i965/fs: Handle fixed HW GRF subnr in reg_offset().
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44 #include "main/framebuffer.h"
45
46 #include "vbo/vbo_context.h"
47
48 #include "drivers/common/driverfuncs.h"
49 #include "drivers/common/meta.h"
50 #include "utils.h"
51
52 #include "brw_context.h"
53 #include "brw_defines.h"
54 #include "brw_blorp.h"
55 #include "brw_compiler.h"
56 #include "brw_draw.h"
57 #include "brw_state.h"
58
59 #include "intel_batchbuffer.h"
60 #include "intel_buffer_objects.h"
61 #include "intel_buffers.h"
62 #include "intel_fbo.h"
63 #include "intel_mipmap_tree.h"
64 #include "intel_pixel.h"
65 #include "intel_image.h"
66 #include "intel_tex.h"
67 #include "intel_tex_obj.h"
68
69 #include "swrast_setup/swrast_setup.h"
70 #include "tnl/tnl.h"
71 #include "tnl/t_pipeline.h"
72 #include "util/ralloc.h"
73 #include "util/debug.h"
74 #include "isl/isl.h"
75
76 /***************************************
77 * Mesa's Driver Functions
78 ***************************************/
79
80 const char *const brw_vendor_string = "Intel Open Source Technology Center";
81
82 static const char *
83 get_bsw_model(const struct intel_screen *intelScreen)
84 {
85 switch (intelScreen->eu_total) {
86 case 16:
87 return "405";
88 case 12:
89 return "400";
90 default:
91 return " ";
92 }
93 }
94
95 const char *
96 brw_get_renderer_string(const struct intel_screen *intelScreen)
97 {
98 const char *chipset;
99 static char buffer[128];
100 char *bsw = NULL;
101
102 switch (intelScreen->deviceID) {
103 #undef CHIPSET
104 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
105 #include "pci_ids/i965_pci_ids.h"
106 default:
107 chipset = "Unknown Intel Chipset";
108 break;
109 }
110
111 /* Braswell branding is funny, so we have to fix it up here */
112 if (intelScreen->deviceID == 0x22B1) {
113 bsw = strdup(chipset);
114 char *needle = strstr(bsw, "XXX");
115 if (needle) {
116 memcpy(needle, get_bsw_model(intelScreen), 3);
117 chipset = bsw;
118 }
119 }
120
121 (void) driGetRendererString(buffer, chipset, 0);
122 free(bsw);
123 return buffer;
124 }
125
126 static const GLubyte *
127 intel_get_string(struct gl_context * ctx, GLenum name)
128 {
129 const struct brw_context *const brw = brw_context(ctx);
130
131 switch (name) {
132 case GL_VENDOR:
133 return (GLubyte *) brw_vendor_string;
134
135 case GL_RENDERER:
136 return
137 (GLubyte *) brw_get_renderer_string(brw->intelScreen);
138
139 default:
140 return NULL;
141 }
142 }
143
144 static void
145 intel_viewport(struct gl_context *ctx)
146 {
147 struct brw_context *brw = brw_context(ctx);
148 __DRIcontext *driContext = brw->driContext;
149
150 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
151 if (driContext->driDrawablePriv)
152 dri2InvalidateDrawable(driContext->driDrawablePriv);
153 if (driContext->driReadablePriv)
154 dri2InvalidateDrawable(driContext->driReadablePriv);
155 }
156 }
157
158 static void
159 intel_update_framebuffer(struct gl_context *ctx,
160 struct gl_framebuffer *fb)
161 {
162 struct brw_context *brw = brw_context(ctx);
163
164 /* Quantize the derived default number of samples
165 */
166 fb->DefaultGeometry._NumSamples =
167 intel_quantize_num_samples(brw->intelScreen,
168 fb->DefaultGeometry.NumSamples);
169 }
170
171 static bool
172 intel_disable_rb_aux_buffer(struct brw_context *brw, const drm_intel_bo *bo)
173 {
174 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
175 bool found = false;
176
177 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
178 const struct intel_renderbuffer *irb =
179 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
180
181 if (irb && irb->mt->bo == bo) {
182 found = brw->draw_aux_buffer_disabled[i] = true;
183 }
184 }
185
186 return found;
187 }
188
189 /* On Gen9 color buffers may be compressed by the hardware (lossless
190 * compression). There are, however, format restrictions and care needs to be
191 * taken that the sampler engine is capable for re-interpreting a buffer with
192 * format different the buffer was originally written with.
193 *
194 * For example, SRGB formats are not compressible and the sampler engine isn't
195 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
196 * color buffer needs to be resolved so that the sampling surface can be
197 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
198 * set).
199 */
200 static bool
201 intel_texture_view_requires_resolve(struct brw_context *brw,
202 struct intel_texture_object *intel_tex)
203 {
204 if (brw->gen < 9 ||
205 !intel_miptree_is_lossless_compressed(brw, intel_tex->mt))
206 return false;
207
208 const uint32_t brw_format = brw_format_for_mesa_format(intel_tex->_Format);
209
210 if (isl_format_supports_lossless_compression(brw->intelScreen->devinfo,
211 brw_format))
212 return false;
213
214 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
215 _mesa_get_format_name(intel_tex->_Format),
216 _mesa_get_format_name(intel_tex->mt->format));
217
218 if (intel_disable_rb_aux_buffer(brw, intel_tex->mt->bo))
219 perf_debug("Sampling renderbuffer with non-compressible format - "
220 "turning off compression");
221
222 return true;
223 }
224
225 static void
226 intel_update_state(struct gl_context * ctx, GLuint new_state)
227 {
228 struct brw_context *brw = brw_context(ctx);
229 struct intel_texture_object *tex_obj;
230 struct intel_renderbuffer *depth_irb;
231
232 if (ctx->swrast_context)
233 _swrast_InvalidateState(ctx, new_state);
234 _vbo_InvalidateState(ctx, new_state);
235
236 brw->NewGLState |= new_state;
237
238 _mesa_unlock_context_textures(ctx);
239
240 /* Resolve the depth buffer's HiZ buffer. */
241 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
242 if (depth_irb)
243 intel_renderbuffer_resolve_hiz(brw, depth_irb);
244
245 memset(brw->draw_aux_buffer_disabled, 0,
246 sizeof(brw->draw_aux_buffer_disabled));
247
248 /* Resolve depth buffer and render cache of each enabled texture. */
249 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
250 for (int i = 0; i <= maxEnabledUnit; i++) {
251 if (!ctx->Texture.Unit[i]._Current)
252 continue;
253 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
254 if (!tex_obj || !tex_obj->mt)
255 continue;
256 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
257 /* Sampling engine understands lossless compression and resolving
258 * those surfaces should be skipped for performance reasons.
259 */
260 const int flags = intel_texture_view_requires_resolve(brw, tex_obj) ?
261 0 : INTEL_MIPTREE_IGNORE_CCS_E;
262 intel_miptree_resolve_color(brw, tex_obj->mt, flags);
263 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
264
265 if (tex_obj->base.StencilSampling ||
266 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
267 intel_update_r8stencil(brw, tex_obj->mt);
268 }
269 }
270
271 /* Resolve color for each active shader image. */
272 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
273 const struct gl_linked_shader *shader =
274 ctx->_Shader->CurrentProgram[i] ?
275 ctx->_Shader->CurrentProgram[i]->_LinkedShaders[i] : NULL;
276
277 if (unlikely(shader && shader->NumImages)) {
278 for (unsigned j = 0; j < shader->NumImages; j++) {
279 struct gl_image_unit *u = &ctx->ImageUnits[shader->ImageUnits[j]];
280 tex_obj = intel_texture_object(u->TexObj);
281
282 if (tex_obj && tex_obj->mt) {
283 /* Access to images is implemented using indirect messages
284 * against data port. Normal render target write understands
285 * lossless compression but unfortunately the typed/untyped
286 * read/write interface doesn't. Therefore even lossless
287 * compressed surfaces need to be resolved prior to accessing
288 * them. Hence skip setting INTEL_MIPTREE_IGNORE_CCS_E.
289 */
290 intel_miptree_resolve_color(brw, tex_obj->mt, 0);
291
292 if (intel_miptree_is_lossless_compressed(brw, tex_obj->mt) &&
293 intel_disable_rb_aux_buffer(brw, tex_obj->mt->bo)) {
294 perf_debug("Using renderbuffer as shader image - turning "
295 "off lossless compression");
296 }
297
298 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
299 }
300 }
301 }
302 }
303
304 /* Resolve color buffers for non-coherent framebuffer fetch. */
305 if (!ctx->Extensions.MESA_shader_framebuffer_fetch &&
306 ctx->FragmentProgram._Current &&
307 ctx->FragmentProgram._Current->Base.OutputsRead) {
308 const struct gl_framebuffer *fb = ctx->DrawBuffer;
309
310 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
311 const struct intel_renderbuffer *irb =
312 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
313
314 if (irb &&
315 intel_miptree_resolve_color(brw, irb->mt,
316 INTEL_MIPTREE_IGNORE_CCS_E))
317 brw_render_cache_set_check_flush(brw, irb->mt->bo);
318 }
319 }
320
321 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of the
322 * single-sampled color renderbuffers because the CCS buffer isn't
323 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
324 * enabled because otherwise the surface state will be programmed with the
325 * linear equivalent format anyway.
326 */
327 if (brw->gen >= 9 && ctx->Color.sRGBEnabled) {
328 struct gl_framebuffer *fb = ctx->DrawBuffer;
329 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
330 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[i];
331
332 if (rb == NULL)
333 continue;
334
335 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
336 struct intel_mipmap_tree *mt = irb->mt;
337
338 if (mt == NULL ||
339 mt->num_samples > 1 ||
340 _mesa_get_srgb_format_linear(mt->format) == mt->format)
341 continue;
342
343 /* Lossless compression is not supported for SRGB formats, it
344 * should be impossible to get here with such surfaces.
345 */
346 assert(!intel_miptree_is_lossless_compressed(brw, mt));
347 intel_miptree_resolve_color(brw, mt, 0);
348 brw_render_cache_set_check_flush(brw, mt->bo);
349 }
350 }
351
352 _mesa_lock_context_textures(ctx);
353
354 if (new_state & _NEW_BUFFERS) {
355 intel_update_framebuffer(ctx, ctx->DrawBuffer);
356 if (ctx->DrawBuffer != ctx->ReadBuffer)
357 intel_update_framebuffer(ctx, ctx->ReadBuffer);
358 }
359 }
360
361 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
362
363 static void
364 intel_flush_front(struct gl_context *ctx)
365 {
366 struct brw_context *brw = brw_context(ctx);
367 __DRIcontext *driContext = brw->driContext;
368 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
369 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
370
371 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
372 if (flushFront(screen) && driDrawable &&
373 driDrawable->loaderPrivate) {
374
375 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
376 *
377 * This potentially resolves both front and back buffer. It
378 * is unnecessary to resolve the back, but harms nothing except
379 * performance. And no one cares about front-buffer render
380 * performance.
381 */
382 intel_resolve_for_dri2_flush(brw, driDrawable);
383 intel_batchbuffer_flush(brw);
384
385 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
386
387 /* We set the dirty bit in intel_prepare_render() if we're
388 * front buffer rendering once we get there.
389 */
390 brw->front_buffer_dirty = false;
391 }
392 }
393 }
394
395 static void
396 intel_glFlush(struct gl_context *ctx)
397 {
398 struct brw_context *brw = brw_context(ctx);
399
400 intel_batchbuffer_flush(brw);
401 intel_flush_front(ctx);
402
403 brw->need_flush_throttle = true;
404 }
405
406 static void
407 intel_finish(struct gl_context * ctx)
408 {
409 struct brw_context *brw = brw_context(ctx);
410
411 intel_glFlush(ctx);
412
413 if (brw->batch.last_bo)
414 drm_intel_bo_wait_rendering(brw->batch.last_bo);
415 }
416
417 static void
418 brw_init_driver_functions(struct brw_context *brw,
419 struct dd_function_table *functions)
420 {
421 _mesa_init_driver_functions(functions);
422
423 /* GLX uses DRI2 invalidate events to handle window resizing.
424 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
425 * which doesn't provide a mechanism for snooping the event queues.
426 *
427 * So EGL still relies on viewport hacks to handle window resizing.
428 * This should go away with DRI3000.
429 */
430 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
431 functions->Viewport = intel_viewport;
432
433 functions->Flush = intel_glFlush;
434 functions->Finish = intel_finish;
435 functions->GetString = intel_get_string;
436 functions->UpdateState = intel_update_state;
437
438 intelInitTextureFuncs(functions);
439 intelInitTextureImageFuncs(functions);
440 intelInitTextureSubImageFuncs(functions);
441 intelInitTextureCopyImageFuncs(functions);
442 intelInitCopyImageFuncs(functions);
443 intelInitClearFuncs(functions);
444 intelInitBufferFuncs(functions);
445 intelInitPixelFuncs(functions);
446 intelInitBufferObjectFuncs(functions);
447 intel_init_syncobj_functions(functions);
448 brw_init_object_purgeable_functions(functions);
449
450 brwInitFragProgFuncs( functions );
451 brw_init_common_queryobj_functions(functions);
452 if (brw->gen >= 8 || brw->is_haswell)
453 hsw_init_queryobj_functions(functions);
454 else if (brw->gen >= 6)
455 gen6_init_queryobj_functions(functions);
456 else
457 gen4_init_queryobj_functions(functions);
458 brw_init_compute_functions(functions);
459 if (brw->gen >= 7)
460 brw_init_conditional_render_functions(functions);
461
462 functions->QueryInternalFormat = brw_query_internal_format;
463
464 functions->NewTransformFeedback = brw_new_transform_feedback;
465 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
466 if (brw->intelScreen->has_mi_math_and_lrr) {
467 functions->BeginTransformFeedback = hsw_begin_transform_feedback;
468 functions->EndTransformFeedback = hsw_end_transform_feedback;
469 functions->PauseTransformFeedback = hsw_pause_transform_feedback;
470 functions->ResumeTransformFeedback = hsw_resume_transform_feedback;
471 } else if (brw->gen >= 7) {
472 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
473 functions->EndTransformFeedback = gen7_end_transform_feedback;
474 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
475 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
476 functions->GetTransformFeedbackVertexCount =
477 brw_get_transform_feedback_vertex_count;
478 } else {
479 functions->BeginTransformFeedback = brw_begin_transform_feedback;
480 functions->EndTransformFeedback = brw_end_transform_feedback;
481 }
482
483 if (brw->gen >= 6)
484 functions->GetSamplePosition = gen6_get_sample_position;
485 }
486
487 static void
488 brw_initialize_context_constants(struct brw_context *brw)
489 {
490 struct gl_context *ctx = &brw->ctx;
491 const struct brw_compiler *compiler = brw->intelScreen->compiler;
492
493 const bool stage_exists[MESA_SHADER_STAGES] = {
494 [MESA_SHADER_VERTEX] = true,
495 [MESA_SHADER_TESS_CTRL] = brw->gen >= 7,
496 [MESA_SHADER_TESS_EVAL] = brw->gen >= 7,
497 [MESA_SHADER_GEOMETRY] = brw->gen >= 6,
498 [MESA_SHADER_FRAGMENT] = true,
499 [MESA_SHADER_COMPUTE] =
500 (ctx->API == API_OPENGL_CORE &&
501 ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
502 (ctx->API == API_OPENGLES2 &&
503 ctx->Const.MaxComputeWorkGroupSize[0] >= 128) ||
504 _mesa_extension_override_enables.ARB_compute_shader,
505 };
506
507 unsigned num_stages = 0;
508 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
509 if (stage_exists[i])
510 num_stages++;
511 }
512
513 unsigned max_samplers =
514 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
515
516 ctx->Const.MaxDualSourceDrawBuffers = 1;
517 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
518 ctx->Const.MaxCombinedShaderOutputResources =
519 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
520
521 ctx->Const.QueryCounterBits.Timestamp = 36;
522
523 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
524 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
525 ctx->Const.MaxRenderbufferSize = 8192;
526 ctx->Const.MaxTextureLevels = MIN2(14 /* 8192 */, MAX_TEXTURE_LEVELS);
527 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
528 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
529 ctx->Const.MaxArrayTextureLayers = brw->gen >= 7 ? 2048 : 512;
530 ctx->Const.MaxTextureMbytes = 1536;
531 ctx->Const.MaxTextureRectSize = 1 << 12;
532 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
533 ctx->Const.StripTextureBorder = true;
534 if (brw->gen >= 7)
535 ctx->Const.MaxProgramTextureGatherComponents = 4;
536 else if (brw->gen == 6)
537 ctx->Const.MaxProgramTextureGatherComponents = 1;
538
539 ctx->Const.MaxUniformBlockSize = 65536;
540
541 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
542 struct gl_program_constants *prog = &ctx->Const.Program[i];
543
544 if (!stage_exists[i])
545 continue;
546
547 prog->MaxTextureImageUnits = max_samplers;
548
549 prog->MaxUniformBlocks = BRW_MAX_UBO;
550 prog->MaxCombinedUniformComponents =
551 prog->MaxUniformComponents +
552 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
553
554 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
555 prog->MaxAtomicBuffers = BRW_MAX_ABO;
556 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
557 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
558 }
559
560 ctx->Const.MaxTextureUnits =
561 MIN2(ctx->Const.MaxTextureCoordUnits,
562 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
563
564 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
565 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
566 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
567 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
568 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
569 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
570 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
571
572
573 /* Hardware only supports a limited number of transform feedback buffers.
574 * So we need to override the Mesa default (which is based only on software
575 * limits).
576 */
577 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
578
579 /* On Gen6, in the worst case, we use up one binding table entry per
580 * transform feedback component (see comments above the definition of
581 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
582 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
583 * BRW_MAX_SOL_BINDINGS.
584 *
585 * In "separate components" mode, we need to divide this value by
586 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
587 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
588 */
589 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
590 ctx->Const.MaxTransformFeedbackSeparateComponents =
591 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
592
593 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount =
594 !brw->intelScreen->has_mi_math_and_lrr;
595
596 int max_samples;
597 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
598 const int clamp_max_samples =
599 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
600
601 if (clamp_max_samples < 0) {
602 max_samples = msaa_modes[0];
603 } else {
604 /* Select the largest supported MSAA mode that does not exceed
605 * clamp_max_samples.
606 */
607 max_samples = 0;
608 for (int i = 0; msaa_modes[i] != 0; ++i) {
609 if (msaa_modes[i] <= clamp_max_samples) {
610 max_samples = msaa_modes[i];
611 break;
612 }
613 }
614 }
615
616 ctx->Const.MaxSamples = max_samples;
617 ctx->Const.MaxColorTextureSamples = max_samples;
618 ctx->Const.MaxDepthTextureSamples = max_samples;
619 ctx->Const.MaxIntegerSamples = max_samples;
620 ctx->Const.MaxImageSamples = 0;
621
622 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
623 * to map indices of rectangular grid to sample numbers within a pixel.
624 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
625 * extension implementation. For more details see the comment above
626 * gen6_set_sample_maps() definition.
627 */
628 gen6_set_sample_maps(ctx);
629
630 ctx->Const.MinLineWidth = 1.0;
631 ctx->Const.MinLineWidthAA = 1.0;
632 if (brw->gen >= 6) {
633 ctx->Const.MaxLineWidth = 7.375;
634 ctx->Const.MaxLineWidthAA = 7.375;
635 ctx->Const.LineWidthGranularity = 0.125;
636 } else {
637 ctx->Const.MaxLineWidth = 7.0;
638 ctx->Const.MaxLineWidthAA = 7.0;
639 ctx->Const.LineWidthGranularity = 0.5;
640 }
641
642 /* For non-antialiased lines, we have to round the line width to the
643 * nearest whole number. Make sure that we don't advertise a line
644 * width that, when rounded, will be beyond the actual hardware
645 * maximum.
646 */
647 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
648
649 ctx->Const.MinPointSize = 1.0;
650 ctx->Const.MinPointSizeAA = 1.0;
651 ctx->Const.MaxPointSize = 255.0;
652 ctx->Const.MaxPointSizeAA = 255.0;
653 ctx->Const.PointSizeGranularity = 1.0;
654
655 if (brw->gen >= 5 || brw->is_g4x)
656 ctx->Const.MaxClipPlanes = 8;
657
658 ctx->Const.LowerTessLevel = true;
659 ctx->Const.LowerTCSPatchVerticesIn = brw->gen >= 8;
660 ctx->Const.LowerTESPatchVerticesIn = true;
661 ctx->Const.PrimitiveRestartForPatches = true;
662
663 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
664 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
665 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
666 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
667 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
668 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
669 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
670 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
671 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
672 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
673 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
674 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
675 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
676 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
677
678 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
679 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
680 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
681 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
682 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
683 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
684 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
685 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
686 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
687 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
688 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
689
690 /* Fragment shaders use real, 32-bit twos-complement integers for all
691 * integer types.
692 */
693 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
694 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
695 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
696 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
697 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
698
699 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
700 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
701 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
702 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
703 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
704
705 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
706 * but we're not sure how it's actually done for vertex order,
707 * that affect provoking vertex decision. Always use last vertex
708 * convention for quad primitive which works as expected for now.
709 */
710 if (brw->gen >= 6)
711 ctx->Const.QuadsFollowProvokingVertexConvention = false;
712
713 ctx->Const.NativeIntegers = true;
714 ctx->Const.VertexID_is_zero_based = true;
715
716 /* Regarding the CMP instruction, the Ivybridge PRM says:
717 *
718 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
719 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
720 * 0xFFFFFFFF) is assigned to dst."
721 *
722 * but PRMs for earlier generations say
723 *
724 * "In dword format, one GRF may store up to 8 results. When the register
725 * is used later as a vector of Booleans, as only LSB at each channel
726 * contains meaning [sic] data, software should make sure all higher bits
727 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
728 *
729 * We select the representation of a true boolean uniform to be ~0, and fix
730 * the results of Gen <= 5 CMP instruction's with -(result & 1).
731 */
732 ctx->Const.UniformBooleanTrue = ~0;
733
734 /* From the gen4 PRM, volume 4 page 127:
735 *
736 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
737 * the base address of the first element of the surface, computed in
738 * software by adding the surface base address to the byte offset of
739 * the element in the buffer."
740 *
741 * However, unaligned accesses are slower, so enforce buffer alignment.
742 */
743 ctx->Const.UniformBufferOffsetAlignment = 16;
744
745 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
746 * that we can safely have the CPU and GPU writing the same SSBO on
747 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
748 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
749 * be updating disjoint regions of the buffer simultaneously and that will
750 * break if the regions overlap the same cacheline.
751 */
752 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
753 ctx->Const.TextureBufferOffsetAlignment = 16;
754 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
755
756 if (brw->gen >= 6) {
757 ctx->Const.MaxVarying = 32;
758 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
759 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
760 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
761 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
762 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
763 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
764 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
765 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
766 }
767
768 /* We want the GLSL compiler to emit code that uses condition codes */
769 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
770 ctx->Const.ShaderCompilerOptions[i] =
771 brw->intelScreen->compiler->glsl_compiler_options[i];
772 }
773
774 if (brw->gen >= 7) {
775 ctx->Const.MaxViewportWidth = 32768;
776 ctx->Const.MaxViewportHeight = 32768;
777 }
778
779 /* ARB_viewport_array */
780 if (brw->gen >= 6 && ctx->API == API_OPENGL_CORE) {
781 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
782 ctx->Const.ViewportSubpixelBits = 0;
783
784 /* Cast to float before negating because MaxViewportWidth is unsigned.
785 */
786 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
787 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
788 }
789
790 /* ARB_gpu_shader5 */
791 if (brw->gen >= 7)
792 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
793
794 /* ARB_framebuffer_no_attachments */
795 ctx->Const.MaxFramebufferWidth = 16384;
796 ctx->Const.MaxFramebufferHeight = 16384;
797 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
798 ctx->Const.MaxFramebufferSamples = max_samples;
799
800 /* OES_primitive_bounding_box */
801 ctx->Const.NoPrimitiveBoundingBoxOutput = true;
802 }
803
804 static void
805 brw_initialize_cs_context_constants(struct brw_context *brw)
806 {
807 struct gl_context *ctx = &brw->ctx;
808 const struct intel_screen *screen = brw->intelScreen;
809 const struct gen_device_info *devinfo = screen->devinfo;
810
811 /* FINISHME: Do this for all platforms that the kernel supports */
812 if (brw->is_cherryview &&
813 screen->subslice_total > 0 && screen->eu_total > 0) {
814 /* Logical CS threads = EUs per subslice * 7 threads per EU */
815 brw->max_cs_threads = screen->eu_total / screen->subslice_total * 7;
816
817 /* Fuse configurations may give more threads than expected, never less. */
818 if (brw->max_cs_threads < devinfo->max_cs_threads)
819 brw->max_cs_threads = devinfo->max_cs_threads;
820 } else {
821 brw->max_cs_threads = devinfo->max_cs_threads;
822 }
823
824 /* Maximum number of scalar compute shader invocations that can be run in
825 * parallel in the same subslice assuming SIMD32 dispatch.
826 *
827 * We don't advertise more than 64 threads, because we are limited to 64 by
828 * our usage of thread_width_max in the gpgpu walker command. This only
829 * currently impacts Haswell, which otherwise might be able to advertise 70
830 * threads. With SIMD32 and 64 threads, Haswell still provides twice the
831 * required the number of invocation needed for ARB_compute_shader.
832 */
833 const unsigned max_threads = MIN2(64, brw->max_cs_threads);
834 const uint32_t max_invocations = 32 * max_threads;
835 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
836 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
837 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
838 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
839 ctx->Const.MaxComputeSharedMemorySize = 64 * 1024;
840 }
841
842 /**
843 * Process driconf (drirc) options, setting appropriate context flags.
844 *
845 * intelInitExtensions still pokes at optionCache directly, in order to
846 * avoid advertising various extensions. No flags are set, so it makes
847 * sense to continue doing that there.
848 */
849 static void
850 brw_process_driconf_options(struct brw_context *brw)
851 {
852 struct gl_context *ctx = &brw->ctx;
853
854 driOptionCache *options = &brw->optionCache;
855 driParseConfigFiles(options, &brw->intelScreen->optionCache,
856 brw->driContext->driScreenPriv->myNum, "i965");
857
858 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
859 switch (bo_reuse_mode) {
860 case DRI_CONF_BO_REUSE_DISABLED:
861 break;
862 case DRI_CONF_BO_REUSE_ALL:
863 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
864 break;
865 }
866
867 if (!driQueryOptionb(options, "hiz")) {
868 brw->has_hiz = false;
869 /* On gen6, you can only do separate stencil with HIZ. */
870 if (brw->gen == 6)
871 brw->has_separate_stencil = false;
872 }
873
874 if (driQueryOptionb(options, "always_flush_batch")) {
875 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
876 brw->always_flush_batch = true;
877 }
878
879 if (driQueryOptionb(options, "always_flush_cache")) {
880 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
881 brw->always_flush_cache = true;
882 }
883
884 if (driQueryOptionb(options, "disable_throttling")) {
885 fprintf(stderr, "disabling flush throttling\n");
886 brw->disable_throttling = true;
887 }
888
889 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
890
891 if (driQueryOptionb(&brw->optionCache, "precise_trig"))
892 brw->intelScreen->compiler->precise_trig = true;
893
894 ctx->Const.ForceGLSLExtensionsWarn =
895 driQueryOptionb(options, "force_glsl_extensions_warn");
896
897 ctx->Const.DisableGLSLLineContinuations =
898 driQueryOptionb(options, "disable_glsl_line_continuations");
899
900 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
901 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
902
903 ctx->Const.GLSLZeroInit = driQueryOptionb(options, "glsl_zero_init");
904
905 brw->dual_color_blend_by_location =
906 driQueryOptionb(options, "dual_color_blend_by_location");
907 }
908
909 GLboolean
910 brwCreateContext(gl_api api,
911 const struct gl_config *mesaVis,
912 __DRIcontext *driContextPriv,
913 unsigned major_version,
914 unsigned minor_version,
915 uint32_t flags,
916 bool notify_reset,
917 unsigned *dri_ctx_error,
918 void *sharedContextPrivate)
919 {
920 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
921 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
922 struct intel_screen *screen = sPriv->driverPrivate;
923 const struct gen_device_info *devinfo = screen->devinfo;
924 struct dd_function_table functions;
925
926 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
927 * provides us with context reset notifications.
928 */
929 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
930 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
931
932 if (screen->has_context_reset_notification)
933 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
934
935 if (flags & ~allowed_flags) {
936 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
937 return false;
938 }
939
940 struct brw_context *brw = rzalloc(NULL, struct brw_context);
941 if (!brw) {
942 fprintf(stderr, "%s: failed to alloc context\n", __func__);
943 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
944 return false;
945 }
946
947 driContextPriv->driverPrivate = brw;
948 brw->driContext = driContextPriv;
949 brw->intelScreen = screen;
950 brw->bufmgr = screen->bufmgr;
951
952 brw->gen = devinfo->gen;
953 brw->gt = devinfo->gt;
954 brw->is_g4x = devinfo->is_g4x;
955 brw->is_baytrail = devinfo->is_baytrail;
956 brw->is_haswell = devinfo->is_haswell;
957 brw->is_cherryview = devinfo->is_cherryview;
958 brw->is_broxton = devinfo->is_broxton;
959 brw->has_llc = devinfo->has_llc;
960 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
961 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
962 brw->has_pln = devinfo->has_pln;
963 brw->has_compr4 = devinfo->has_compr4;
964 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
965 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
966 brw->needs_unlit_centroid_workaround =
967 devinfo->needs_unlit_centroid_workaround;
968
969 brw->must_use_separate_stencil = devinfo->must_use_separate_stencil;
970 brw->has_swizzling = screen->hw_has_swizzling;
971
972 isl_device_init(&brw->isl_dev, devinfo, screen->hw_has_swizzling);
973
974 brw->vs.base.stage = MESA_SHADER_VERTEX;
975 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
976 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
977 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
978 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
979 if (brw->gen >= 8) {
980 gen8_init_vtable_surface_functions(brw);
981 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
982 } else if (brw->gen >= 7) {
983 gen7_init_vtable_surface_functions(brw);
984 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
985 } else if (brw->gen >= 6) {
986 gen6_init_vtable_surface_functions(brw);
987 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
988 } else {
989 gen4_init_vtable_surface_functions(brw);
990 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
991 }
992
993 brw_init_driver_functions(brw, &functions);
994
995 if (notify_reset)
996 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
997
998 struct gl_context *ctx = &brw->ctx;
999
1000 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
1001 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1002 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
1003 intelDestroyContext(driContextPriv);
1004 return false;
1005 }
1006
1007 driContextSetFlags(ctx, flags);
1008
1009 /* Initialize the software rasterizer and helper modules.
1010 *
1011 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
1012 * software fallbacks (which we have to support on legacy GL to do weird
1013 * glDrawPixels(), glBitmap(), and other functions).
1014 */
1015 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
1016 _swrast_CreateContext(ctx);
1017 }
1018
1019 _vbo_CreateContext(ctx);
1020 if (ctx->swrast_context) {
1021 _tnl_CreateContext(ctx);
1022 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
1023 _swsetup_CreateContext(ctx);
1024
1025 /* Configure swrast to match hardware characteristics: */
1026 _swrast_allow_pixel_fog(ctx, false);
1027 _swrast_allow_vertex_fog(ctx, true);
1028 }
1029
1030 _mesa_meta_init(ctx);
1031
1032 brw_process_driconf_options(brw);
1033
1034 if (INTEL_DEBUG & DEBUG_PERF)
1035 brw->perf_debug = true;
1036
1037 brw_initialize_cs_context_constants(brw);
1038 brw_initialize_context_constants(brw);
1039
1040 ctx->Const.ResetStrategy = notify_reset
1041 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
1042
1043 /* Reinitialize the context point state. It depends on ctx->Const values. */
1044 _mesa_init_point(ctx);
1045
1046 intel_fbo_init(brw);
1047
1048 intel_batchbuffer_init(brw);
1049
1050 if (brw->gen >= 6) {
1051 /* Create a new hardware context. Using a hardware context means that
1052 * our GPU state will be saved/restored on context switch, allowing us
1053 * to assume that the GPU is in the same state we left it in.
1054 *
1055 * This is required for transform feedback buffer offsets, query objects,
1056 * and also allows us to reduce how much state we have to emit.
1057 */
1058 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
1059
1060 if (!brw->hw_ctx) {
1061 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
1062 intelDestroyContext(driContextPriv);
1063 return false;
1064 }
1065 }
1066
1067 if (brw_init_pipe_control(brw, devinfo)) {
1068 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1069 intelDestroyContext(driContextPriv);
1070 return false;
1071 }
1072
1073 brw_init_state(brw);
1074
1075 intelInitExtensions(ctx);
1076
1077 brw_init_surface_formats(brw);
1078
1079 if (brw->gen >= 6)
1080 brw_blorp_init(brw);
1081
1082 brw->max_vs_threads = devinfo->max_vs_threads;
1083 brw->max_hs_threads = devinfo->max_hs_threads;
1084 brw->max_ds_threads = devinfo->max_ds_threads;
1085 brw->max_gs_threads = devinfo->max_gs_threads;
1086 brw->max_wm_threads = devinfo->max_wm_threads;
1087 brw->urb.size = devinfo->urb.size;
1088 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
1089 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
1090 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
1091 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
1092 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
1093
1094 if (brw->gen == 6)
1095 brw->urb.gs_present = false;
1096
1097 brw->prim_restart.in_progress = false;
1098 brw->prim_restart.enable_cut_index = false;
1099 brw->gs.enabled = false;
1100 brw->sf.viewport_transform_enable = true;
1101
1102 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
1103
1104 brw->max_gtt_map_object_size = screen->max_gtt_map_object_size;
1105
1106 brw->use_resource_streamer = screen->has_resource_streamer &&
1107 (env_var_as_boolean("INTEL_USE_HW_BT", false) ||
1108 env_var_as_boolean("INTEL_USE_GATHER", false));
1109
1110 ctx->VertexProgram._MaintainTnlProgram = true;
1111 ctx->FragmentProgram._MaintainTexEnvProgram = true;
1112
1113 brw_draw_init( brw );
1114
1115 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
1116 /* Turn on some extra GL_ARB_debug_output generation. */
1117 brw->perf_debug = true;
1118 }
1119
1120 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
1121 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
1122
1123 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1124 brw_init_shader_time(brw);
1125
1126 _mesa_compute_version(ctx);
1127
1128 _mesa_initialize_dispatch_tables(ctx);
1129 _mesa_initialize_vbo_vtxfmt(ctx);
1130
1131 if (ctx->Extensions.AMD_performance_monitor) {
1132 brw_init_performance_monitors(brw);
1133 }
1134
1135 vbo_use_buffer_objects(ctx);
1136 vbo_always_unmap_buffers(ctx);
1137
1138 return true;
1139 }
1140
1141 void
1142 intelDestroyContext(__DRIcontext * driContextPriv)
1143 {
1144 struct brw_context *brw =
1145 (struct brw_context *) driContextPriv->driverPrivate;
1146 struct gl_context *ctx = &brw->ctx;
1147
1148 /* Dump a final BMP in case the application doesn't call SwapBuffers */
1149 if (INTEL_DEBUG & DEBUG_AUB) {
1150 intel_batchbuffer_flush(brw);
1151 aub_dump_bmp(&brw->ctx);
1152 }
1153
1154 _mesa_meta_free(&brw->ctx);
1155
1156 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1157 /* Force a report. */
1158 brw->shader_time.report_time = 0;
1159
1160 brw_collect_and_report_shader_time(brw);
1161 brw_destroy_shader_time(brw);
1162 }
1163
1164 if (brw->gen >= 6)
1165 blorp_finish(&brw->blorp);
1166
1167 brw_destroy_state(brw);
1168 brw_draw_destroy(brw);
1169
1170 drm_intel_bo_unreference(brw->curbe.curbe_bo);
1171 if (brw->vs.base.scratch_bo)
1172 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
1173 if (brw->tcs.base.scratch_bo)
1174 drm_intel_bo_unreference(brw->tcs.base.scratch_bo);
1175 if (brw->tes.base.scratch_bo)
1176 drm_intel_bo_unreference(brw->tes.base.scratch_bo);
1177 if (brw->gs.base.scratch_bo)
1178 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
1179 if (brw->wm.base.scratch_bo)
1180 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
1181
1182 gen7_reset_hw_bt_pool_offsets(brw);
1183 drm_intel_bo_unreference(brw->hw_bt_pool.bo);
1184 brw->hw_bt_pool.bo = NULL;
1185
1186 drm_intel_gem_context_destroy(brw->hw_ctx);
1187
1188 if (ctx->swrast_context) {
1189 _swsetup_DestroyContext(&brw->ctx);
1190 _tnl_DestroyContext(&brw->ctx);
1191 }
1192 _vbo_DestroyContext(&brw->ctx);
1193
1194 if (ctx->swrast_context)
1195 _swrast_DestroyContext(&brw->ctx);
1196
1197 brw_fini_pipe_control(brw);
1198 intel_batchbuffer_free(brw);
1199
1200 drm_intel_bo_unreference(brw->throttle_batch[1]);
1201 drm_intel_bo_unreference(brw->throttle_batch[0]);
1202 brw->throttle_batch[1] = NULL;
1203 brw->throttle_batch[0] = NULL;
1204
1205 driDestroyOptionCache(&brw->optionCache);
1206
1207 /* free the Mesa context */
1208 _mesa_free_context_data(&brw->ctx);
1209
1210 ralloc_free(brw);
1211 driContextPriv->driverPrivate = NULL;
1212 }
1213
1214 GLboolean
1215 intelUnbindContext(__DRIcontext * driContextPriv)
1216 {
1217 /* Unset current context and dispath table */
1218 _mesa_make_current(NULL, NULL, NULL);
1219
1220 return true;
1221 }
1222
1223 /**
1224 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1225 * on window system framebuffers.
1226 *
1227 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1228 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1229 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1230 * for a visual where you're guaranteed to be capable, but it turns out that
1231 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1232 * incapable ones, because there's no difference between the two in resources
1233 * used. Applications thus get built that accidentally rely on the default
1234 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1235 * great...
1236 *
1237 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1238 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1239 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1240 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1241 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1242 * and get no sRGB encode (assuming that both kinds of visual are available).
1243 * Thus our choice to support sRGB by default on our visuals for desktop would
1244 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1245 *
1246 * Unfortunately, renderbuffer setup happens before a context is created. So
1247 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1248 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1249 * yet), we go turn that back off before anyone finds out.
1250 */
1251 static void
1252 intel_gles3_srgb_workaround(struct brw_context *brw,
1253 struct gl_framebuffer *fb)
1254 {
1255 struct gl_context *ctx = &brw->ctx;
1256
1257 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1258 return;
1259
1260 /* Some day when we support the sRGB capable bit on visuals available for
1261 * GLES, we'll need to respect that and not disable things here.
1262 */
1263 fb->Visual.sRGBCapable = false;
1264 for (int i = 0; i < BUFFER_COUNT; i++) {
1265 struct gl_renderbuffer *rb = fb->Attachment[i].Renderbuffer;
1266 if (rb)
1267 rb->Format = _mesa_get_srgb_format_linear(rb->Format);
1268 }
1269 }
1270
1271 GLboolean
1272 intelMakeCurrent(__DRIcontext * driContextPriv,
1273 __DRIdrawable * driDrawPriv,
1274 __DRIdrawable * driReadPriv)
1275 {
1276 struct brw_context *brw;
1277 GET_CURRENT_CONTEXT(curCtx);
1278
1279 if (driContextPriv)
1280 brw = (struct brw_context *) driContextPriv->driverPrivate;
1281 else
1282 brw = NULL;
1283
1284 /* According to the glXMakeCurrent() man page: "Pending commands to
1285 * the previous context, if any, are flushed before it is released."
1286 * But only flush if we're actually changing contexts.
1287 */
1288 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1289 _mesa_flush(curCtx);
1290 }
1291
1292 if (driContextPriv) {
1293 struct gl_context *ctx = &brw->ctx;
1294 struct gl_framebuffer *fb, *readFb;
1295
1296 if (driDrawPriv == NULL) {
1297 fb = _mesa_get_incomplete_framebuffer();
1298 } else {
1299 fb = driDrawPriv->driverPrivate;
1300 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1301 }
1302
1303 if (driReadPriv == NULL) {
1304 readFb = _mesa_get_incomplete_framebuffer();
1305 } else {
1306 readFb = driReadPriv->driverPrivate;
1307 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1308 }
1309
1310 /* The sRGB workaround changes the renderbuffer's format. We must change
1311 * the format before the renderbuffer's miptree get's allocated, otherwise
1312 * the formats of the renderbuffer and its miptree will differ.
1313 */
1314 intel_gles3_srgb_workaround(brw, fb);
1315 intel_gles3_srgb_workaround(brw, readFb);
1316
1317 /* If the context viewport hasn't been initialized, force a call out to
1318 * the loader to get buffers so we have a drawable size for the initial
1319 * viewport. */
1320 if (!brw->ctx.ViewportInitialized)
1321 intel_prepare_render(brw);
1322
1323 _mesa_make_current(ctx, fb, readFb);
1324 } else {
1325 _mesa_make_current(NULL, NULL, NULL);
1326 }
1327
1328 return true;
1329 }
1330
1331 void
1332 intel_resolve_for_dri2_flush(struct brw_context *brw,
1333 __DRIdrawable *drawable)
1334 {
1335 if (brw->gen < 6) {
1336 /* MSAA and fast color clear are not supported, so don't waste time
1337 * checking whether a resolve is needed.
1338 */
1339 return;
1340 }
1341
1342 struct gl_framebuffer *fb = drawable->driverPrivate;
1343 struct intel_renderbuffer *rb;
1344
1345 /* Usually, only the back buffer will need to be downsampled. However,
1346 * the front buffer will also need it if the user has rendered into it.
1347 */
1348 static const gl_buffer_index buffers[2] = {
1349 BUFFER_BACK_LEFT,
1350 BUFFER_FRONT_LEFT,
1351 };
1352
1353 for (int i = 0; i < 2; ++i) {
1354 rb = intel_get_renderbuffer(fb, buffers[i]);
1355 if (rb == NULL || rb->mt == NULL)
1356 continue;
1357 if (rb->mt->num_samples <= 1)
1358 intel_miptree_resolve_color(brw, rb->mt, 0);
1359 else
1360 intel_renderbuffer_downsample(brw, rb);
1361 }
1362 }
1363
1364 static unsigned
1365 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1366 {
1367 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1368 }
1369
1370 static void
1371 intel_query_dri2_buffers(struct brw_context *brw,
1372 __DRIdrawable *drawable,
1373 __DRIbuffer **buffers,
1374 int *count);
1375
1376 static void
1377 intel_process_dri2_buffer(struct brw_context *brw,
1378 __DRIdrawable *drawable,
1379 __DRIbuffer *buffer,
1380 struct intel_renderbuffer *rb,
1381 const char *buffer_name);
1382
1383 static void
1384 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1385
1386 static void
1387 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1388 {
1389 struct gl_framebuffer *fb = drawable->driverPrivate;
1390 struct intel_renderbuffer *rb;
1391 __DRIbuffer *buffers = NULL;
1392 int i, count;
1393 const char *region_name;
1394
1395 /* Set this up front, so that in case our buffers get invalidated
1396 * while we're getting new buffers, we don't clobber the stamp and
1397 * thus ignore the invalidate. */
1398 drawable->lastStamp = drawable->dri2.stamp;
1399
1400 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1401 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1402
1403 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1404
1405 if (buffers == NULL)
1406 return;
1407
1408 for (i = 0; i < count; i++) {
1409 switch (buffers[i].attachment) {
1410 case __DRI_BUFFER_FRONT_LEFT:
1411 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1412 region_name = "dri2 front buffer";
1413 break;
1414
1415 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1416 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1417 region_name = "dri2 fake front buffer";
1418 break;
1419
1420 case __DRI_BUFFER_BACK_LEFT:
1421 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1422 region_name = "dri2 back buffer";
1423 break;
1424
1425 case __DRI_BUFFER_DEPTH:
1426 case __DRI_BUFFER_HIZ:
1427 case __DRI_BUFFER_DEPTH_STENCIL:
1428 case __DRI_BUFFER_STENCIL:
1429 case __DRI_BUFFER_ACCUM:
1430 default:
1431 fprintf(stderr,
1432 "unhandled buffer attach event, attachment type %d\n",
1433 buffers[i].attachment);
1434 return;
1435 }
1436
1437 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1438 }
1439
1440 }
1441
1442 void
1443 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1444 {
1445 struct brw_context *brw = context->driverPrivate;
1446 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1447
1448 /* Set this up front, so that in case our buffers get invalidated
1449 * while we're getting new buffers, we don't clobber the stamp and
1450 * thus ignore the invalidate. */
1451 drawable->lastStamp = drawable->dri2.stamp;
1452
1453 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1454 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1455
1456 if (screen->image.loader)
1457 intel_update_image_buffers(brw, drawable);
1458 else
1459 intel_update_dri2_buffers(brw, drawable);
1460
1461 driUpdateFramebufferSize(&brw->ctx, drawable);
1462 }
1463
1464 /**
1465 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1466 * state is required.
1467 */
1468 void
1469 intel_prepare_render(struct brw_context *brw)
1470 {
1471 struct gl_context *ctx = &brw->ctx;
1472 __DRIcontext *driContext = brw->driContext;
1473 __DRIdrawable *drawable;
1474
1475 drawable = driContext->driDrawablePriv;
1476 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1477 if (drawable->lastStamp != drawable->dri2.stamp)
1478 intel_update_renderbuffers(driContext, drawable);
1479 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1480 }
1481
1482 drawable = driContext->driReadablePriv;
1483 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1484 if (drawable->lastStamp != drawable->dri2.stamp)
1485 intel_update_renderbuffers(driContext, drawable);
1486 driContext->dri2.read_stamp = drawable->dri2.stamp;
1487 }
1488
1489 /* If we're currently rendering to the front buffer, the rendering
1490 * that will happen next will probably dirty the front buffer. So
1491 * mark it as dirty here.
1492 */
1493 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer))
1494 brw->front_buffer_dirty = true;
1495 }
1496
1497 /**
1498 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1499 *
1500 * To determine which DRI buffers to request, examine the renderbuffers
1501 * attached to the drawable's framebuffer. Then request the buffers with
1502 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1503 *
1504 * This is called from intel_update_renderbuffers().
1505 *
1506 * \param drawable Drawable whose buffers are queried.
1507 * \param buffers [out] List of buffers returned by DRI2 query.
1508 * \param buffer_count [out] Number of buffers returned.
1509 *
1510 * \see intel_update_renderbuffers()
1511 * \see DRI2GetBuffers()
1512 * \see DRI2GetBuffersWithFormat()
1513 */
1514 static void
1515 intel_query_dri2_buffers(struct brw_context *brw,
1516 __DRIdrawable *drawable,
1517 __DRIbuffer **buffers,
1518 int *buffer_count)
1519 {
1520 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1521 struct gl_framebuffer *fb = drawable->driverPrivate;
1522 int i = 0;
1523 unsigned attachments[8];
1524
1525 struct intel_renderbuffer *front_rb;
1526 struct intel_renderbuffer *back_rb;
1527
1528 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1529 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1530
1531 memset(attachments, 0, sizeof(attachments));
1532 if ((_mesa_is_front_buffer_drawing(fb) ||
1533 _mesa_is_front_buffer_reading(fb) ||
1534 !back_rb) && front_rb) {
1535 /* If a fake front buffer is in use, then querying for
1536 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1537 * the real front buffer to the fake front buffer. So before doing the
1538 * query, we need to make sure all the pending drawing has landed in the
1539 * real front buffer.
1540 */
1541 intel_batchbuffer_flush(brw);
1542 intel_flush_front(&brw->ctx);
1543
1544 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1545 attachments[i++] = intel_bits_per_pixel(front_rb);
1546 } else if (front_rb && brw->front_buffer_dirty) {
1547 /* We have pending front buffer rendering, but we aren't querying for a
1548 * front buffer. If the front buffer we have is a fake front buffer,
1549 * the X server is going to throw it away when it processes the query.
1550 * So before doing the query, make sure all the pending drawing has
1551 * landed in the real front buffer.
1552 */
1553 intel_batchbuffer_flush(brw);
1554 intel_flush_front(&brw->ctx);
1555 }
1556
1557 if (back_rb) {
1558 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1559 attachments[i++] = intel_bits_per_pixel(back_rb);
1560 }
1561
1562 assert(i <= ARRAY_SIZE(attachments));
1563
1564 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1565 &drawable->w,
1566 &drawable->h,
1567 attachments, i / 2,
1568 buffer_count,
1569 drawable->loaderPrivate);
1570 }
1571
1572 /**
1573 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1574 *
1575 * This is called from intel_update_renderbuffers().
1576 *
1577 * \par Note:
1578 * DRI buffers whose attachment point is DRI2BufferStencil or
1579 * DRI2BufferDepthStencil are handled as special cases.
1580 *
1581 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1582 * that is passed to drm_intel_bo_gem_create_from_name().
1583 *
1584 * \see intel_update_renderbuffers()
1585 */
1586 static void
1587 intel_process_dri2_buffer(struct brw_context *brw,
1588 __DRIdrawable *drawable,
1589 __DRIbuffer *buffer,
1590 struct intel_renderbuffer *rb,
1591 const char *buffer_name)
1592 {
1593 struct gl_framebuffer *fb = drawable->driverPrivate;
1594 drm_intel_bo *bo;
1595
1596 if (!rb)
1597 return;
1598
1599 unsigned num_samples = rb->Base.Base.NumSamples;
1600
1601 /* We try to avoid closing and reopening the same BO name, because the first
1602 * use of a mapping of the buffer involves a bunch of page faulting which is
1603 * moderately expensive.
1604 */
1605 struct intel_mipmap_tree *last_mt;
1606 if (num_samples == 0)
1607 last_mt = rb->mt;
1608 else
1609 last_mt = rb->singlesample_mt;
1610
1611 uint32_t old_name = 0;
1612 if (last_mt) {
1613 /* The bo already has a name because the miptree was created by a
1614 * previous call to intel_process_dri2_buffer(). If a bo already has a
1615 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1616 * create a new name.
1617 */
1618 drm_intel_bo_flink(last_mt->bo, &old_name);
1619 }
1620
1621 if (old_name == buffer->name)
1622 return;
1623
1624 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1625 fprintf(stderr,
1626 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1627 buffer->name, buffer->attachment,
1628 buffer->cpp, buffer->pitch);
1629 }
1630
1631 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1632 buffer->name);
1633 if (!bo) {
1634 fprintf(stderr,
1635 "Failed to open BO for returned DRI2 buffer "
1636 "(%dx%d, %s, named %d).\n"
1637 "This is likely a bug in the X Server that will lead to a "
1638 "crash soon.\n",
1639 drawable->w, drawable->h, buffer_name, buffer->name);
1640 return;
1641 }
1642
1643 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1644 drawable->w, drawable->h,
1645 buffer->pitch);
1646
1647 if (_mesa_is_front_buffer_drawing(fb) &&
1648 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1649 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1650 rb->Base.Base.NumSamples > 1) {
1651 intel_renderbuffer_upsample(brw, rb);
1652 }
1653
1654 assert(rb->mt);
1655
1656 drm_intel_bo_unreference(bo);
1657 }
1658
1659 /**
1660 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1661 *
1662 * To determine which DRI buffers to request, examine the renderbuffers
1663 * attached to the drawable's framebuffer. Then request the buffers from
1664 * the image loader
1665 *
1666 * This is called from intel_update_renderbuffers().
1667 *
1668 * \param drawable Drawable whose buffers are queried.
1669 * \param buffers [out] List of buffers returned by DRI2 query.
1670 * \param buffer_count [out] Number of buffers returned.
1671 *
1672 * \see intel_update_renderbuffers()
1673 */
1674
1675 static void
1676 intel_update_image_buffer(struct brw_context *intel,
1677 __DRIdrawable *drawable,
1678 struct intel_renderbuffer *rb,
1679 __DRIimage *buffer,
1680 enum __DRIimageBufferMask buffer_type)
1681 {
1682 struct gl_framebuffer *fb = drawable->driverPrivate;
1683
1684 if (!rb || !buffer->bo)
1685 return;
1686
1687 unsigned num_samples = rb->Base.Base.NumSamples;
1688
1689 /* Check and see if we're already bound to the right
1690 * buffer object
1691 */
1692 struct intel_mipmap_tree *last_mt;
1693 if (num_samples == 0)
1694 last_mt = rb->mt;
1695 else
1696 last_mt = rb->singlesample_mt;
1697
1698 if (last_mt && last_mt->bo == buffer->bo)
1699 return;
1700
1701 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1702 buffer->width, buffer->height,
1703 buffer->pitch);
1704
1705 if (_mesa_is_front_buffer_drawing(fb) &&
1706 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1707 rb->Base.Base.NumSamples > 1) {
1708 intel_renderbuffer_upsample(intel, rb);
1709 }
1710 }
1711
1712 static void
1713 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1714 {
1715 struct gl_framebuffer *fb = drawable->driverPrivate;
1716 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1717 struct intel_renderbuffer *front_rb;
1718 struct intel_renderbuffer *back_rb;
1719 struct __DRIimageList images;
1720 unsigned int format;
1721 uint32_t buffer_mask = 0;
1722 int ret;
1723
1724 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1725 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1726
1727 if (back_rb)
1728 format = intel_rb_format(back_rb);
1729 else if (front_rb)
1730 format = intel_rb_format(front_rb);
1731 else
1732 return;
1733
1734 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1735 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1736 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1737 }
1738
1739 if (back_rb)
1740 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1741
1742 ret = screen->image.loader->getBuffers(drawable,
1743 driGLFormatToImageFormat(format),
1744 &drawable->dri2.stamp,
1745 drawable->loaderPrivate,
1746 buffer_mask,
1747 &images);
1748 if (!ret)
1749 return;
1750
1751 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1752 drawable->w = images.front->width;
1753 drawable->h = images.front->height;
1754 intel_update_image_buffer(brw,
1755 drawable,
1756 front_rb,
1757 images.front,
1758 __DRI_IMAGE_BUFFER_FRONT);
1759 }
1760 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1761 drawable->w = images.back->width;
1762 drawable->h = images.back->height;
1763 intel_update_image_buffer(brw,
1764 drawable,
1765 back_rb,
1766 images.back,
1767 __DRI_IMAGE_BUFFER_BACK);
1768 }
1769 }