i965: Increase max texture to 16k for gen7+
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "compiler/nir/nir.h"
35 #include "main/api_exec.h"
36 #include "main/context.h"
37 #include "main/fbobject.h"
38 #include "main/extensions.h"
39 #include "main/imports.h"
40 #include "main/macros.h"
41 #include "main/points.h"
42 #include "main/version.h"
43 #include "main/vtxfmt.h"
44 #include "main/texobj.h"
45 #include "main/framebuffer.h"
46
47 #include "vbo/vbo_context.h"
48
49 #include "drivers/common/driverfuncs.h"
50 #include "drivers/common/meta.h"
51 #include "utils.h"
52
53 #include "brw_context.h"
54 #include "brw_defines.h"
55 #include "brw_blorp.h"
56 #include "brw_compiler.h"
57 #include "brw_draw.h"
58 #include "brw_state.h"
59
60 #include "intel_batchbuffer.h"
61 #include "intel_buffer_objects.h"
62 #include "intel_buffers.h"
63 #include "intel_fbo.h"
64 #include "intel_mipmap_tree.h"
65 #include "intel_pixel.h"
66 #include "intel_image.h"
67 #include "intel_tex.h"
68 #include "intel_tex_obj.h"
69
70 #include "swrast_setup/swrast_setup.h"
71 #include "tnl/tnl.h"
72 #include "tnl/t_pipeline.h"
73 #include "util/ralloc.h"
74 #include "util/debug.h"
75 #include "isl/isl.h"
76
77 /***************************************
78 * Mesa's Driver Functions
79 ***************************************/
80
81 const char *const brw_vendor_string = "Intel Open Source Technology Center";
82
83 static const char *
84 get_bsw_model(const struct intel_screen *screen)
85 {
86 switch (screen->eu_total) {
87 case 16:
88 return "405";
89 case 12:
90 return "400";
91 default:
92 return " ";
93 }
94 }
95
96 const char *
97 brw_get_renderer_string(const struct intel_screen *screen)
98 {
99 const char *chipset;
100 static char buffer[128];
101 char *bsw = NULL;
102
103 switch (screen->deviceID) {
104 #undef CHIPSET
105 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
106 #include "pci_ids/i965_pci_ids.h"
107 default:
108 chipset = "Unknown Intel Chipset";
109 break;
110 }
111
112 /* Braswell branding is funny, so we have to fix it up here */
113 if (screen->deviceID == 0x22B1) {
114 bsw = strdup(chipset);
115 char *needle = strstr(bsw, "XXX");
116 if (needle) {
117 memcpy(needle, get_bsw_model(screen), 3);
118 chipset = bsw;
119 }
120 }
121
122 (void) driGetRendererString(buffer, chipset, 0);
123 free(bsw);
124 return buffer;
125 }
126
127 static const GLubyte *
128 intel_get_string(struct gl_context * ctx, GLenum name)
129 {
130 const struct brw_context *const brw = brw_context(ctx);
131
132 switch (name) {
133 case GL_VENDOR:
134 return (GLubyte *) brw_vendor_string;
135
136 case GL_RENDERER:
137 return
138 (GLubyte *) brw_get_renderer_string(brw->screen);
139
140 default:
141 return NULL;
142 }
143 }
144
145 static void
146 intel_viewport(struct gl_context *ctx)
147 {
148 struct brw_context *brw = brw_context(ctx);
149 __DRIcontext *driContext = brw->driContext;
150
151 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
152 if (driContext->driDrawablePriv)
153 dri2InvalidateDrawable(driContext->driDrawablePriv);
154 if (driContext->driReadablePriv)
155 dri2InvalidateDrawable(driContext->driReadablePriv);
156 }
157 }
158
159 static void
160 intel_update_framebuffer(struct gl_context *ctx,
161 struct gl_framebuffer *fb)
162 {
163 struct brw_context *brw = brw_context(ctx);
164
165 /* Quantize the derived default number of samples
166 */
167 fb->DefaultGeometry._NumSamples =
168 intel_quantize_num_samples(brw->screen,
169 fb->DefaultGeometry.NumSamples);
170 }
171
172 static bool
173 intel_disable_rb_aux_buffer(struct brw_context *brw, const drm_intel_bo *bo)
174 {
175 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
176 bool found = false;
177
178 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
179 const struct intel_renderbuffer *irb =
180 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
181
182 if (irb && irb->mt->bo == bo) {
183 found = brw->draw_aux_buffer_disabled[i] = true;
184 }
185 }
186
187 return found;
188 }
189
190 /* On Gen9 color buffers may be compressed by the hardware (lossless
191 * compression). There are, however, format restrictions and care needs to be
192 * taken that the sampler engine is capable for re-interpreting a buffer with
193 * format different the buffer was originally written with.
194 *
195 * For example, SRGB formats are not compressible and the sampler engine isn't
196 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
197 * color buffer needs to be resolved so that the sampling surface can be
198 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
199 * set).
200 */
201 static bool
202 intel_texture_view_requires_resolve(struct brw_context *brw,
203 struct intel_texture_object *intel_tex)
204 {
205 if (brw->gen < 9 ||
206 !intel_miptree_is_lossless_compressed(brw, intel_tex->mt))
207 return false;
208
209 const uint32_t brw_format = brw_format_for_mesa_format(intel_tex->_Format);
210
211 if (isl_format_supports_lossless_compression(&brw->screen->devinfo,
212 brw_format))
213 return false;
214
215 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
216 _mesa_get_format_name(intel_tex->_Format),
217 _mesa_get_format_name(intel_tex->mt->format));
218
219 if (intel_disable_rb_aux_buffer(brw, intel_tex->mt->bo))
220 perf_debug("Sampling renderbuffer with non-compressible format - "
221 "turning off compression");
222
223 return true;
224 }
225
226 static void
227 intel_update_state(struct gl_context * ctx, GLuint new_state)
228 {
229 struct brw_context *brw = brw_context(ctx);
230 struct intel_texture_object *tex_obj;
231 struct intel_renderbuffer *depth_irb;
232
233 if (ctx->swrast_context)
234 _swrast_InvalidateState(ctx, new_state);
235 _vbo_InvalidateState(ctx, new_state);
236
237 brw->NewGLState |= new_state;
238
239 _mesa_unlock_context_textures(ctx);
240
241 /* Resolve the depth buffer's HiZ buffer. */
242 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
243 if (depth_irb)
244 intel_renderbuffer_resolve_hiz(brw, depth_irb);
245
246 memset(brw->draw_aux_buffer_disabled, 0,
247 sizeof(brw->draw_aux_buffer_disabled));
248
249 /* Resolve depth buffer and render cache of each enabled texture. */
250 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
251 for (int i = 0; i <= maxEnabledUnit; i++) {
252 if (!ctx->Texture.Unit[i]._Current)
253 continue;
254 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
255 if (!tex_obj || !tex_obj->mt)
256 continue;
257 if (intel_miptree_sample_with_hiz(brw, tex_obj->mt))
258 intel_miptree_all_slices_resolve_hiz(brw, tex_obj->mt);
259 else
260 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
261 /* Sampling engine understands lossless compression and resolving
262 * those surfaces should be skipped for performance reasons.
263 */
264 const int flags = intel_texture_view_requires_resolve(brw, tex_obj) ?
265 0 : INTEL_MIPTREE_IGNORE_CCS_E;
266 intel_miptree_all_slices_resolve_color(brw, tex_obj->mt, flags);
267 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
268
269 if (tex_obj->base.StencilSampling ||
270 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
271 intel_update_r8stencil(brw, tex_obj->mt);
272 }
273 }
274
275 /* Resolve color for each active shader image. */
276 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
277 const struct gl_linked_shader *shader =
278 ctx->_Shader->CurrentProgram[i] ?
279 ctx->_Shader->CurrentProgram[i]->_LinkedShaders[i] : NULL;
280
281 if (unlikely(shader && shader->Program->info.num_images)) {
282 for (unsigned j = 0; j < shader->Program->info.num_images; j++) {
283 struct gl_image_unit *u = &ctx->ImageUnits[shader->ImageUnits[j]];
284 tex_obj = intel_texture_object(u->TexObj);
285
286 if (tex_obj && tex_obj->mt) {
287 /* Access to images is implemented using indirect messages
288 * against data port. Normal render target write understands
289 * lossless compression but unfortunately the typed/untyped
290 * read/write interface doesn't. Therefore even lossless
291 * compressed surfaces need to be resolved prior to accessing
292 * them. Hence skip setting INTEL_MIPTREE_IGNORE_CCS_E.
293 */
294 intel_miptree_all_slices_resolve_color(brw, tex_obj->mt, 0);
295
296 if (intel_miptree_is_lossless_compressed(brw, tex_obj->mt) &&
297 intel_disable_rb_aux_buffer(brw, tex_obj->mt->bo)) {
298 perf_debug("Using renderbuffer as shader image - turning "
299 "off lossless compression");
300 }
301
302 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
303 }
304 }
305 }
306 }
307
308 /* Resolve color buffers for non-coherent framebuffer fetch. */
309 if (!ctx->Extensions.MESA_shader_framebuffer_fetch &&
310 ctx->FragmentProgram._Current &&
311 ctx->FragmentProgram._Current->info.outputs_read) {
312 const struct gl_framebuffer *fb = ctx->DrawBuffer;
313
314 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
315 const struct intel_renderbuffer *irb =
316 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
317
318 if (irb &&
319 intel_miptree_resolve_color(
320 brw, irb->mt, irb->mt_level, irb->mt_layer, irb->layer_count,
321 INTEL_MIPTREE_IGNORE_CCS_E))
322 brw_render_cache_set_check_flush(brw, irb->mt->bo);
323 }
324 }
325
326 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of the
327 * single-sampled color renderbuffers because the CCS buffer isn't
328 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
329 * enabled because otherwise the surface state will be programmed with the
330 * linear equivalent format anyway.
331 */
332 if (brw->gen >= 9 && ctx->Color.sRGBEnabled) {
333 struct gl_framebuffer *fb = ctx->DrawBuffer;
334 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
335 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[i];
336
337 if (rb == NULL)
338 continue;
339
340 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
341 struct intel_mipmap_tree *mt = irb->mt;
342
343 if (mt == NULL ||
344 mt->num_samples > 1 ||
345 _mesa_get_srgb_format_linear(mt->format) == mt->format)
346 continue;
347
348 /* Lossless compression is not supported for SRGB formats, it
349 * should be impossible to get here with such surfaces.
350 */
351 assert(!intel_miptree_is_lossless_compressed(brw, mt));
352 intel_miptree_all_slices_resolve_color(brw, mt, 0);
353 brw_render_cache_set_check_flush(brw, mt->bo);
354 }
355 }
356
357 _mesa_lock_context_textures(ctx);
358
359 if (new_state & _NEW_BUFFERS) {
360 intel_update_framebuffer(ctx, ctx->DrawBuffer);
361 if (ctx->DrawBuffer != ctx->ReadBuffer)
362 intel_update_framebuffer(ctx, ctx->ReadBuffer);
363 }
364 }
365
366 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
367
368 static void
369 intel_flush_front(struct gl_context *ctx)
370 {
371 struct brw_context *brw = brw_context(ctx);
372 __DRIcontext *driContext = brw->driContext;
373 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
374 __DRIscreen *const dri_screen = brw->screen->driScrnPriv;
375
376 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
377 if (flushFront(dri_screen) && driDrawable &&
378 driDrawable->loaderPrivate) {
379
380 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
381 *
382 * This potentially resolves both front and back buffer. It
383 * is unnecessary to resolve the back, but harms nothing except
384 * performance. And no one cares about front-buffer render
385 * performance.
386 */
387 intel_resolve_for_dri2_flush(brw, driDrawable);
388 intel_batchbuffer_flush(brw);
389
390 flushFront(dri_screen)(driDrawable, driDrawable->loaderPrivate);
391
392 /* We set the dirty bit in intel_prepare_render() if we're
393 * front buffer rendering once we get there.
394 */
395 brw->front_buffer_dirty = false;
396 }
397 }
398 }
399
400 static void
401 intel_glFlush(struct gl_context *ctx)
402 {
403 struct brw_context *brw = brw_context(ctx);
404
405 intel_batchbuffer_flush(brw);
406 intel_flush_front(ctx);
407
408 brw->need_flush_throttle = true;
409 }
410
411 static void
412 intel_finish(struct gl_context * ctx)
413 {
414 struct brw_context *brw = brw_context(ctx);
415
416 intel_glFlush(ctx);
417
418 if (brw->batch.last_bo)
419 drm_intel_bo_wait_rendering(brw->batch.last_bo);
420 }
421
422 static void
423 brw_init_driver_functions(struct brw_context *brw,
424 struct dd_function_table *functions)
425 {
426 _mesa_init_driver_functions(functions);
427
428 /* GLX uses DRI2 invalidate events to handle window resizing.
429 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
430 * which doesn't provide a mechanism for snooping the event queues.
431 *
432 * So EGL still relies on viewport hacks to handle window resizing.
433 * This should go away with DRI3000.
434 */
435 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
436 functions->Viewport = intel_viewport;
437
438 functions->Flush = intel_glFlush;
439 functions->Finish = intel_finish;
440 functions->GetString = intel_get_string;
441 functions->UpdateState = intel_update_state;
442
443 intelInitTextureFuncs(functions);
444 intelInitTextureImageFuncs(functions);
445 intelInitTextureSubImageFuncs(functions);
446 intelInitTextureCopyImageFuncs(functions);
447 intelInitCopyImageFuncs(functions);
448 intelInitClearFuncs(functions);
449 intelInitBufferFuncs(functions);
450 intelInitPixelFuncs(functions);
451 intelInitBufferObjectFuncs(functions);
452 brw_init_syncobj_functions(functions);
453 brw_init_object_purgeable_functions(functions);
454
455 brwInitFragProgFuncs( functions );
456 brw_init_common_queryobj_functions(functions);
457 if (brw->gen >= 8 || brw->is_haswell)
458 hsw_init_queryobj_functions(functions);
459 else if (brw->gen >= 6)
460 gen6_init_queryobj_functions(functions);
461 else
462 gen4_init_queryobj_functions(functions);
463 brw_init_compute_functions(functions);
464 if (brw->gen >= 7)
465 brw_init_conditional_render_functions(functions);
466
467 functions->QueryInternalFormat = brw_query_internal_format;
468
469 functions->NewTransformFeedback = brw_new_transform_feedback;
470 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
471 if (brw->screen->has_mi_math_and_lrr) {
472 functions->BeginTransformFeedback = hsw_begin_transform_feedback;
473 functions->EndTransformFeedback = hsw_end_transform_feedback;
474 functions->PauseTransformFeedback = hsw_pause_transform_feedback;
475 functions->ResumeTransformFeedback = hsw_resume_transform_feedback;
476 } else if (brw->gen >= 7) {
477 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
478 functions->EndTransformFeedback = gen7_end_transform_feedback;
479 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
480 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
481 functions->GetTransformFeedbackVertexCount =
482 brw_get_transform_feedback_vertex_count;
483 } else {
484 functions->BeginTransformFeedback = brw_begin_transform_feedback;
485 functions->EndTransformFeedback = brw_end_transform_feedback;
486 }
487
488 if (brw->gen >= 6)
489 functions->GetSamplePosition = gen6_get_sample_position;
490 }
491
492 static void
493 brw_initialize_context_constants(struct brw_context *brw)
494 {
495 struct gl_context *ctx = &brw->ctx;
496 const struct brw_compiler *compiler = brw->screen->compiler;
497
498 const bool stage_exists[MESA_SHADER_STAGES] = {
499 [MESA_SHADER_VERTEX] = true,
500 [MESA_SHADER_TESS_CTRL] = brw->gen >= 7,
501 [MESA_SHADER_TESS_EVAL] = brw->gen >= 7,
502 [MESA_SHADER_GEOMETRY] = brw->gen >= 6,
503 [MESA_SHADER_FRAGMENT] = true,
504 [MESA_SHADER_COMPUTE] =
505 ((ctx->API == API_OPENGL_COMPAT || ctx->API == API_OPENGL_CORE) &&
506 ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
507 (ctx->API == API_OPENGLES2 &&
508 ctx->Const.MaxComputeWorkGroupSize[0] >= 128) ||
509 _mesa_extension_override_enables.ARB_compute_shader,
510 };
511
512 unsigned num_stages = 0;
513 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
514 if (stage_exists[i])
515 num_stages++;
516 }
517
518 unsigned max_samplers =
519 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
520
521 ctx->Const.MaxDualSourceDrawBuffers = 1;
522 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
523 ctx->Const.MaxCombinedShaderOutputResources =
524 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
525
526 ctx->Const.QueryCounterBits.Timestamp = 36;
527
528 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
529 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
530 if (brw->gen >= 7) {
531 ctx->Const.MaxRenderbufferSize = 16384;
532 ctx->Const.MaxTextureLevels = MIN2(15 /* 16384 */, MAX_TEXTURE_LEVELS);
533 ctx->Const.MaxCubeTextureLevels = 15; /* 16384 */
534 } else {
535 ctx->Const.MaxRenderbufferSize = 8192;
536 ctx->Const.MaxTextureLevels = MIN2(14 /* 8192 */, MAX_TEXTURE_LEVELS);
537 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
538 }
539 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
540 ctx->Const.MaxArrayTextureLayers = brw->gen >= 7 ? 2048 : 512;
541 ctx->Const.MaxTextureMbytes = 1536;
542 ctx->Const.MaxTextureRectSize = 1 << 12;
543 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
544 ctx->Const.MaxTextureLodBias = 15.0;
545 ctx->Const.StripTextureBorder = true;
546 if (brw->gen >= 7) {
547 ctx->Const.MaxProgramTextureGatherComponents = 4;
548 ctx->Const.MinProgramTextureGatherOffset = -32;
549 ctx->Const.MaxProgramTextureGatherOffset = 31;
550 } else if (brw->gen == 6) {
551 ctx->Const.MaxProgramTextureGatherComponents = 1;
552 ctx->Const.MinProgramTextureGatherOffset = -8;
553 ctx->Const.MaxProgramTextureGatherOffset = 7;
554 }
555
556 ctx->Const.MaxUniformBlockSize = 65536;
557
558 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
559 struct gl_program_constants *prog = &ctx->Const.Program[i];
560
561 if (!stage_exists[i])
562 continue;
563
564 prog->MaxTextureImageUnits = max_samplers;
565
566 prog->MaxUniformBlocks = BRW_MAX_UBO;
567 prog->MaxCombinedUniformComponents =
568 prog->MaxUniformComponents +
569 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
570
571 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
572 prog->MaxAtomicBuffers = BRW_MAX_ABO;
573 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
574 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
575 }
576
577 ctx->Const.MaxTextureUnits =
578 MIN2(ctx->Const.MaxTextureCoordUnits,
579 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
580
581 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
582 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
583 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
584 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
585 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
586 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
587 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
588
589
590 /* Hardware only supports a limited number of transform feedback buffers.
591 * So we need to override the Mesa default (which is based only on software
592 * limits).
593 */
594 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
595
596 /* On Gen6, in the worst case, we use up one binding table entry per
597 * transform feedback component (see comments above the definition of
598 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
599 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
600 * BRW_MAX_SOL_BINDINGS.
601 *
602 * In "separate components" mode, we need to divide this value by
603 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
604 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
605 */
606 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
607 ctx->Const.MaxTransformFeedbackSeparateComponents =
608 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
609
610 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount =
611 !brw->screen->has_mi_math_and_lrr;
612
613 int max_samples;
614 const int *msaa_modes = intel_supported_msaa_modes(brw->screen);
615 const int clamp_max_samples =
616 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
617
618 if (clamp_max_samples < 0) {
619 max_samples = msaa_modes[0];
620 } else {
621 /* Select the largest supported MSAA mode that does not exceed
622 * clamp_max_samples.
623 */
624 max_samples = 0;
625 for (int i = 0; msaa_modes[i] != 0; ++i) {
626 if (msaa_modes[i] <= clamp_max_samples) {
627 max_samples = msaa_modes[i];
628 break;
629 }
630 }
631 }
632
633 ctx->Const.MaxSamples = max_samples;
634 ctx->Const.MaxColorTextureSamples = max_samples;
635 ctx->Const.MaxDepthTextureSamples = max_samples;
636 ctx->Const.MaxIntegerSamples = max_samples;
637 ctx->Const.MaxImageSamples = 0;
638
639 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
640 * to map indices of rectangular grid to sample numbers within a pixel.
641 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
642 * extension implementation. For more details see the comment above
643 * gen6_set_sample_maps() definition.
644 */
645 gen6_set_sample_maps(ctx);
646
647 ctx->Const.MinLineWidth = 1.0;
648 ctx->Const.MinLineWidthAA = 1.0;
649 if (brw->gen >= 6) {
650 ctx->Const.MaxLineWidth = 7.375;
651 ctx->Const.MaxLineWidthAA = 7.375;
652 ctx->Const.LineWidthGranularity = 0.125;
653 } else {
654 ctx->Const.MaxLineWidth = 7.0;
655 ctx->Const.MaxLineWidthAA = 7.0;
656 ctx->Const.LineWidthGranularity = 0.5;
657 }
658
659 /* For non-antialiased lines, we have to round the line width to the
660 * nearest whole number. Make sure that we don't advertise a line
661 * width that, when rounded, will be beyond the actual hardware
662 * maximum.
663 */
664 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
665
666 ctx->Const.MinPointSize = 1.0;
667 ctx->Const.MinPointSizeAA = 1.0;
668 ctx->Const.MaxPointSize = 255.0;
669 ctx->Const.MaxPointSizeAA = 255.0;
670 ctx->Const.PointSizeGranularity = 1.0;
671
672 if (brw->gen >= 5 || brw->is_g4x)
673 ctx->Const.MaxClipPlanes = 8;
674
675 ctx->Const.LowerTessLevel = true;
676 ctx->Const.LowerTCSPatchVerticesIn = brw->gen >= 8;
677 ctx->Const.LowerTESPatchVerticesIn = true;
678 ctx->Const.PrimitiveRestartForPatches = true;
679
680 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
681 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
682 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
683 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
684 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
685 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
686 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
687 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
688 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
689 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
690 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
691 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
692 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
693 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
694
695 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
696 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
697 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
698 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
699 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
700 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
701 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
702 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
703 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
704 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
705 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
706
707 /* Fragment shaders use real, 32-bit twos-complement integers for all
708 * integer types.
709 */
710 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
711 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
712 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
713 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
714 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
715
716 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
717 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
718 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
719 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
720 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
721
722 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
723 * but we're not sure how it's actually done for vertex order,
724 * that affect provoking vertex decision. Always use last vertex
725 * convention for quad primitive which works as expected for now.
726 */
727 if (brw->gen >= 6)
728 ctx->Const.QuadsFollowProvokingVertexConvention = false;
729
730 ctx->Const.NativeIntegers = true;
731 ctx->Const.VertexID_is_zero_based = true;
732
733 /* Regarding the CMP instruction, the Ivybridge PRM says:
734 *
735 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
736 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
737 * 0xFFFFFFFF) is assigned to dst."
738 *
739 * but PRMs for earlier generations say
740 *
741 * "In dword format, one GRF may store up to 8 results. When the register
742 * is used later as a vector of Booleans, as only LSB at each channel
743 * contains meaning [sic] data, software should make sure all higher bits
744 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
745 *
746 * We select the representation of a true boolean uniform to be ~0, and fix
747 * the results of Gen <= 5 CMP instruction's with -(result & 1).
748 */
749 ctx->Const.UniformBooleanTrue = ~0;
750
751 /* From the gen4 PRM, volume 4 page 127:
752 *
753 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
754 * the base address of the first element of the surface, computed in
755 * software by adding the surface base address to the byte offset of
756 * the element in the buffer."
757 *
758 * However, unaligned accesses are slower, so enforce buffer alignment.
759 */
760 ctx->Const.UniformBufferOffsetAlignment = 16;
761
762 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
763 * that we can safely have the CPU and GPU writing the same SSBO on
764 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
765 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
766 * be updating disjoint regions of the buffer simultaneously and that will
767 * break if the regions overlap the same cacheline.
768 */
769 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
770 ctx->Const.TextureBufferOffsetAlignment = 16;
771 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
772
773 if (brw->gen >= 6) {
774 ctx->Const.MaxVarying = 32;
775 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
776 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
777 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
778 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
779 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
780 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
781 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
782 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
783 }
784
785 /* We want the GLSL compiler to emit code that uses condition codes */
786 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
787 ctx->Const.ShaderCompilerOptions[i] =
788 brw->screen->compiler->glsl_compiler_options[i];
789 }
790
791 if (brw->gen >= 7) {
792 ctx->Const.MaxViewportWidth = 32768;
793 ctx->Const.MaxViewportHeight = 32768;
794 }
795
796 /* ARB_viewport_array, OES_viewport_array */
797 if ((brw->gen >= 6 && ctx->API == API_OPENGL_CORE) ||
798 (brw->gen >= 8 && ctx->API == API_OPENGLES2)) {
799 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
800 ctx->Const.ViewportSubpixelBits = 0;
801
802 /* Cast to float before negating because MaxViewportWidth is unsigned.
803 */
804 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
805 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
806 }
807
808 /* ARB_gpu_shader5 */
809 if (brw->gen >= 7)
810 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
811
812 /* ARB_framebuffer_no_attachments */
813 ctx->Const.MaxFramebufferWidth = 16384;
814 ctx->Const.MaxFramebufferHeight = 16384;
815 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
816 ctx->Const.MaxFramebufferSamples = max_samples;
817
818 /* OES_primitive_bounding_box */
819 ctx->Const.NoPrimitiveBoundingBoxOutput = true;
820 }
821
822 static void
823 brw_initialize_cs_context_constants(struct brw_context *brw)
824 {
825 struct gl_context *ctx = &brw->ctx;
826 const struct intel_screen *screen = brw->screen;
827 struct gen_device_info *devinfo = &brw->screen->devinfo;
828
829 /* FINISHME: Do this for all platforms that the kernel supports */
830 if (brw->is_cherryview &&
831 screen->subslice_total > 0 && screen->eu_total > 0) {
832 /* Logical CS threads = EUs per subslice * 7 threads per EU */
833 uint32_t max_cs_threads = screen->eu_total / screen->subslice_total * 7;
834
835 /* Fuse configurations may give more threads than expected, never less. */
836 if (max_cs_threads > devinfo->max_cs_threads)
837 devinfo->max_cs_threads = max_cs_threads;
838 }
839
840 /* Maximum number of scalar compute shader invocations that can be run in
841 * parallel in the same subslice assuming SIMD32 dispatch.
842 *
843 * We don't advertise more than 64 threads, because we are limited to 64 by
844 * our usage of thread_width_max in the gpgpu walker command. This only
845 * currently impacts Haswell, which otherwise might be able to advertise 70
846 * threads. With SIMD32 and 64 threads, Haswell still provides twice the
847 * required the number of invocation needed for ARB_compute_shader.
848 */
849 const unsigned max_threads = MIN2(64, devinfo->max_cs_threads);
850 const uint32_t max_invocations = 32 * max_threads;
851 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
852 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
853 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
854 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
855 ctx->Const.MaxComputeSharedMemorySize = 64 * 1024;
856 }
857
858 /**
859 * Process driconf (drirc) options, setting appropriate context flags.
860 *
861 * intelInitExtensions still pokes at optionCache directly, in order to
862 * avoid advertising various extensions. No flags are set, so it makes
863 * sense to continue doing that there.
864 */
865 static void
866 brw_process_driconf_options(struct brw_context *brw)
867 {
868 struct gl_context *ctx = &brw->ctx;
869
870 driOptionCache *options = &brw->optionCache;
871 driParseConfigFiles(options, &brw->screen->optionCache,
872 brw->driContext->driScreenPriv->myNum, "i965");
873
874 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
875 switch (bo_reuse_mode) {
876 case DRI_CONF_BO_REUSE_DISABLED:
877 break;
878 case DRI_CONF_BO_REUSE_ALL:
879 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
880 break;
881 }
882
883 if (!driQueryOptionb(options, "hiz")) {
884 brw->has_hiz = false;
885 /* On gen6, you can only do separate stencil with HIZ. */
886 if (brw->gen == 6)
887 brw->has_separate_stencil = false;
888 }
889
890 if (driQueryOptionb(options, "always_flush_batch")) {
891 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
892 brw->always_flush_batch = true;
893 }
894
895 if (driQueryOptionb(options, "always_flush_cache")) {
896 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
897 brw->always_flush_cache = true;
898 }
899
900 if (driQueryOptionb(options, "disable_throttling")) {
901 fprintf(stderr, "disabling flush throttling\n");
902 brw->disable_throttling = true;
903 }
904
905 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
906
907 if (driQueryOptionb(&brw->optionCache, "precise_trig"))
908 brw->screen->compiler->precise_trig = true;
909
910 ctx->Const.ForceGLSLExtensionsWarn =
911 driQueryOptionb(options, "force_glsl_extensions_warn");
912
913 ctx->Const.DisableGLSLLineContinuations =
914 driQueryOptionb(options, "disable_glsl_line_continuations");
915
916 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
917 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
918
919 ctx->Const.GLSLZeroInit = driQueryOptionb(options, "glsl_zero_init");
920
921 brw->dual_color_blend_by_location =
922 driQueryOptionb(options, "dual_color_blend_by_location");
923 }
924
925 GLboolean
926 brwCreateContext(gl_api api,
927 const struct gl_config *mesaVis,
928 __DRIcontext *driContextPriv,
929 unsigned major_version,
930 unsigned minor_version,
931 uint32_t flags,
932 bool notify_reset,
933 unsigned *dri_ctx_error,
934 void *sharedContextPrivate)
935 {
936 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
937 struct intel_screen *screen = driContextPriv->driScreenPriv->driverPrivate;
938 const struct gen_device_info *devinfo = &screen->devinfo;
939 struct dd_function_table functions;
940
941 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
942 * provides us with context reset notifications.
943 */
944 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
945 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
946
947 if (screen->has_context_reset_notification)
948 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
949
950 if (flags & ~allowed_flags) {
951 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
952 return false;
953 }
954
955 struct brw_context *brw = rzalloc(NULL, struct brw_context);
956 if (!brw) {
957 fprintf(stderr, "%s: failed to alloc context\n", __func__);
958 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
959 return false;
960 }
961
962 driContextPriv->driverPrivate = brw;
963 brw->driContext = driContextPriv;
964 brw->screen = screen;
965 brw->bufmgr = screen->bufmgr;
966
967 brw->gen = devinfo->gen;
968 brw->gt = devinfo->gt;
969 brw->is_g4x = devinfo->is_g4x;
970 brw->is_baytrail = devinfo->is_baytrail;
971 brw->is_haswell = devinfo->is_haswell;
972 brw->is_cherryview = devinfo->is_cherryview;
973 brw->is_broxton = devinfo->is_broxton;
974 brw->has_llc = devinfo->has_llc;
975 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
976 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
977 brw->has_pln = devinfo->has_pln;
978 brw->has_compr4 = devinfo->has_compr4;
979 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
980 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
981 brw->needs_unlit_centroid_workaround =
982 devinfo->needs_unlit_centroid_workaround;
983
984 brw->must_use_separate_stencil = devinfo->must_use_separate_stencil;
985 brw->has_swizzling = screen->hw_has_swizzling;
986
987 isl_device_init(&brw->isl_dev, devinfo, screen->hw_has_swizzling);
988
989 brw->vs.base.stage = MESA_SHADER_VERTEX;
990 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
991 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
992 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
993 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
994 if (brw->gen >= 8) {
995 gen8_init_vtable_surface_functions(brw);
996 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
997 } else if (brw->gen >= 7) {
998 gen7_init_vtable_surface_functions(brw);
999 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
1000 } else if (brw->gen >= 6) {
1001 gen6_init_vtable_surface_functions(brw);
1002 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
1003 } else {
1004 gen4_init_vtable_surface_functions(brw);
1005 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
1006 }
1007
1008 brw_init_driver_functions(brw, &functions);
1009
1010 if (notify_reset)
1011 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
1012
1013 struct gl_context *ctx = &brw->ctx;
1014
1015 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
1016 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1017 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
1018 intelDestroyContext(driContextPriv);
1019 return false;
1020 }
1021
1022 driContextSetFlags(ctx, flags);
1023
1024 /* Initialize the software rasterizer and helper modules.
1025 *
1026 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
1027 * software fallbacks (which we have to support on legacy GL to do weird
1028 * glDrawPixels(), glBitmap(), and other functions).
1029 */
1030 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
1031 _swrast_CreateContext(ctx);
1032 }
1033
1034 _vbo_CreateContext(ctx);
1035 if (ctx->swrast_context) {
1036 _tnl_CreateContext(ctx);
1037 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
1038 _swsetup_CreateContext(ctx);
1039
1040 /* Configure swrast to match hardware characteristics: */
1041 _swrast_allow_pixel_fog(ctx, false);
1042 _swrast_allow_vertex_fog(ctx, true);
1043 }
1044
1045 _mesa_meta_init(ctx);
1046
1047 brw_process_driconf_options(brw);
1048
1049 if (INTEL_DEBUG & DEBUG_PERF)
1050 brw->perf_debug = true;
1051
1052 brw_initialize_cs_context_constants(brw);
1053 brw_initialize_context_constants(brw);
1054
1055 ctx->Const.ResetStrategy = notify_reset
1056 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
1057
1058 /* Reinitialize the context point state. It depends on ctx->Const values. */
1059 _mesa_init_point(ctx);
1060
1061 intel_fbo_init(brw);
1062
1063 intel_batchbuffer_init(brw);
1064
1065 if (brw->gen >= 6) {
1066 /* Create a new hardware context. Using a hardware context means that
1067 * our GPU state will be saved/restored on context switch, allowing us
1068 * to assume that the GPU is in the same state we left it in.
1069 *
1070 * This is required for transform feedback buffer offsets, query objects,
1071 * and also allows us to reduce how much state we have to emit.
1072 */
1073 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
1074
1075 if (!brw->hw_ctx) {
1076 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
1077 intelDestroyContext(driContextPriv);
1078 return false;
1079 }
1080 }
1081
1082 if (brw_init_pipe_control(brw, devinfo)) {
1083 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1084 intelDestroyContext(driContextPriv);
1085 return false;
1086 }
1087
1088 brw_init_state(brw);
1089
1090 intelInitExtensions(ctx);
1091
1092 brw_init_surface_formats(brw);
1093
1094 if (brw->gen >= 6)
1095 brw_blorp_init(brw);
1096
1097 brw->urb.size = devinfo->urb.size;
1098
1099 if (brw->gen == 6)
1100 brw->urb.gs_present = false;
1101
1102 brw->prim_restart.in_progress = false;
1103 brw->prim_restart.enable_cut_index = false;
1104 brw->gs.enabled = false;
1105 brw->sf.viewport_transform_enable = true;
1106 brw->clip.viewport_count = 1;
1107
1108 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
1109
1110 brw->max_gtt_map_object_size = screen->max_gtt_map_object_size;
1111
1112 brw->use_resource_streamer = screen->has_resource_streamer &&
1113 (env_var_as_boolean("INTEL_USE_HW_BT", false) ||
1114 env_var_as_boolean("INTEL_USE_GATHER", false));
1115
1116 ctx->VertexProgram._MaintainTnlProgram = true;
1117 ctx->FragmentProgram._MaintainTexEnvProgram = true;
1118
1119 brw_draw_init( brw );
1120
1121 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
1122 /* Turn on some extra GL_ARB_debug_output generation. */
1123 brw->perf_debug = true;
1124 }
1125
1126 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0) {
1127 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
1128 ctx->Const.RobustAccess = GL_TRUE;
1129 }
1130
1131 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1132 brw_init_shader_time(brw);
1133
1134 _mesa_compute_version(ctx);
1135
1136 _mesa_initialize_dispatch_tables(ctx);
1137 _mesa_initialize_vbo_vtxfmt(ctx);
1138
1139 if (ctx->Extensions.AMD_performance_monitor) {
1140 brw_init_performance_monitors(brw);
1141 }
1142
1143 vbo_use_buffer_objects(ctx);
1144 vbo_always_unmap_buffers(ctx);
1145
1146 return true;
1147 }
1148
1149 void
1150 intelDestroyContext(__DRIcontext * driContextPriv)
1151 {
1152 struct brw_context *brw =
1153 (struct brw_context *) driContextPriv->driverPrivate;
1154 struct gl_context *ctx = &brw->ctx;
1155
1156 /* Dump a final BMP in case the application doesn't call SwapBuffers */
1157 if (INTEL_DEBUG & DEBUG_AUB) {
1158 intel_batchbuffer_flush(brw);
1159 aub_dump_bmp(&brw->ctx);
1160 }
1161
1162 _mesa_meta_free(&brw->ctx);
1163
1164 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1165 /* Force a report. */
1166 brw->shader_time.report_time = 0;
1167
1168 brw_collect_and_report_shader_time(brw);
1169 brw_destroy_shader_time(brw);
1170 }
1171
1172 if (brw->gen >= 6)
1173 blorp_finish(&brw->blorp);
1174
1175 brw_destroy_state(brw);
1176 brw_draw_destroy(brw);
1177
1178 drm_intel_bo_unreference(brw->curbe.curbe_bo);
1179 if (brw->vs.base.scratch_bo)
1180 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
1181 if (brw->tcs.base.scratch_bo)
1182 drm_intel_bo_unreference(brw->tcs.base.scratch_bo);
1183 if (brw->tes.base.scratch_bo)
1184 drm_intel_bo_unreference(brw->tes.base.scratch_bo);
1185 if (brw->gs.base.scratch_bo)
1186 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
1187 if (brw->wm.base.scratch_bo)
1188 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
1189
1190 gen7_reset_hw_bt_pool_offsets(brw);
1191 drm_intel_bo_unreference(brw->hw_bt_pool.bo);
1192 brw->hw_bt_pool.bo = NULL;
1193
1194 drm_intel_gem_context_destroy(brw->hw_ctx);
1195
1196 if (ctx->swrast_context) {
1197 _swsetup_DestroyContext(&brw->ctx);
1198 _tnl_DestroyContext(&brw->ctx);
1199 }
1200 _vbo_DestroyContext(&brw->ctx);
1201
1202 if (ctx->swrast_context)
1203 _swrast_DestroyContext(&brw->ctx);
1204
1205 brw_fini_pipe_control(brw);
1206 intel_batchbuffer_free(brw);
1207
1208 drm_intel_bo_unreference(brw->throttle_batch[1]);
1209 drm_intel_bo_unreference(brw->throttle_batch[0]);
1210 brw->throttle_batch[1] = NULL;
1211 brw->throttle_batch[0] = NULL;
1212
1213 driDestroyOptionCache(&brw->optionCache);
1214
1215 /* free the Mesa context */
1216 _mesa_free_context_data(&brw->ctx);
1217
1218 ralloc_free(brw);
1219 driContextPriv->driverPrivate = NULL;
1220 }
1221
1222 GLboolean
1223 intelUnbindContext(__DRIcontext * driContextPriv)
1224 {
1225 /* Unset current context and dispath table */
1226 _mesa_make_current(NULL, NULL, NULL);
1227
1228 return true;
1229 }
1230
1231 /**
1232 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1233 * on window system framebuffers.
1234 *
1235 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1236 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1237 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1238 * for a visual where you're guaranteed to be capable, but it turns out that
1239 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1240 * incapable ones, because there's no difference between the two in resources
1241 * used. Applications thus get built that accidentally rely on the default
1242 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1243 * great...
1244 *
1245 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1246 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1247 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1248 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1249 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1250 * and get no sRGB encode (assuming that both kinds of visual are available).
1251 * Thus our choice to support sRGB by default on our visuals for desktop would
1252 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1253 *
1254 * Unfortunately, renderbuffer setup happens before a context is created. So
1255 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1256 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1257 * yet), we go turn that back off before anyone finds out.
1258 */
1259 static void
1260 intel_gles3_srgb_workaround(struct brw_context *brw,
1261 struct gl_framebuffer *fb)
1262 {
1263 struct gl_context *ctx = &brw->ctx;
1264
1265 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1266 return;
1267
1268 /* Some day when we support the sRGB capable bit on visuals available for
1269 * GLES, we'll need to respect that and not disable things here.
1270 */
1271 fb->Visual.sRGBCapable = false;
1272 for (int i = 0; i < BUFFER_COUNT; i++) {
1273 struct gl_renderbuffer *rb = fb->Attachment[i].Renderbuffer;
1274 if (rb)
1275 rb->Format = _mesa_get_srgb_format_linear(rb->Format);
1276 }
1277 }
1278
1279 GLboolean
1280 intelMakeCurrent(__DRIcontext * driContextPriv,
1281 __DRIdrawable * driDrawPriv,
1282 __DRIdrawable * driReadPriv)
1283 {
1284 struct brw_context *brw;
1285 GET_CURRENT_CONTEXT(curCtx);
1286
1287 if (driContextPriv)
1288 brw = (struct brw_context *) driContextPriv->driverPrivate;
1289 else
1290 brw = NULL;
1291
1292 /* According to the glXMakeCurrent() man page: "Pending commands to
1293 * the previous context, if any, are flushed before it is released."
1294 * But only flush if we're actually changing contexts.
1295 */
1296 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1297 _mesa_flush(curCtx);
1298 }
1299
1300 if (driContextPriv) {
1301 struct gl_context *ctx = &brw->ctx;
1302 struct gl_framebuffer *fb, *readFb;
1303
1304 if (driDrawPriv == NULL) {
1305 fb = _mesa_get_incomplete_framebuffer();
1306 } else {
1307 fb = driDrawPriv->driverPrivate;
1308 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1309 }
1310
1311 if (driReadPriv == NULL) {
1312 readFb = _mesa_get_incomplete_framebuffer();
1313 } else {
1314 readFb = driReadPriv->driverPrivate;
1315 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1316 }
1317
1318 /* The sRGB workaround changes the renderbuffer's format. We must change
1319 * the format before the renderbuffer's miptree get's allocated, otherwise
1320 * the formats of the renderbuffer and its miptree will differ.
1321 */
1322 intel_gles3_srgb_workaround(brw, fb);
1323 intel_gles3_srgb_workaround(brw, readFb);
1324
1325 /* If the context viewport hasn't been initialized, force a call out to
1326 * the loader to get buffers so we have a drawable size for the initial
1327 * viewport. */
1328 if (!brw->ctx.ViewportInitialized)
1329 intel_prepare_render(brw);
1330
1331 _mesa_make_current(ctx, fb, readFb);
1332 } else {
1333 _mesa_make_current(NULL, NULL, NULL);
1334 }
1335
1336 return true;
1337 }
1338
1339 void
1340 intel_resolve_for_dri2_flush(struct brw_context *brw,
1341 __DRIdrawable *drawable)
1342 {
1343 if (brw->gen < 6) {
1344 /* MSAA and fast color clear are not supported, so don't waste time
1345 * checking whether a resolve is needed.
1346 */
1347 return;
1348 }
1349
1350 struct gl_framebuffer *fb = drawable->driverPrivate;
1351 struct intel_renderbuffer *rb;
1352
1353 /* Usually, only the back buffer will need to be downsampled. However,
1354 * the front buffer will also need it if the user has rendered into it.
1355 */
1356 static const gl_buffer_index buffers[2] = {
1357 BUFFER_BACK_LEFT,
1358 BUFFER_FRONT_LEFT,
1359 };
1360
1361 for (int i = 0; i < 2; ++i) {
1362 rb = intel_get_renderbuffer(fb, buffers[i]);
1363 if (rb == NULL || rb->mt == NULL)
1364 continue;
1365 if (rb->mt->num_samples <= 1) {
1366 assert(rb->mt_layer == 0 && rb->mt_level == 0 &&
1367 rb->layer_count == 1);
1368 intel_miptree_resolve_color(brw, rb->mt, 0, 0, 1, 0);
1369 } else {
1370 intel_renderbuffer_downsample(brw, rb);
1371 }
1372 }
1373 }
1374
1375 static unsigned
1376 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1377 {
1378 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1379 }
1380
1381 static void
1382 intel_query_dri2_buffers(struct brw_context *brw,
1383 __DRIdrawable *drawable,
1384 __DRIbuffer **buffers,
1385 int *count);
1386
1387 static void
1388 intel_process_dri2_buffer(struct brw_context *brw,
1389 __DRIdrawable *drawable,
1390 __DRIbuffer *buffer,
1391 struct intel_renderbuffer *rb,
1392 const char *buffer_name);
1393
1394 static void
1395 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1396
1397 static void
1398 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1399 {
1400 struct gl_framebuffer *fb = drawable->driverPrivate;
1401 struct intel_renderbuffer *rb;
1402 __DRIbuffer *buffers = NULL;
1403 int i, count;
1404 const char *region_name;
1405
1406 /* Set this up front, so that in case our buffers get invalidated
1407 * while we're getting new buffers, we don't clobber the stamp and
1408 * thus ignore the invalidate. */
1409 drawable->lastStamp = drawable->dri2.stamp;
1410
1411 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1412 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1413
1414 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1415
1416 if (buffers == NULL)
1417 return;
1418
1419 for (i = 0; i < count; i++) {
1420 switch (buffers[i].attachment) {
1421 case __DRI_BUFFER_FRONT_LEFT:
1422 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1423 region_name = "dri2 front buffer";
1424 break;
1425
1426 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1427 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1428 region_name = "dri2 fake front buffer";
1429 break;
1430
1431 case __DRI_BUFFER_BACK_LEFT:
1432 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1433 region_name = "dri2 back buffer";
1434 break;
1435
1436 case __DRI_BUFFER_DEPTH:
1437 case __DRI_BUFFER_HIZ:
1438 case __DRI_BUFFER_DEPTH_STENCIL:
1439 case __DRI_BUFFER_STENCIL:
1440 case __DRI_BUFFER_ACCUM:
1441 default:
1442 fprintf(stderr,
1443 "unhandled buffer attach event, attachment type %d\n",
1444 buffers[i].attachment);
1445 return;
1446 }
1447
1448 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1449 }
1450
1451 }
1452
1453 void
1454 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1455 {
1456 struct brw_context *brw = context->driverPrivate;
1457 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1458
1459 /* Set this up front, so that in case our buffers get invalidated
1460 * while we're getting new buffers, we don't clobber the stamp and
1461 * thus ignore the invalidate. */
1462 drawable->lastStamp = drawable->dri2.stamp;
1463
1464 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1465 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1466
1467 if (dri_screen->image.loader)
1468 intel_update_image_buffers(brw, drawable);
1469 else
1470 intel_update_dri2_buffers(brw, drawable);
1471
1472 driUpdateFramebufferSize(&brw->ctx, drawable);
1473 }
1474
1475 /**
1476 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1477 * state is required.
1478 */
1479 void
1480 intel_prepare_render(struct brw_context *brw)
1481 {
1482 struct gl_context *ctx = &brw->ctx;
1483 __DRIcontext *driContext = brw->driContext;
1484 __DRIdrawable *drawable;
1485
1486 drawable = driContext->driDrawablePriv;
1487 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1488 if (drawable->lastStamp != drawable->dri2.stamp)
1489 intel_update_renderbuffers(driContext, drawable);
1490 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1491 }
1492
1493 drawable = driContext->driReadablePriv;
1494 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1495 if (drawable->lastStamp != drawable->dri2.stamp)
1496 intel_update_renderbuffers(driContext, drawable);
1497 driContext->dri2.read_stamp = drawable->dri2.stamp;
1498 }
1499
1500 /* If we're currently rendering to the front buffer, the rendering
1501 * that will happen next will probably dirty the front buffer. So
1502 * mark it as dirty here.
1503 */
1504 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer))
1505 brw->front_buffer_dirty = true;
1506 }
1507
1508 /**
1509 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1510 *
1511 * To determine which DRI buffers to request, examine the renderbuffers
1512 * attached to the drawable's framebuffer. Then request the buffers with
1513 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1514 *
1515 * This is called from intel_update_renderbuffers().
1516 *
1517 * \param drawable Drawable whose buffers are queried.
1518 * \param buffers [out] List of buffers returned by DRI2 query.
1519 * \param buffer_count [out] Number of buffers returned.
1520 *
1521 * \see intel_update_renderbuffers()
1522 * \see DRI2GetBuffers()
1523 * \see DRI2GetBuffersWithFormat()
1524 */
1525 static void
1526 intel_query_dri2_buffers(struct brw_context *brw,
1527 __DRIdrawable *drawable,
1528 __DRIbuffer **buffers,
1529 int *buffer_count)
1530 {
1531 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1532 struct gl_framebuffer *fb = drawable->driverPrivate;
1533 int i = 0;
1534 unsigned attachments[8];
1535
1536 struct intel_renderbuffer *front_rb;
1537 struct intel_renderbuffer *back_rb;
1538
1539 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1540 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1541
1542 memset(attachments, 0, sizeof(attachments));
1543 if ((_mesa_is_front_buffer_drawing(fb) ||
1544 _mesa_is_front_buffer_reading(fb) ||
1545 !back_rb) && front_rb) {
1546 /* If a fake front buffer is in use, then querying for
1547 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1548 * the real front buffer to the fake front buffer. So before doing the
1549 * query, we need to make sure all the pending drawing has landed in the
1550 * real front buffer.
1551 */
1552 intel_batchbuffer_flush(brw);
1553 intel_flush_front(&brw->ctx);
1554
1555 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1556 attachments[i++] = intel_bits_per_pixel(front_rb);
1557 } else if (front_rb && brw->front_buffer_dirty) {
1558 /* We have pending front buffer rendering, but we aren't querying for a
1559 * front buffer. If the front buffer we have is a fake front buffer,
1560 * the X server is going to throw it away when it processes the query.
1561 * So before doing the query, make sure all the pending drawing has
1562 * landed in the real front buffer.
1563 */
1564 intel_batchbuffer_flush(brw);
1565 intel_flush_front(&brw->ctx);
1566 }
1567
1568 if (back_rb) {
1569 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1570 attachments[i++] = intel_bits_per_pixel(back_rb);
1571 }
1572
1573 assert(i <= ARRAY_SIZE(attachments));
1574
1575 *buffers =
1576 dri_screen->dri2.loader->getBuffersWithFormat(drawable,
1577 &drawable->w,
1578 &drawable->h,
1579 attachments, i / 2,
1580 buffer_count,
1581 drawable->loaderPrivate);
1582 }
1583
1584 /**
1585 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1586 *
1587 * This is called from intel_update_renderbuffers().
1588 *
1589 * \par Note:
1590 * DRI buffers whose attachment point is DRI2BufferStencil or
1591 * DRI2BufferDepthStencil are handled as special cases.
1592 *
1593 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1594 * that is passed to drm_intel_bo_gem_create_from_name().
1595 *
1596 * \see intel_update_renderbuffers()
1597 */
1598 static void
1599 intel_process_dri2_buffer(struct brw_context *brw,
1600 __DRIdrawable *drawable,
1601 __DRIbuffer *buffer,
1602 struct intel_renderbuffer *rb,
1603 const char *buffer_name)
1604 {
1605 struct gl_framebuffer *fb = drawable->driverPrivate;
1606 drm_intel_bo *bo;
1607
1608 if (!rb)
1609 return;
1610
1611 unsigned num_samples = rb->Base.Base.NumSamples;
1612
1613 /* We try to avoid closing and reopening the same BO name, because the first
1614 * use of a mapping of the buffer involves a bunch of page faulting which is
1615 * moderately expensive.
1616 */
1617 struct intel_mipmap_tree *last_mt;
1618 if (num_samples == 0)
1619 last_mt = rb->mt;
1620 else
1621 last_mt = rb->singlesample_mt;
1622
1623 uint32_t old_name = 0;
1624 if (last_mt) {
1625 /* The bo already has a name because the miptree was created by a
1626 * previous call to intel_process_dri2_buffer(). If a bo already has a
1627 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1628 * create a new name.
1629 */
1630 drm_intel_bo_flink(last_mt->bo, &old_name);
1631 }
1632
1633 if (old_name == buffer->name)
1634 return;
1635
1636 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1637 fprintf(stderr,
1638 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1639 buffer->name, buffer->attachment,
1640 buffer->cpp, buffer->pitch);
1641 }
1642
1643 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1644 buffer->name);
1645 if (!bo) {
1646 fprintf(stderr,
1647 "Failed to open BO for returned DRI2 buffer "
1648 "(%dx%d, %s, named %d).\n"
1649 "This is likely a bug in the X Server that will lead to a "
1650 "crash soon.\n",
1651 drawable->w, drawable->h, buffer_name, buffer->name);
1652 return;
1653 }
1654
1655 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1656 drawable->w, drawable->h,
1657 buffer->pitch);
1658
1659 if (_mesa_is_front_buffer_drawing(fb) &&
1660 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1661 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1662 rb->Base.Base.NumSamples > 1) {
1663 intel_renderbuffer_upsample(brw, rb);
1664 }
1665
1666 assert(rb->mt);
1667
1668 drm_intel_bo_unreference(bo);
1669 }
1670
1671 /**
1672 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1673 *
1674 * To determine which DRI buffers to request, examine the renderbuffers
1675 * attached to the drawable's framebuffer. Then request the buffers from
1676 * the image loader
1677 *
1678 * This is called from intel_update_renderbuffers().
1679 *
1680 * \param drawable Drawable whose buffers are queried.
1681 * \param buffers [out] List of buffers returned by DRI2 query.
1682 * \param buffer_count [out] Number of buffers returned.
1683 *
1684 * \see intel_update_renderbuffers()
1685 */
1686
1687 static void
1688 intel_update_image_buffer(struct brw_context *intel,
1689 __DRIdrawable *drawable,
1690 struct intel_renderbuffer *rb,
1691 __DRIimage *buffer,
1692 enum __DRIimageBufferMask buffer_type)
1693 {
1694 struct gl_framebuffer *fb = drawable->driverPrivate;
1695
1696 if (!rb || !buffer->bo)
1697 return;
1698
1699 unsigned num_samples = rb->Base.Base.NumSamples;
1700
1701 /* Check and see if we're already bound to the right
1702 * buffer object
1703 */
1704 struct intel_mipmap_tree *last_mt;
1705 if (num_samples == 0)
1706 last_mt = rb->mt;
1707 else
1708 last_mt = rb->singlesample_mt;
1709
1710 if (last_mt && last_mt->bo == buffer->bo)
1711 return;
1712
1713 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1714 buffer->width, buffer->height,
1715 buffer->pitch);
1716
1717 if (_mesa_is_front_buffer_drawing(fb) &&
1718 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1719 rb->Base.Base.NumSamples > 1) {
1720 intel_renderbuffer_upsample(intel, rb);
1721 }
1722 }
1723
1724 static void
1725 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1726 {
1727 struct gl_framebuffer *fb = drawable->driverPrivate;
1728 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1729 struct intel_renderbuffer *front_rb;
1730 struct intel_renderbuffer *back_rb;
1731 struct __DRIimageList images;
1732 unsigned int format;
1733 uint32_t buffer_mask = 0;
1734 int ret;
1735
1736 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1737 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1738
1739 if (back_rb)
1740 format = intel_rb_format(back_rb);
1741 else if (front_rb)
1742 format = intel_rb_format(front_rb);
1743 else
1744 return;
1745
1746 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1747 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1748 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1749 }
1750
1751 if (back_rb)
1752 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1753
1754 ret = dri_screen->image.loader->getBuffers(drawable,
1755 driGLFormatToImageFormat(format),
1756 &drawable->dri2.stamp,
1757 drawable->loaderPrivate,
1758 buffer_mask,
1759 &images);
1760 if (!ret)
1761 return;
1762
1763 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1764 drawable->w = images.front->width;
1765 drawable->h = images.front->height;
1766 intel_update_image_buffer(brw,
1767 drawable,
1768 front_rb,
1769 images.front,
1770 __DRI_IMAGE_BUFFER_FRONT);
1771 }
1772 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1773 drawable->w = images.back->width;
1774 drawable->h = images.back->height;
1775 intel_update_image_buffer(brw,
1776 drawable,
1777 back_rb,
1778 images.back,
1779 __DRI_IMAGE_BUFFER_BACK);
1780 }
1781 }