i965: Add device limits for tess threads & URB entries
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44
45 #include "vbo/vbo_context.h"
46
47 #include "drivers/common/driverfuncs.h"
48 #include "drivers/common/meta.h"
49 #include "utils.h"
50
51 #include "brw_context.h"
52 #include "brw_defines.h"
53 #include "brw_draw.h"
54 #include "brw_state.h"
55
56 #include "intel_batchbuffer.h"
57 #include "intel_buffer_objects.h"
58 #include "intel_buffers.h"
59 #include "intel_fbo.h"
60 #include "intel_mipmap_tree.h"
61 #include "intel_pixel.h"
62 #include "intel_image.h"
63 #include "intel_tex.h"
64 #include "intel_tex_obj.h"
65
66 #include "swrast_setup/swrast_setup.h"
67 #include "tnl/tnl.h"
68 #include "tnl/t_pipeline.h"
69 #include "util/ralloc.h"
70
71 /***************************************
72 * Mesa's Driver Functions
73 ***************************************/
74
75 static size_t
76 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
77 GLenum internalFormat, int samples[16])
78 {
79 struct brw_context *brw = brw_context(ctx);
80
81 (void) target;
82
83 switch (brw->gen) {
84 case 9:
85 case 8:
86 samples[0] = 8;
87 samples[1] = 4;
88 samples[2] = 2;
89 return 3;
90
91 case 7:
92 samples[0] = 8;
93 samples[1] = 4;
94 return 2;
95
96 case 6:
97 samples[0] = 4;
98 return 1;
99
100 default:
101 assert(brw->gen < 6);
102 samples[0] = 1;
103 return 1;
104 }
105 }
106
107 const char *const brw_vendor_string = "Intel Open Source Technology Center";
108
109 const char *
110 brw_get_renderer_string(unsigned deviceID)
111 {
112 const char *chipset;
113 static char buffer[128];
114
115 switch (deviceID) {
116 #undef CHIPSET
117 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
118 #include "pci_ids/i965_pci_ids.h"
119 default:
120 chipset = "Unknown Intel Chipset";
121 break;
122 }
123
124 (void) driGetRendererString(buffer, chipset, 0);
125 return buffer;
126 }
127
128 static const GLubyte *
129 intel_get_string(struct gl_context * ctx, GLenum name)
130 {
131 const struct brw_context *const brw = brw_context(ctx);
132
133 switch (name) {
134 case GL_VENDOR:
135 return (GLubyte *) brw_vendor_string;
136
137 case GL_RENDERER:
138 return
139 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
140
141 default:
142 return NULL;
143 }
144 }
145
146 static void
147 intel_viewport(struct gl_context *ctx)
148 {
149 struct brw_context *brw = brw_context(ctx);
150 __DRIcontext *driContext = brw->driContext;
151
152 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
153 dri2InvalidateDrawable(driContext->driDrawablePriv);
154 dri2InvalidateDrawable(driContext->driReadablePriv);
155 }
156 }
157
158 static void
159 intel_update_state(struct gl_context * ctx, GLuint new_state)
160 {
161 struct brw_context *brw = brw_context(ctx);
162 struct intel_texture_object *tex_obj;
163 struct intel_renderbuffer *depth_irb;
164
165 if (ctx->swrast_context)
166 _swrast_InvalidateState(ctx, new_state);
167 _vbo_InvalidateState(ctx, new_state);
168
169 brw->NewGLState |= new_state;
170
171 _mesa_unlock_context_textures(ctx);
172
173 /* Resolve the depth buffer's HiZ buffer. */
174 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
175 if (depth_irb)
176 intel_renderbuffer_resolve_hiz(brw, depth_irb);
177
178 /* Resolve depth buffer and render cache of each enabled texture. */
179 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
180 for (int i = 0; i <= maxEnabledUnit; i++) {
181 if (!ctx->Texture.Unit[i]._Current)
182 continue;
183 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
184 if (!tex_obj || !tex_obj->mt)
185 continue;
186 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
187 intel_miptree_resolve_color(brw, tex_obj->mt);
188 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
189 }
190
191 _mesa_lock_context_textures(ctx);
192 }
193
194 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
195
196 static void
197 intel_flush_front(struct gl_context *ctx)
198 {
199 struct brw_context *brw = brw_context(ctx);
200 __DRIcontext *driContext = brw->driContext;
201 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
202 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
203
204 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
205 if (flushFront(screen) && driDrawable &&
206 driDrawable->loaderPrivate) {
207
208 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
209 *
210 * This potentially resolves both front and back buffer. It
211 * is unnecessary to resolve the back, but harms nothing except
212 * performance. And no one cares about front-buffer render
213 * performance.
214 */
215 intel_resolve_for_dri2_flush(brw, driDrawable);
216 intel_batchbuffer_flush(brw);
217
218 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
219
220 /* We set the dirty bit in intel_prepare_render() if we're
221 * front buffer rendering once we get there.
222 */
223 brw->front_buffer_dirty = false;
224 }
225 }
226 }
227
228 static void
229 intel_glFlush(struct gl_context *ctx)
230 {
231 struct brw_context *brw = brw_context(ctx);
232
233 intel_batchbuffer_flush(brw);
234 intel_flush_front(ctx);
235 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
236 brw->need_throttle = true;
237 }
238
239 static void
240 intel_finish(struct gl_context * ctx)
241 {
242 struct brw_context *brw = brw_context(ctx);
243
244 intel_glFlush(ctx);
245
246 if (brw->batch.last_bo)
247 drm_intel_bo_wait_rendering(brw->batch.last_bo);
248 }
249
250 static void
251 brw_init_driver_functions(struct brw_context *brw,
252 struct dd_function_table *functions)
253 {
254 _mesa_init_driver_functions(functions);
255
256 /* GLX uses DRI2 invalidate events to handle window resizing.
257 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
258 * which doesn't provide a mechanism for snooping the event queues.
259 *
260 * So EGL still relies on viewport hacks to handle window resizing.
261 * This should go away with DRI3000.
262 */
263 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
264 functions->Viewport = intel_viewport;
265
266 functions->Flush = intel_glFlush;
267 functions->Finish = intel_finish;
268 functions->GetString = intel_get_string;
269 functions->UpdateState = intel_update_state;
270
271 intelInitTextureFuncs(functions);
272 intelInitTextureImageFuncs(functions);
273 intelInitTextureSubImageFuncs(functions);
274 intelInitTextureCopyImageFuncs(functions);
275 intelInitCopyImageFuncs(functions);
276 intelInitClearFuncs(functions);
277 intelInitBufferFuncs(functions);
278 intelInitPixelFuncs(functions);
279 intelInitBufferObjectFuncs(functions);
280 intel_init_syncobj_functions(functions);
281 brw_init_object_purgeable_functions(functions);
282
283 brwInitFragProgFuncs( functions );
284 brw_init_common_queryobj_functions(functions);
285 if (brw->gen >= 6)
286 gen6_init_queryobj_functions(functions);
287 else
288 gen4_init_queryobj_functions(functions);
289
290 functions->QuerySamplesForFormat = brw_query_samples_for_format;
291
292 functions->NewTransformFeedback = brw_new_transform_feedback;
293 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
294 functions->GetTransformFeedbackVertexCount =
295 brw_get_transform_feedback_vertex_count;
296 if (brw->gen >= 7) {
297 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
298 functions->EndTransformFeedback = gen7_end_transform_feedback;
299 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
300 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
301 } else {
302 functions->BeginTransformFeedback = brw_begin_transform_feedback;
303 functions->EndTransformFeedback = brw_end_transform_feedback;
304 }
305
306 if (brw->gen >= 6)
307 functions->GetSamplePosition = gen6_get_sample_position;
308 }
309
310 static void
311 brw_initialize_context_constants(struct brw_context *brw)
312 {
313 struct gl_context *ctx = &brw->ctx;
314
315 unsigned max_samplers =
316 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
317
318 ctx->Const.QueryCounterBits.Timestamp = 36;
319
320 ctx->Const.StripTextureBorder = true;
321
322 ctx->Const.MaxDualSourceDrawBuffers = 1;
323 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
324 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits = max_samplers;
325 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
326 ctx->Const.MaxTextureUnits =
327 MIN2(ctx->Const.MaxTextureCoordUnits,
328 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
329 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits = max_samplers;
330 if (brw->gen >= 6)
331 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = max_samplers;
332 else
333 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = 0;
334 if (_mesa_extension_override_enables.ARB_compute_shader) {
335 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = BRW_MAX_TEX_UNIT;
336 ctx->Const.MaxUniformBufferBindings += 12;
337 } else {
338 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = 0;
339 }
340 ctx->Const.MaxCombinedTextureImageUnits =
341 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits +
342 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits +
343 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits +
344 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
345
346 ctx->Const.MaxTextureLevels = 14; /* 8192 */
347 if (ctx->Const.MaxTextureLevels > MAX_TEXTURE_LEVELS)
348 ctx->Const.MaxTextureLevels = MAX_TEXTURE_LEVELS;
349 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
350 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
351 ctx->Const.MaxTextureMbytes = 1536;
352
353 if (brw->gen >= 7)
354 ctx->Const.MaxArrayTextureLayers = 2048;
355 else
356 ctx->Const.MaxArrayTextureLayers = 512;
357
358 ctx->Const.MaxTextureRectSize = 1 << 12;
359
360 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
361
362 ctx->Const.MaxRenderbufferSize = 8192;
363
364 /* Hardware only supports a limited number of transform feedback buffers.
365 * So we need to override the Mesa default (which is based only on software
366 * limits).
367 */
368 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
369
370 /* On Gen6, in the worst case, we use up one binding table entry per
371 * transform feedback component (see comments above the definition of
372 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
373 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
374 * BRW_MAX_SOL_BINDINGS.
375 *
376 * In "separate components" mode, we need to divide this value by
377 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
378 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
379 */
380 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
381 ctx->Const.MaxTransformFeedbackSeparateComponents =
382 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
383
384 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
385
386 int max_samples;
387 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
388 const int clamp_max_samples =
389 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
390
391 if (clamp_max_samples < 0) {
392 max_samples = msaa_modes[0];
393 } else {
394 /* Select the largest supported MSAA mode that does not exceed
395 * clamp_max_samples.
396 */
397 max_samples = 0;
398 for (int i = 0; msaa_modes[i] != 0; ++i) {
399 if (msaa_modes[i] <= clamp_max_samples) {
400 max_samples = msaa_modes[i];
401 break;
402 }
403 }
404 }
405
406 ctx->Const.MaxSamples = max_samples;
407 ctx->Const.MaxColorTextureSamples = max_samples;
408 ctx->Const.MaxDepthTextureSamples = max_samples;
409 ctx->Const.MaxIntegerSamples = max_samples;
410
411 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
412 * to map indices of rectangular grid to sample numbers within a pixel.
413 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
414 * extension implementation. For more details see the comment above
415 * gen6_set_sample_maps() definition.
416 */
417 gen6_set_sample_maps(ctx);
418
419 if (brw->gen >= 7)
420 ctx->Const.MaxProgramTextureGatherComponents = 4;
421 else if (brw->gen == 6)
422 ctx->Const.MaxProgramTextureGatherComponents = 1;
423
424 ctx->Const.MinLineWidth = 1.0;
425 ctx->Const.MinLineWidthAA = 1.0;
426 if (brw->gen >= 9 || brw->is_cherryview) {
427 ctx->Const.MaxLineWidth = 40.0;
428 ctx->Const.MaxLineWidthAA = 40.0;
429 ctx->Const.LineWidthGranularity = 0.125;
430 } else if (brw->gen >= 6) {
431 ctx->Const.MaxLineWidth = 7.875;
432 ctx->Const.MaxLineWidthAA = 7.875;
433 ctx->Const.LineWidthGranularity = 0.125;
434 } else {
435 ctx->Const.MaxLineWidth = 7.0;
436 ctx->Const.MaxLineWidthAA = 7.0;
437 ctx->Const.LineWidthGranularity = 0.5;
438 }
439
440 ctx->Const.MinPointSize = 1.0;
441 ctx->Const.MinPointSizeAA = 1.0;
442 ctx->Const.MaxPointSize = 255.0;
443 ctx->Const.MaxPointSizeAA = 255.0;
444 ctx->Const.PointSizeGranularity = 1.0;
445
446 if (brw->gen >= 5 || brw->is_g4x)
447 ctx->Const.MaxClipPlanes = 8;
448
449 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
450 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
451 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
452 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
453 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
454 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
455 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
456 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
457 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
458 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
459 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
460 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
461 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
462 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
463
464 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
465 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
466 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
467 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
468 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
469 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
470 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
471 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
472 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
473 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
474 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
475
476 /* Fragment shaders use real, 32-bit twos-complement integers for all
477 * integer types.
478 */
479 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
480 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
481 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
482 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
483 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
484
485 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
486 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
487 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
488 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
489 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
490
491 if (brw->gen >= 7) {
492 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
493 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
494 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
495 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
496 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers = BRW_MAX_ABO;
497 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers = BRW_MAX_ABO;
498 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers = BRW_MAX_ABO;
499 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers = BRW_MAX_ABO;
500 ctx->Const.MaxCombinedAtomicBuffers = 3 * BRW_MAX_ABO;
501 }
502
503 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
504 * but we're not sure how it's actually done for vertex order,
505 * that affect provoking vertex decision. Always use last vertex
506 * convention for quad primitive which works as expected for now.
507 */
508 if (brw->gen >= 6)
509 ctx->Const.QuadsFollowProvokingVertexConvention = false;
510
511 ctx->Const.NativeIntegers = true;
512 ctx->Const.VertexID_is_zero_based = true;
513
514 /* Regarding the CMP instruction, the Ivybridge PRM says:
515 *
516 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
517 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
518 * 0xFFFFFFFF) is assigned to dst."
519 *
520 * but PRMs for earlier generations say
521 *
522 * "In dword format, one GRF may store up to 8 results. When the register
523 * is used later as a vector of Booleans, as only LSB at each channel
524 * contains meaning [sic] data, software should make sure all higher bits
525 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
526 *
527 * We select the representation of a true boolean uniform to be ~0, and fix
528 * the results of Gen <= 5 CMP instruction's with -(result & 1).
529 */
530 ctx->Const.UniformBooleanTrue = ~0;
531
532 /* From the gen4 PRM, volume 4 page 127:
533 *
534 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
535 * the base address of the first element of the surface, computed in
536 * software by adding the surface base address to the byte offset of
537 * the element in the buffer."
538 *
539 * However, unaligned accesses are slower, so enforce buffer alignment.
540 */
541 ctx->Const.UniformBufferOffsetAlignment = 16;
542 ctx->Const.TextureBufferOffsetAlignment = 16;
543
544 if (brw->gen >= 6) {
545 ctx->Const.MaxVarying = 32;
546 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
547 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
548 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
549 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
550 }
551
552 /* We want the GLSL compiler to emit code that uses condition codes */
553 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
554 ctx->Const.ShaderCompilerOptions[i].MaxIfDepth = brw->gen < 6 ? 16 : UINT_MAX;
555 ctx->Const.ShaderCompilerOptions[i].EmitCondCodes = true;
556 ctx->Const.ShaderCompilerOptions[i].EmitNoNoise = true;
557 ctx->Const.ShaderCompilerOptions[i].EmitNoMainReturn = true;
558 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectInput = true;
559 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectOutput =
560 (i == MESA_SHADER_FRAGMENT);
561 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectTemp =
562 (i == MESA_SHADER_FRAGMENT);
563 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectUniform = false;
564 ctx->Const.ShaderCompilerOptions[i].LowerClipDistance = true;
565 }
566
567 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS = true;
568 ctx->Const.ShaderCompilerOptions[MESA_SHADER_GEOMETRY].OptimizeForAOS = true;
569
570 if (brw->scalar_vs) {
571 /* If we're using the scalar backend for vertex shaders, we need to
572 * configure these accordingly.
573 */
574 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].EmitNoIndirectOutput = true;
575 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].EmitNoIndirectTemp = true;
576 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS = false;
577 }
578
579 /* ARB_viewport_array */
580 if (brw->gen >= 7 && ctx->API == API_OPENGL_CORE) {
581 ctx->Const.MaxViewports = GEN7_NUM_VIEWPORTS;
582 ctx->Const.ViewportSubpixelBits = 0;
583
584 /* Cast to float before negating becuase MaxViewportWidth is unsigned.
585 */
586 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
587 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
588 }
589
590 /* ARB_gpu_shader5 */
591 if (brw->gen >= 7)
592 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
593 }
594
595 /**
596 * Process driconf (drirc) options, setting appropriate context flags.
597 *
598 * intelInitExtensions still pokes at optionCache directly, in order to
599 * avoid advertising various extensions. No flags are set, so it makes
600 * sense to continue doing that there.
601 */
602 static void
603 brw_process_driconf_options(struct brw_context *brw)
604 {
605 struct gl_context *ctx = &brw->ctx;
606
607 driOptionCache *options = &brw->optionCache;
608 driParseConfigFiles(options, &brw->intelScreen->optionCache,
609 brw->driContext->driScreenPriv->myNum, "i965");
610
611 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
612 switch (bo_reuse_mode) {
613 case DRI_CONF_BO_REUSE_DISABLED:
614 break;
615 case DRI_CONF_BO_REUSE_ALL:
616 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
617 break;
618 }
619
620 if (!driQueryOptionb(options, "hiz")) {
621 brw->has_hiz = false;
622 /* On gen6, you can only do separate stencil with HIZ. */
623 if (brw->gen == 6)
624 brw->has_separate_stencil = false;
625 }
626
627 if (driQueryOptionb(options, "always_flush_batch")) {
628 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
629 brw->always_flush_batch = true;
630 }
631
632 if (driQueryOptionb(options, "always_flush_cache")) {
633 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
634 brw->always_flush_cache = true;
635 }
636
637 if (driQueryOptionb(options, "disable_throttling")) {
638 fprintf(stderr, "disabling flush throttling\n");
639 brw->disable_throttling = true;
640 }
641
642 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
643
644 ctx->Const.ForceGLSLExtensionsWarn =
645 driQueryOptionb(options, "force_glsl_extensions_warn");
646
647 ctx->Const.DisableGLSLLineContinuations =
648 driQueryOptionb(options, "disable_glsl_line_continuations");
649
650 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
651 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
652 }
653
654 GLboolean
655 brwCreateContext(gl_api api,
656 const struct gl_config *mesaVis,
657 __DRIcontext *driContextPriv,
658 unsigned major_version,
659 unsigned minor_version,
660 uint32_t flags,
661 bool notify_reset,
662 unsigned *dri_ctx_error,
663 void *sharedContextPrivate)
664 {
665 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
666 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
667 struct intel_screen *screen = sPriv->driverPrivate;
668 const struct brw_device_info *devinfo = screen->devinfo;
669 struct dd_function_table functions;
670
671 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
672 * provides us with context reset notifications.
673 */
674 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
675 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
676
677 if (screen->has_context_reset_notification)
678 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
679
680 if (flags & ~allowed_flags) {
681 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
682 return false;
683 }
684
685 struct brw_context *brw = rzalloc(NULL, struct brw_context);
686 if (!brw) {
687 fprintf(stderr, "%s: failed to alloc context\n", __FUNCTION__);
688 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
689 return false;
690 }
691
692 driContextPriv->driverPrivate = brw;
693 brw->driContext = driContextPriv;
694 brw->intelScreen = screen;
695 brw->bufmgr = screen->bufmgr;
696
697 brw->gen = devinfo->gen;
698 brw->gt = devinfo->gt;
699 brw->is_g4x = devinfo->is_g4x;
700 brw->is_baytrail = devinfo->is_baytrail;
701 brw->is_haswell = devinfo->is_haswell;
702 brw->is_cherryview = devinfo->is_cherryview;
703 brw->has_llc = devinfo->has_llc;
704 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
705 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
706 brw->has_pln = devinfo->has_pln;
707 brw->has_compr4 = devinfo->has_compr4;
708 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
709 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
710 brw->needs_unlit_centroid_workaround =
711 devinfo->needs_unlit_centroid_workaround;
712
713 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
714 brw->has_swizzling = screen->hw_has_swizzling;
715
716 brw->vs.base.stage = MESA_SHADER_VERTEX;
717 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
718 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
719 if (brw->gen >= 8) {
720 gen8_init_vtable_surface_functions(brw);
721 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
722 } else if (brw->gen >= 7) {
723 gen7_init_vtable_surface_functions(brw);
724 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
725 } else if (brw->gen >= 6) {
726 gen6_init_vtable_surface_functions(brw);
727 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
728 } else {
729 gen4_init_vtable_surface_functions(brw);
730 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
731 }
732
733 brw_init_driver_functions(brw, &functions);
734
735 if (notify_reset)
736 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
737
738 struct gl_context *ctx = &brw->ctx;
739
740 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
741 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
742 fprintf(stderr, "%s: failed to init mesa context\n", __FUNCTION__);
743 intelDestroyContext(driContextPriv);
744 return false;
745 }
746
747 driContextSetFlags(ctx, flags);
748
749 /* Initialize the software rasterizer and helper modules.
750 *
751 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
752 * software fallbacks (which we have to support on legacy GL to do weird
753 * glDrawPixels(), glBitmap(), and other functions).
754 */
755 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
756 _swrast_CreateContext(ctx);
757 }
758
759 _vbo_CreateContext(ctx);
760 if (ctx->swrast_context) {
761 _tnl_CreateContext(ctx);
762 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
763 _swsetup_CreateContext(ctx);
764
765 /* Configure swrast to match hardware characteristics: */
766 _swrast_allow_pixel_fog(ctx, false);
767 _swrast_allow_vertex_fog(ctx, true);
768 }
769
770 _mesa_meta_init(ctx);
771
772 brw_process_driconf_options(brw);
773 brw_process_intel_debug_variable(brw);
774
775 if (brw->gen >= 8 && !(INTEL_DEBUG & DEBUG_VEC4VS))
776 brw->scalar_vs = true;
777
778 brw_initialize_context_constants(brw);
779
780 ctx->Const.ResetStrategy = notify_reset
781 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
782
783 /* Reinitialize the context point state. It depends on ctx->Const values. */
784 _mesa_init_point(ctx);
785
786 intel_fbo_init(brw);
787
788 intel_batchbuffer_init(brw);
789
790 if (brw->gen >= 6) {
791 /* Create a new hardware context. Using a hardware context means that
792 * our GPU state will be saved/restored on context switch, allowing us
793 * to assume that the GPU is in the same state we left it in.
794 *
795 * This is required for transform feedback buffer offsets, query objects,
796 * and also allows us to reduce how much state we have to emit.
797 */
798 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
799
800 if (!brw->hw_ctx) {
801 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
802 intelDestroyContext(driContextPriv);
803 return false;
804 }
805 }
806
807 brw_init_state(brw);
808
809 intelInitExtensions(ctx);
810
811 brw_init_surface_formats(brw);
812
813 brw->max_vs_threads = devinfo->max_vs_threads;
814 brw->max_hs_threads = devinfo->max_hs_threads;
815 brw->max_ds_threads = devinfo->max_ds_threads;
816 brw->max_gs_threads = devinfo->max_gs_threads;
817 brw->max_wm_threads = devinfo->max_wm_threads;
818 brw->urb.size = devinfo->urb.size;
819 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
820 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
821 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
822 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
823 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
824
825 /* Estimate the size of the mappable aperture into the GTT. There's an
826 * ioctl to get the whole GTT size, but not one to get the mappable subset.
827 * It turns out it's basically always 256MB, though some ancient hardware
828 * was smaller.
829 */
830 uint32_t gtt_size = 256 * 1024 * 1024;
831
832 /* We don't want to map two objects such that a memcpy between them would
833 * just fault one mapping in and then the other over and over forever. So
834 * we would need to divide the GTT size by 2. Additionally, some GTT is
835 * taken up by things like the framebuffer and the ringbuffer and such, so
836 * be more conservative.
837 */
838 brw->max_gtt_map_object_size = gtt_size / 4;
839
840 if (brw->gen == 6)
841 brw->urb.gs_present = false;
842
843 brw->prim_restart.in_progress = false;
844 brw->prim_restart.enable_cut_index = false;
845 brw->gs.enabled = false;
846 brw->sf.viewport_transform_enable = true;
847
848 ctx->VertexProgram._MaintainTnlProgram = true;
849 ctx->FragmentProgram._MaintainTexEnvProgram = true;
850
851 brw_draw_init( brw );
852
853 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
854 /* Turn on some extra GL_ARB_debug_output generation. */
855 brw->perf_debug = true;
856 }
857
858 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
859 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
860
861 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
862 brw_init_shader_time(brw);
863
864 _mesa_compute_version(ctx);
865
866 _mesa_initialize_dispatch_tables(ctx);
867 _mesa_initialize_vbo_vtxfmt(ctx);
868
869 if (ctx->Extensions.AMD_performance_monitor) {
870 brw_init_performance_monitors(brw);
871 }
872
873 vbo_use_buffer_objects(ctx);
874 vbo_always_unmap_buffers(ctx);
875
876 return true;
877 }
878
879 void
880 intelDestroyContext(__DRIcontext * driContextPriv)
881 {
882 struct brw_context *brw =
883 (struct brw_context *) driContextPriv->driverPrivate;
884 struct gl_context *ctx = &brw->ctx;
885
886 assert(brw); /* should never be null */
887 if (!brw)
888 return;
889
890 /* Dump a final BMP in case the application doesn't call SwapBuffers */
891 if (INTEL_DEBUG & DEBUG_AUB) {
892 intel_batchbuffer_flush(brw);
893 aub_dump_bmp(&brw->ctx);
894 }
895
896 _mesa_meta_free(&brw->ctx);
897 brw_meta_fast_clear_free(brw);
898
899 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
900 /* Force a report. */
901 brw->shader_time.report_time = 0;
902
903 brw_collect_and_report_shader_time(brw);
904 brw_destroy_shader_time(brw);
905 }
906
907 brw_destroy_state(brw);
908 brw_draw_destroy(brw);
909
910 drm_intel_bo_unreference(brw->curbe.curbe_bo);
911
912 drm_intel_gem_context_destroy(brw->hw_ctx);
913
914 if (ctx->swrast_context) {
915 _swsetup_DestroyContext(&brw->ctx);
916 _tnl_DestroyContext(&brw->ctx);
917 }
918 _vbo_DestroyContext(&brw->ctx);
919
920 if (ctx->swrast_context)
921 _swrast_DestroyContext(&brw->ctx);
922
923 intel_batchbuffer_free(brw);
924
925 drm_intel_bo_unreference(brw->first_post_swapbuffers_batch);
926 brw->first_post_swapbuffers_batch = NULL;
927
928 driDestroyOptionCache(&brw->optionCache);
929
930 /* free the Mesa context */
931 _mesa_free_context_data(&brw->ctx);
932
933 ralloc_free(brw);
934 driContextPriv->driverPrivate = NULL;
935 }
936
937 GLboolean
938 intelUnbindContext(__DRIcontext * driContextPriv)
939 {
940 /* Unset current context and dispath table */
941 _mesa_make_current(NULL, NULL, NULL);
942
943 return true;
944 }
945
946 /**
947 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
948 * on window system framebuffers.
949 *
950 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
951 * your renderbuffer can do sRGB encode, and you can flip a switch that does
952 * sRGB encode if the renderbuffer can handle it. You can ask specifically
953 * for a visual where you're guaranteed to be capable, but it turns out that
954 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
955 * incapable ones, becuase there's no difference between the two in resources
956 * used. Applications thus get built that accidentally rely on the default
957 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
958 * great...
959 *
960 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
961 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
962 * So they removed the enable knob and made it "if the renderbuffer is sRGB
963 * capable, do sRGB encode". Then, for your window system renderbuffers, you
964 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
965 * and get no sRGB encode (assuming that both kinds of visual are available).
966 * Thus our choice to support sRGB by default on our visuals for desktop would
967 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
968 *
969 * Unfortunately, renderbuffer setup happens before a context is created. So
970 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
971 * context (without an sRGB visual, though we don't have sRGB visuals exposed
972 * yet), we go turn that back off before anyone finds out.
973 */
974 static void
975 intel_gles3_srgb_workaround(struct brw_context *brw,
976 struct gl_framebuffer *fb)
977 {
978 struct gl_context *ctx = &brw->ctx;
979
980 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
981 return;
982
983 /* Some day when we support the sRGB capable bit on visuals available for
984 * GLES, we'll need to respect that and not disable things here.
985 */
986 fb->Visual.sRGBCapable = false;
987 for (int i = 0; i < BUFFER_COUNT; i++) {
988 if (fb->Attachment[i].Renderbuffer &&
989 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
990 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
991 }
992 }
993 }
994
995 GLboolean
996 intelMakeCurrent(__DRIcontext * driContextPriv,
997 __DRIdrawable * driDrawPriv,
998 __DRIdrawable * driReadPriv)
999 {
1000 struct brw_context *brw;
1001 GET_CURRENT_CONTEXT(curCtx);
1002
1003 if (driContextPriv)
1004 brw = (struct brw_context *) driContextPriv->driverPrivate;
1005 else
1006 brw = NULL;
1007
1008 /* According to the glXMakeCurrent() man page: "Pending commands to
1009 * the previous context, if any, are flushed before it is released."
1010 * But only flush if we're actually changing contexts.
1011 */
1012 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1013 _mesa_flush(curCtx);
1014 }
1015
1016 if (driContextPriv) {
1017 struct gl_context *ctx = &brw->ctx;
1018 struct gl_framebuffer *fb, *readFb;
1019
1020 if (driDrawPriv == NULL) {
1021 fb = _mesa_get_incomplete_framebuffer();
1022 } else {
1023 fb = driDrawPriv->driverPrivate;
1024 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1025 }
1026
1027 if (driReadPriv == NULL) {
1028 readFb = _mesa_get_incomplete_framebuffer();
1029 } else {
1030 readFb = driReadPriv->driverPrivate;
1031 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1032 }
1033
1034 /* The sRGB workaround changes the renderbuffer's format. We must change
1035 * the format before the renderbuffer's miptree get's allocated, otherwise
1036 * the formats of the renderbuffer and its miptree will differ.
1037 */
1038 intel_gles3_srgb_workaround(brw, fb);
1039 intel_gles3_srgb_workaround(brw, readFb);
1040
1041 /* If the context viewport hasn't been initialized, force a call out to
1042 * the loader to get buffers so we have a drawable size for the initial
1043 * viewport. */
1044 if (!brw->ctx.ViewportInitialized)
1045 intel_prepare_render(brw);
1046
1047 _mesa_make_current(ctx, fb, readFb);
1048 } else {
1049 _mesa_make_current(NULL, NULL, NULL);
1050 }
1051
1052 return true;
1053 }
1054
1055 void
1056 intel_resolve_for_dri2_flush(struct brw_context *brw,
1057 __DRIdrawable *drawable)
1058 {
1059 if (brw->gen < 6) {
1060 /* MSAA and fast color clear are not supported, so don't waste time
1061 * checking whether a resolve is needed.
1062 */
1063 return;
1064 }
1065
1066 struct gl_framebuffer *fb = drawable->driverPrivate;
1067 struct intel_renderbuffer *rb;
1068
1069 /* Usually, only the back buffer will need to be downsampled. However,
1070 * the front buffer will also need it if the user has rendered into it.
1071 */
1072 static const gl_buffer_index buffers[2] = {
1073 BUFFER_BACK_LEFT,
1074 BUFFER_FRONT_LEFT,
1075 };
1076
1077 for (int i = 0; i < 2; ++i) {
1078 rb = intel_get_renderbuffer(fb, buffers[i]);
1079 if (rb == NULL || rb->mt == NULL)
1080 continue;
1081 if (rb->mt->num_samples <= 1)
1082 intel_miptree_resolve_color(brw, rb->mt);
1083 else
1084 intel_renderbuffer_downsample(brw, rb);
1085 }
1086 }
1087
1088 static unsigned
1089 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1090 {
1091 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1092 }
1093
1094 static void
1095 intel_query_dri2_buffers(struct brw_context *brw,
1096 __DRIdrawable *drawable,
1097 __DRIbuffer **buffers,
1098 int *count);
1099
1100 static void
1101 intel_process_dri2_buffer(struct brw_context *brw,
1102 __DRIdrawable *drawable,
1103 __DRIbuffer *buffer,
1104 struct intel_renderbuffer *rb,
1105 const char *buffer_name);
1106
1107 static void
1108 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1109
1110 static void
1111 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1112 {
1113 struct gl_framebuffer *fb = drawable->driverPrivate;
1114 struct intel_renderbuffer *rb;
1115 __DRIbuffer *buffers = NULL;
1116 int i, count;
1117 const char *region_name;
1118
1119 /* Set this up front, so that in case our buffers get invalidated
1120 * while we're getting new buffers, we don't clobber the stamp and
1121 * thus ignore the invalidate. */
1122 drawable->lastStamp = drawable->dri2.stamp;
1123
1124 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1125 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1126
1127 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1128
1129 if (buffers == NULL)
1130 return;
1131
1132 for (i = 0; i < count; i++) {
1133 switch (buffers[i].attachment) {
1134 case __DRI_BUFFER_FRONT_LEFT:
1135 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1136 region_name = "dri2 front buffer";
1137 break;
1138
1139 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1140 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1141 region_name = "dri2 fake front buffer";
1142 break;
1143
1144 case __DRI_BUFFER_BACK_LEFT:
1145 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1146 region_name = "dri2 back buffer";
1147 break;
1148
1149 case __DRI_BUFFER_DEPTH:
1150 case __DRI_BUFFER_HIZ:
1151 case __DRI_BUFFER_DEPTH_STENCIL:
1152 case __DRI_BUFFER_STENCIL:
1153 case __DRI_BUFFER_ACCUM:
1154 default:
1155 fprintf(stderr,
1156 "unhandled buffer attach event, attachment type %d\n",
1157 buffers[i].attachment);
1158 return;
1159 }
1160
1161 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1162 }
1163
1164 }
1165
1166 void
1167 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1168 {
1169 struct brw_context *brw = context->driverPrivate;
1170 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1171
1172 /* Set this up front, so that in case our buffers get invalidated
1173 * while we're getting new buffers, we don't clobber the stamp and
1174 * thus ignore the invalidate. */
1175 drawable->lastStamp = drawable->dri2.stamp;
1176
1177 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1178 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1179
1180 if (screen->image.loader)
1181 intel_update_image_buffers(brw, drawable);
1182 else
1183 intel_update_dri2_buffers(brw, drawable);
1184
1185 driUpdateFramebufferSize(&brw->ctx, drawable);
1186 }
1187
1188 /**
1189 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1190 * state is required.
1191 */
1192 void
1193 intel_prepare_render(struct brw_context *brw)
1194 {
1195 struct gl_context *ctx = &brw->ctx;
1196 __DRIcontext *driContext = brw->driContext;
1197 __DRIdrawable *drawable;
1198
1199 drawable = driContext->driDrawablePriv;
1200 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1201 if (drawable->lastStamp != drawable->dri2.stamp)
1202 intel_update_renderbuffers(driContext, drawable);
1203 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1204 }
1205
1206 drawable = driContext->driReadablePriv;
1207 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1208 if (drawable->lastStamp != drawable->dri2.stamp)
1209 intel_update_renderbuffers(driContext, drawable);
1210 driContext->dri2.read_stamp = drawable->dri2.stamp;
1211 }
1212
1213 /* If we're currently rendering to the front buffer, the rendering
1214 * that will happen next will probably dirty the front buffer. So
1215 * mark it as dirty here.
1216 */
1217 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
1218 brw->front_buffer_dirty = true;
1219
1220 /* Wait for the swapbuffers before the one we just emitted, so we
1221 * don't get too many swaps outstanding for apps that are GPU-heavy
1222 * but not CPU-heavy.
1223 *
1224 * We're using intelDRI2Flush (called from the loader before
1225 * swapbuffer) and glFlush (for front buffer rendering) as the
1226 * indicator that a frame is done and then throttle when we get
1227 * here as we prepare to render the next frame. At this point for
1228 * round trips for swap/copy and getting new buffers are done and
1229 * we'll spend less time waiting on the GPU.
1230 *
1231 * Unfortunately, we don't have a handle to the batch containing
1232 * the swap, and getting our hands on that doesn't seem worth it,
1233 * so we just us the first batch we emitted after the last swap.
1234 */
1235 if (brw->need_throttle && brw->first_post_swapbuffers_batch) {
1236 if (!brw->disable_throttling)
1237 drm_intel_bo_wait_rendering(brw->first_post_swapbuffers_batch);
1238 drm_intel_bo_unreference(brw->first_post_swapbuffers_batch);
1239 brw->first_post_swapbuffers_batch = NULL;
1240 brw->need_throttle = false;
1241 }
1242 }
1243
1244 /**
1245 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1246 *
1247 * To determine which DRI buffers to request, examine the renderbuffers
1248 * attached to the drawable's framebuffer. Then request the buffers with
1249 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1250 *
1251 * This is called from intel_update_renderbuffers().
1252 *
1253 * \param drawable Drawable whose buffers are queried.
1254 * \param buffers [out] List of buffers returned by DRI2 query.
1255 * \param buffer_count [out] Number of buffers returned.
1256 *
1257 * \see intel_update_renderbuffers()
1258 * \see DRI2GetBuffers()
1259 * \see DRI2GetBuffersWithFormat()
1260 */
1261 static void
1262 intel_query_dri2_buffers(struct brw_context *brw,
1263 __DRIdrawable *drawable,
1264 __DRIbuffer **buffers,
1265 int *buffer_count)
1266 {
1267 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1268 struct gl_framebuffer *fb = drawable->driverPrivate;
1269 int i = 0;
1270 unsigned attachments[8];
1271
1272 struct intel_renderbuffer *front_rb;
1273 struct intel_renderbuffer *back_rb;
1274
1275 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1276 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1277
1278 memset(attachments, 0, sizeof(attachments));
1279 if ((brw_is_front_buffer_drawing(fb) ||
1280 brw_is_front_buffer_reading(fb) ||
1281 !back_rb) && front_rb) {
1282 /* If a fake front buffer is in use, then querying for
1283 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1284 * the real front buffer to the fake front buffer. So before doing the
1285 * query, we need to make sure all the pending drawing has landed in the
1286 * real front buffer.
1287 */
1288 intel_batchbuffer_flush(brw);
1289 intel_flush_front(&brw->ctx);
1290
1291 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1292 attachments[i++] = intel_bits_per_pixel(front_rb);
1293 } else if (front_rb && brw->front_buffer_dirty) {
1294 /* We have pending front buffer rendering, but we aren't querying for a
1295 * front buffer. If the front buffer we have is a fake front buffer,
1296 * the X server is going to throw it away when it processes the query.
1297 * So before doing the query, make sure all the pending drawing has
1298 * landed in the real front buffer.
1299 */
1300 intel_batchbuffer_flush(brw);
1301 intel_flush_front(&brw->ctx);
1302 }
1303
1304 if (back_rb) {
1305 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1306 attachments[i++] = intel_bits_per_pixel(back_rb);
1307 }
1308
1309 assert(i <= ARRAY_SIZE(attachments));
1310
1311 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1312 &drawable->w,
1313 &drawable->h,
1314 attachments, i / 2,
1315 buffer_count,
1316 drawable->loaderPrivate);
1317 }
1318
1319 /**
1320 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1321 *
1322 * This is called from intel_update_renderbuffers().
1323 *
1324 * \par Note:
1325 * DRI buffers whose attachment point is DRI2BufferStencil or
1326 * DRI2BufferDepthStencil are handled as special cases.
1327 *
1328 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1329 * that is passed to drm_intel_bo_gem_create_from_name().
1330 *
1331 * \see intel_update_renderbuffers()
1332 */
1333 static void
1334 intel_process_dri2_buffer(struct brw_context *brw,
1335 __DRIdrawable *drawable,
1336 __DRIbuffer *buffer,
1337 struct intel_renderbuffer *rb,
1338 const char *buffer_name)
1339 {
1340 struct gl_framebuffer *fb = drawable->driverPrivate;
1341 drm_intel_bo *bo;
1342
1343 if (!rb)
1344 return;
1345
1346 unsigned num_samples = rb->Base.Base.NumSamples;
1347
1348 /* We try to avoid closing and reopening the same BO name, because the first
1349 * use of a mapping of the buffer involves a bunch of page faulting which is
1350 * moderately expensive.
1351 */
1352 struct intel_mipmap_tree *last_mt;
1353 if (num_samples == 0)
1354 last_mt = rb->mt;
1355 else
1356 last_mt = rb->singlesample_mt;
1357
1358 uint32_t old_name = 0;
1359 if (last_mt) {
1360 /* The bo already has a name because the miptree was created by a
1361 * previous call to intel_process_dri2_buffer(). If a bo already has a
1362 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1363 * create a new name.
1364 */
1365 drm_intel_bo_flink(last_mt->bo, &old_name);
1366 }
1367
1368 if (old_name == buffer->name)
1369 return;
1370
1371 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1372 fprintf(stderr,
1373 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1374 buffer->name, buffer->attachment,
1375 buffer->cpp, buffer->pitch);
1376 }
1377
1378 intel_miptree_release(&rb->mt);
1379 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1380 buffer->name);
1381 if (!bo) {
1382 fprintf(stderr,
1383 "Failed to open BO for returned DRI2 buffer "
1384 "(%dx%d, %s, named %d).\n"
1385 "This is likely a bug in the X Server that will lead to a "
1386 "crash soon.\n",
1387 drawable->w, drawable->h, buffer_name, buffer->name);
1388 return;
1389 }
1390
1391 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1392 drawable->w, drawable->h,
1393 buffer->pitch);
1394
1395 if (brw_is_front_buffer_drawing(fb) &&
1396 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1397 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1398 rb->Base.Base.NumSamples > 1) {
1399 intel_renderbuffer_upsample(brw, rb);
1400 }
1401
1402 assert(rb->mt);
1403
1404 drm_intel_bo_unreference(bo);
1405 }
1406
1407 /**
1408 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1409 *
1410 * To determine which DRI buffers to request, examine the renderbuffers
1411 * attached to the drawable's framebuffer. Then request the buffers from
1412 * the image loader
1413 *
1414 * This is called from intel_update_renderbuffers().
1415 *
1416 * \param drawable Drawable whose buffers are queried.
1417 * \param buffers [out] List of buffers returned by DRI2 query.
1418 * \param buffer_count [out] Number of buffers returned.
1419 *
1420 * \see intel_update_renderbuffers()
1421 */
1422
1423 static void
1424 intel_update_image_buffer(struct brw_context *intel,
1425 __DRIdrawable *drawable,
1426 struct intel_renderbuffer *rb,
1427 __DRIimage *buffer,
1428 enum __DRIimageBufferMask buffer_type)
1429 {
1430 struct gl_framebuffer *fb = drawable->driverPrivate;
1431
1432 if (!rb || !buffer->bo)
1433 return;
1434
1435 unsigned num_samples = rb->Base.Base.NumSamples;
1436
1437 /* Check and see if we're already bound to the right
1438 * buffer object
1439 */
1440 struct intel_mipmap_tree *last_mt;
1441 if (num_samples == 0)
1442 last_mt = rb->mt;
1443 else
1444 last_mt = rb->singlesample_mt;
1445
1446 if (last_mt && last_mt->bo == buffer->bo)
1447 return;
1448
1449 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1450 buffer->width, buffer->height,
1451 buffer->pitch);
1452
1453 if (brw_is_front_buffer_drawing(fb) &&
1454 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1455 rb->Base.Base.NumSamples > 1) {
1456 intel_renderbuffer_upsample(intel, rb);
1457 }
1458 }
1459
1460 static void
1461 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1462 {
1463 struct gl_framebuffer *fb = drawable->driverPrivate;
1464 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1465 struct intel_renderbuffer *front_rb;
1466 struct intel_renderbuffer *back_rb;
1467 struct __DRIimageList images;
1468 unsigned int format;
1469 uint32_t buffer_mask = 0;
1470
1471 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1472 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1473
1474 if (back_rb)
1475 format = intel_rb_format(back_rb);
1476 else if (front_rb)
1477 format = intel_rb_format(front_rb);
1478 else
1479 return;
1480
1481 if (front_rb && (brw_is_front_buffer_drawing(fb) ||
1482 brw_is_front_buffer_reading(fb) || !back_rb)) {
1483 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1484 }
1485
1486 if (back_rb)
1487 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1488
1489 (*screen->image.loader->getBuffers) (drawable,
1490 driGLFormatToImageFormat(format),
1491 &drawable->dri2.stamp,
1492 drawable->loaderPrivate,
1493 buffer_mask,
1494 &images);
1495
1496 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1497 drawable->w = images.front->width;
1498 drawable->h = images.front->height;
1499 intel_update_image_buffer(brw,
1500 drawable,
1501 front_rb,
1502 images.front,
1503 __DRI_IMAGE_BUFFER_FRONT);
1504 }
1505 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1506 drawable->w = images.back->width;
1507 drawable->h = images.back->height;
1508 intel_update_image_buffer(brw,
1509 drawable,
1510 back_rb,
1511 images.back,
1512 __DRI_IMAGE_BUFFER_BACK);
1513 }
1514 }