_update_image_buffers(brw, drawable);
1238 else
1239 intel_update_dri2_buffers(brw, drawable);
1240
1241 driUpdateFramebufferSize(&brw->ctx, drawable);
1242 }
1243
1244 /**
1245 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1246 * state is required.
1247 */
1248 void
1249 intel_prepare_render(struct brw_context *brw)
1250 {
1251 struct gl_context *ctx = &brw->ctx;
1252 __DRIcontext *driContext = brw->driContext;
1253 __DRIdrawable *drawable;
1254
1255 drawable = driContext->driDrawablePriv;
1256 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1257 if (drawable->lastStamp != drawable->dri2.stamp)
1258 intel_update_renderbuffers(driContext, drawable);
1259 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1260 }
1261
1262 drawable = driContext->driReadablePriv;
1263 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1264 if (drawable->lastStamp != drawable->dri2.stamp)
1265 intel_update_renderbuffers(driContext, drawable);
1266 driContext->dri2.read_stamp = drawable->dri2.stamp;
1267 }
1268
1269 /* If we're currently rendering to the front buffer, the rendering
1270 * that will happen next will probably dirty the front buffer. So
1271 * mark it as dirty here.
1272 */
1273 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
1274 brw->front_buffer_dirty = true;
1275 }
1276
1277 /**
1278 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1279 *
1280 * To determine which DRI buffers to request, examine the renderbuffers
1281 * attached to the drawable's framebuffer. Then request the buffers with
1282 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1283 *
1284 * This is called from intel_update_renderbuffers().
1285 *
1286 * \param drawable Drawable whose buffers are queried.
1287 * \param buffers [out] List of buffers returned by DRI2 query.
1288 * \param buffer_count [out] Number of buffers returned.
1289 *
1290 * \see intel_update_renderbuffers()
1291 * \see DRI2GetBuffers()
1292 * \see DRI2GetBuffersWithFormat()
1293 */
1294 static void
1295 intel_query_dri2_buffers(struct brw_context *brw,
1296 __DRIdrawable *drawable,
1297 __DRIbuffer **buffers,
1298 int *buffer_count)
1299 {
1300 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1301 struct gl_framebuffer *fb = drawable->driverPrivate;
1302 int i = 0;
1303 unsigned attachments[8];
1304
1305 struct intel_renderbuffer *front_rb;
1306 struct intel_renderbuffer *back_rb;
1307
1308 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1309 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1310
1311 memset(attachments, 0, sizeof(attachments));
1312 if ((brw_is_front_buffer_drawing(fb) ||
1313 brw_is_front_buffer_reading(fb) ||
1314 !back_rb) && front_rb) {
1315 /* If a fake front buffer is in use, then querying for
1316 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1317 * the real front buffer to the fake front buffer. So before doing the
1318 * query, we need to make sure all the pending drawing has landed in the
1319 * real front buffer.
1320 */
1321 intel_batchbuffer_flush(brw);
1322 intel_flush_front(&brw->ctx);
1323
1324 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1325 attachments[i++] = intel_bits_per_pixel(front_rb);
1326 } else if (front_rb && brw->front_buffer_dirty) {
1327 /* We have pending front buffer rendering, but we aren't querying for a
1328 * front buffer. If the front buffer we have is a fake front buffer,
1329 * the X server is going to throw it away when it processes the query.
1330 * So before doing the query, make sure all the pending drawing has
1331 * landed in the real front buffer.
1332 */
1333 intel_batchbuffer_flush(brw);
1334 intel_flush_front(&brw->ctx);
1335 }
1336
1337 if (back_rb) {
1338 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1339 attachments[i++] = intel_bits_per_pixel(back_rb);
1340 }
1341
1342 assert(i <= ARRAY_SIZE(attachments));
1343
1344 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1345 &drawable->w,
1346 &drawable->h,
1347 attachments, i / 2,
1348 buffer_count,
1349 drawable->loaderPrivate);
1350 }
1351
1352 /**
1353 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1354 *
1355 * This is called from intel_update_renderbuffers().
1356 *
1357 * \par Note:
1358 * DRI buffers whose attachment point is DRI2BufferStencil or
1359 * DRI2BufferDepthStencil are handled as special cases.
1360 *
1361 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1362 * that is passed to drm_intel_bo_gem_create_from_name().
1363 *
1364 * \see intel_update_renderbuffers()
1365 */
1366 static void
1367 intel_process_dri2_buffer(struct brw_context *brw,
1368 __DRIdrawable *drawable,
1369 __DRIbuffer *buffer,
1370 struct intel_renderbuffer *rb,
1371 const char *buffer_name)
1372 {
1373 struct gl_framebuffer *fb = drawable->driverPrivate;
1374 drm_intel_bo *bo;
1375
1376 if (!rb)
1377 return;
1378
1379 unsigned num_samples = rb->Base.Base.NumSamples;
1380
1381 /* We try to avoid closing and reopening the same BO name, because the first
1382 * use of a mapping of the buffer involves a bunch of page faulting which is
1383 * moderately expensive.
1384 */
1385 struct intel_mipmap_tree *last_mt;
1386 if (num_samples == 0)
1387 last_mt = rb->mt;
1388 else
1389 last_mt = rb->singlesample_mt;
1390
1391 uint32_t old_name = 0;
1392 if (last_mt) {
1393 /* The bo already has a name because the miptree was created by a
1394 * previous call to intel_process_dri2_buffer(). If a bo already has a
1395 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1396 * create a new name.
1397 */
1398 drm_intel_bo_flink(last_mt->bo, &old_name);
1399 }
1400
1401 if (old_name == buffer->name)
1402 return;
1403
1404 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1405 fprintf(stderr,
1406 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1407 buffer->name, buffer->attachment,
1408 buffer->cpp, buffer->pitch);
1409 }
1410
1411 intel_miptree_release(&rb->mt);
1412 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1413 buffer->name);
1414 if (!bo) {
1415 fprintf(stderr,
1416 "Failed to open BO for returned DRI2 buffer "
1417 "(%dx%d, %s, named %d).\n"
1418 "This is likely a bug in the X Server that will lead to a "
1419 "crash soon.\n",
1420 drawable->w, drawable->h, buffer_name, buffer->name);
1421 return;
1422 }
1423
1424 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1425 drawable->w, drawable->h,
1426 buffer->pitch);
1427
1428 if (brw_is_front_buffer_drawing(fb) &&
1429 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1430 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1431 rb->Base.Base.NumSamples > 1) {
1432 intel_renderbuffer_upsample(brw, rb);
1433 }
1434
1435 assert(rb->mt);
1436
1437 drm_intel_bo_unreference(bo);
1438 }
1439
1440 /**
1441 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1442 *
1443 * To determine which DRI buffers to request, examine the renderbuffers
1444 * attached to the drawable's framebuffer. Then request the buffers from
1445 * the image loader
1446 *
1447 * This is called from intel_update_renderbuffers().
1448 *
1449 * \param drawable Drawable whose buffers are queried.
1450 * \param buffers [out] List of buffers returned by DRI2 query.
1451 * \param buffer_count [out] Number of buffers returned.
1452 *
1453 * \see intel_update_renderbuffers()
1454 */
1455
1456 static void
1457 intel_update_image_buffer(struct brw_context *intel,
1458 __DRIdrawable *drawable,
1459 struct intel_renderbuffer *rb,
1460 __DRIimage *buffer,
1461 enum __DRIimageBufferMask buffer_type)
1462 {
1463 struct gl_framebuffer *fb = drawable->driverPrivate;
1464
1465 if (!rb || !buffer->bo)
1466 return;
1467
1468 unsigned num_samples = rb->Base.Base.NumSamples;
1469
1470 /* Check and see if we're already bound to the right
1471 * buffer object
1472 */
1473 struct intel_mipmap_tree *last_mt;
1474 if (num_samples == 0)
1475 last_mt = rb->mt;
1476 else
1477 last_mt = rb->singlesample_mt;
1478
1479 if (last_mt && last_mt->bo == buffer->bo)
1480 return;
1481
1482 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1483 buffer->width, buffer->height,
1484 buffer->pitch);
1485
1486 if (brw_is_front_buffer_drawing(fb) &&
1487 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1488 rb->Base.Base.NumSamples > 1) {
1489 intel_renderbuffer_upsample(intel, rb);
1490 }
1491 }
1492
1493 static void
1494 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1495 {
1496 struct gl_framebuffer *fb = drawable->driverPrivate;
1497 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1498 struct intel_renderbuffer *front_rb;
1499 struct intel_renderbuffer *back_rb;
1500 struct __DRIimageList images;
1501 unsigned int format;
1502 uint32_t buffer_mask = 0;
1503
1504 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1505 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1506
1507 if (back_rb)
1508 format = intel_rb_format(back_rb);
1509 else if (front_rb)
1510 format = intel_rb_format(front_rb);
1511 else
1512 return;
1513
1514 if (front_rb && (brw_is_front_buffer_drawing(fb) ||
1515 brw_is_front_buffer_reading(fb) || !back_rb)) {
1516 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1517 }
1518
1519 if (back_rb)
1520 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1521
1522 (*screen->image.loader->getBuffers) (drawable,
1523 driGLFormatToImageFormat(format),
1524 &drawable->dri2.stamp,
1525 drawable->loaderPrivate,
1526 buffer_mask,
1527 &images);
1528
1529 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1530 drawable->w = images.front->width;
1531 drawable->h = images.front->height;
1532 intel_update_image_buffer(brw,
1533 drawable,
1534 front_rb,
1535 images.front,
1536 __DRI_IMAGE_BUFFER_FRONT);
1537 }
1538 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1539 drawable->w = images.back->width;
1540 drawable->h = images.back->height;
1541 intel_update_image_buffer(brw,
1542 drawable,
1543 back_rb,
1544 images.back,
1545 __DRI_IMAGE_BUFFER_BACK);
1546 }
1547 }