b928f94e188ec867591a4c34f838f87f59570fb6
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "compiler/nir/nir.h"
35 #include "main/api_exec.h"
36 #include "main/context.h"
37 #include "main/fbobject.h"
38 #include "main/extensions.h"
39 #include "main/imports.h"
40 #include "main/macros.h"
41 #include "main/points.h"
42 #include "main/version.h"
43 #include "main/vtxfmt.h"
44 #include "main/texobj.h"
45 #include "main/framebuffer.h"
46
47 #include "vbo/vbo_context.h"
48
49 #include "drivers/common/driverfuncs.h"
50 #include "drivers/common/meta.h"
51 #include "utils.h"
52
53 #include "brw_context.h"
54 #include "brw_defines.h"
55 #include "brw_blorp.h"
56 #include "brw_compiler.h"
57 #include "brw_draw.h"
58 #include "brw_state.h"
59
60 #include "intel_batchbuffer.h"
61 #include "intel_buffer_objects.h"
62 #include "intel_buffers.h"
63 #include "intel_fbo.h"
64 #include "intel_mipmap_tree.h"
65 #include "intel_pixel.h"
66 #include "intel_image.h"
67 #include "intel_tex.h"
68 #include "intel_tex_obj.h"
69
70 #include "swrast_setup/swrast_setup.h"
71 #include "tnl/tnl.h"
72 #include "tnl/t_pipeline.h"
73 #include "util/ralloc.h"
74 #include "util/debug.h"
75 #include "isl/isl.h"
76
77 /***************************************
78 * Mesa's Driver Functions
79 ***************************************/
80
81 const char *const brw_vendor_string = "Intel Open Source Technology Center";
82
83 static const char *
84 get_bsw_model(const struct intel_screen *screen)
85 {
86 switch (screen->eu_total) {
87 case 16:
88 return "405";
89 case 12:
90 return "400";
91 default:
92 return " ";
93 }
94 }
95
96 const char *
97 brw_get_renderer_string(const struct intel_screen *screen)
98 {
99 const char *chipset;
100 static char buffer[128];
101 char *bsw = NULL;
102
103 switch (screen->deviceID) {
104 #undef CHIPSET
105 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
106 #include "pci_ids/i965_pci_ids.h"
107 default:
108 chipset = "Unknown Intel Chipset";
109 break;
110 }
111
112 /* Braswell branding is funny, so we have to fix it up here */
113 if (screen->deviceID == 0x22B1) {
114 bsw = strdup(chipset);
115 char *needle = strstr(bsw, "XXX");
116 if (needle) {
117 memcpy(needle, get_bsw_model(screen), 3);
118 chipset = bsw;
119 }
120 }
121
122 (void) driGetRendererString(buffer, chipset, 0);
123 free(bsw);
124 return buffer;
125 }
126
127 static const GLubyte *
128 intel_get_string(struct gl_context * ctx, GLenum name)
129 {
130 const struct brw_context *const brw = brw_context(ctx);
131
132 switch (name) {
133 case GL_VENDOR:
134 return (GLubyte *) brw_vendor_string;
135
136 case GL_RENDERER:
137 return
138 (GLubyte *) brw_get_renderer_string(brw->screen);
139
140 default:
141 return NULL;
142 }
143 }
144
145 static void
146 intel_viewport(struct gl_context *ctx)
147 {
148 struct brw_context *brw = brw_context(ctx);
149 __DRIcontext *driContext = brw->driContext;
150
151 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
152 if (driContext->driDrawablePriv)
153 dri2InvalidateDrawable(driContext->driDrawablePriv);
154 if (driContext->driReadablePriv)
155 dri2InvalidateDrawable(driContext->driReadablePriv);
156 }
157 }
158
159 static void
160 intel_update_framebuffer(struct gl_context *ctx,
161 struct gl_framebuffer *fb)
162 {
163 struct brw_context *brw = brw_context(ctx);
164
165 /* Quantize the derived default number of samples
166 */
167 fb->DefaultGeometry._NumSamples =
168 intel_quantize_num_samples(brw->screen,
169 fb->DefaultGeometry.NumSamples);
170 }
171
172 static bool
173 intel_disable_rb_aux_buffer(struct brw_context *brw, const drm_intel_bo *bo)
174 {
175 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
176 bool found = false;
177
178 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
179 const struct intel_renderbuffer *irb =
180 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
181
182 if (irb && irb->mt->bo == bo) {
183 found = brw->draw_aux_buffer_disabled[i] = true;
184 }
185 }
186
187 return found;
188 }
189
190 /* On Gen9 color buffers may be compressed by the hardware (lossless
191 * compression). There are, however, format restrictions and care needs to be
192 * taken that the sampler engine is capable for re-interpreting a buffer with
193 * format different the buffer was originally written with.
194 *
195 * For example, SRGB formats are not compressible and the sampler engine isn't
196 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
197 * color buffer needs to be resolved so that the sampling surface can be
198 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
199 * set).
200 */
201 static bool
202 intel_texture_view_requires_resolve(struct brw_context *brw,
203 struct intel_texture_object *intel_tex)
204 {
205 if (brw->gen < 9 ||
206 !intel_miptree_is_lossless_compressed(brw, intel_tex->mt))
207 return false;
208
209 const uint32_t brw_format = brw_format_for_mesa_format(intel_tex->_Format);
210
211 if (isl_format_supports_lossless_compression(&brw->screen->devinfo,
212 brw_format))
213 return false;
214
215 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
216 _mesa_get_format_name(intel_tex->_Format),
217 _mesa_get_format_name(intel_tex->mt->format));
218
219 if (intel_disable_rb_aux_buffer(brw, intel_tex->mt->bo))
220 perf_debug("Sampling renderbuffer with non-compressible format - "
221 "turning off compression");
222
223 return true;
224 }
225
226 static void
227 intel_update_state(struct gl_context * ctx, GLuint new_state)
228 {
229 struct brw_context *brw = brw_context(ctx);
230 struct intel_texture_object *tex_obj;
231 struct intel_renderbuffer *depth_irb;
232
233 if (ctx->swrast_context)
234 _swrast_InvalidateState(ctx, new_state);
235 _vbo_InvalidateState(ctx, new_state);
236
237 brw->NewGLState |= new_state;
238
239 _mesa_unlock_context_textures(ctx);
240
241 /* Resolve the depth buffer's HiZ buffer. */
242 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
243 if (depth_irb)
244 intel_renderbuffer_resolve_hiz(brw, depth_irb);
245
246 memset(brw->draw_aux_buffer_disabled, 0,
247 sizeof(brw->draw_aux_buffer_disabled));
248
249 /* Resolve depth buffer and render cache of each enabled texture. */
250 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
251 for (int i = 0; i <= maxEnabledUnit; i++) {
252 if (!ctx->Texture.Unit[i]._Current)
253 continue;
254 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
255 if (!tex_obj || !tex_obj->mt)
256 continue;
257 if (intel_miptree_sample_with_hiz(brw, tex_obj->mt))
258 intel_miptree_all_slices_resolve_hiz(brw, tex_obj->mt);
259 else
260 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
261 /* Sampling engine understands lossless compression and resolving
262 * those surfaces should be skipped for performance reasons.
263 */
264 const int flags = intel_texture_view_requires_resolve(brw, tex_obj) ?
265 0 : INTEL_MIPTREE_IGNORE_CCS_E;
266 intel_miptree_all_slices_resolve_color(brw, tex_obj->mt, flags);
267 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
268
269 if (tex_obj->base.StencilSampling ||
270 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
271 intel_update_r8stencil(brw, tex_obj->mt);
272 }
273 }
274
275 /* Resolve color for each active shader image. */
276 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
277 const struct gl_linked_shader *shader =
278 ctx->_Shader->CurrentProgram[i] ?
279 ctx->_Shader->CurrentProgram[i]->_LinkedShaders[i] : NULL;
280
281 if (unlikely(shader && shader->Program->info.num_images)) {
282 for (unsigned j = 0; j < shader->Program->info.num_images; j++) {
283 struct gl_image_unit *u = &ctx->ImageUnits[shader->ImageUnits[j]];
284 tex_obj = intel_texture_object(u->TexObj);
285
286 if (tex_obj && tex_obj->mt) {
287 /* Access to images is implemented using indirect messages
288 * against data port. Normal render target write understands
289 * lossless compression but unfortunately the typed/untyped
290 * read/write interface doesn't. Therefore even lossless
291 * compressed surfaces need to be resolved prior to accessing
292 * them. Hence skip setting INTEL_MIPTREE_IGNORE_CCS_E.
293 */
294 intel_miptree_all_slices_resolve_color(brw, tex_obj->mt, 0);
295
296 if (intel_miptree_is_lossless_compressed(brw, tex_obj->mt) &&
297 intel_disable_rb_aux_buffer(brw, tex_obj->mt->bo)) {
298 perf_debug("Using renderbuffer as shader image - turning "
299 "off lossless compression");
300 }
301
302 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
303 }
304 }
305 }
306 }
307
308 /* Resolve color buffers for non-coherent framebuffer fetch. */
309 if (!ctx->Extensions.MESA_shader_framebuffer_fetch &&
310 ctx->FragmentProgram._Current &&
311 ctx->FragmentProgram._Current->info.outputs_read) {
312 const struct gl_framebuffer *fb = ctx->DrawBuffer;
313
314 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
315 const struct intel_renderbuffer *irb =
316 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
317
318 if (irb &&
319 intel_miptree_resolve_color(
320 brw, irb->mt, irb->mt_level, irb->mt_layer, irb->layer_count,
321 INTEL_MIPTREE_IGNORE_CCS_E))
322 brw_render_cache_set_check_flush(brw, irb->mt->bo);
323 }
324 }
325
326 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of the
327 * single-sampled color renderbuffers because the CCS buffer isn't
328 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
329 * enabled because otherwise the surface state will be programmed with the
330 * linear equivalent format anyway.
331 */
332 if (brw->gen >= 9 && ctx->Color.sRGBEnabled) {
333 struct gl_framebuffer *fb = ctx->DrawBuffer;
334 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
335 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[i];
336
337 if (rb == NULL)
338 continue;
339
340 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
341 struct intel_mipmap_tree *mt = irb->mt;
342
343 if (mt == NULL ||
344 mt->num_samples > 1 ||
345 _mesa_get_srgb_format_linear(mt->format) == mt->format)
346 continue;
347
348 /* Lossless compression is not supported for SRGB formats, it
349 * should be impossible to get here with such surfaces.
350 */
351 assert(!intel_miptree_is_lossless_compressed(brw, mt));
352 intel_miptree_all_slices_resolve_color(brw, mt, 0);
353 brw_render_cache_set_check_flush(brw, mt->bo);
354 }
355 }
356
357 _mesa_lock_context_textures(ctx);
358
359 if (new_state & _NEW_BUFFERS) {
360 intel_update_framebuffer(ctx, ctx->DrawBuffer);
361 if (ctx->DrawBuffer != ctx->ReadBuffer)
362 intel_update_framebuffer(ctx, ctx->ReadBuffer);
363 }
364 }
365
366 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
367
368 static void
369 intel_flush_front(struct gl_context *ctx)
370 {
371 struct brw_context *brw = brw_context(ctx);
372 __DRIcontext *driContext = brw->driContext;
373 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
374 __DRIscreen *const dri_screen = brw->screen->driScrnPriv;
375
376 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
377 if (flushFront(dri_screen) && driDrawable &&
378 driDrawable->loaderPrivate) {
379
380 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
381 *
382 * This potentially resolves both front and back buffer. It
383 * is unnecessary to resolve the back, but harms nothing except
384 * performance. And no one cares about front-buffer render
385 * performance.
386 */
387 intel_resolve_for_dri2_flush(brw, driDrawable);
388 intel_batchbuffer_flush(brw);
389
390 flushFront(dri_screen)(driDrawable, driDrawable->loaderPrivate);
391
392 /* We set the dirty bit in intel_prepare_render() if we're
393 * front buffer rendering once we get there.
394 */
395 brw->front_buffer_dirty = false;
396 }
397 }
398 }
399
400 static void
401 intel_glFlush(struct gl_context *ctx)
402 {
403 struct brw_context *brw = brw_context(ctx);
404
405 intel_batchbuffer_flush(brw);
406 intel_flush_front(ctx);
407
408 brw->need_flush_throttle = true;
409 }
410
411 static void
412 intel_finish(struct gl_context * ctx)
413 {
414 struct brw_context *brw = brw_context(ctx);
415
416 intel_glFlush(ctx);
417
418 if (brw->batch.last_bo)
419 drm_intel_bo_wait_rendering(brw->batch.last_bo);
420 }
421
422 static void
423 brw_init_driver_functions(struct brw_context *brw,
424 struct dd_function_table *functions)
425 {
426 _mesa_init_driver_functions(functions);
427
428 /* GLX uses DRI2 invalidate events to handle window resizing.
429 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
430 * which doesn't provide a mechanism for snooping the event queues.
431 *
432 * So EGL still relies on viewport hacks to handle window resizing.
433 * This should go away with DRI3000.
434 */
435 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
436 functions->Viewport = intel_viewport;
437
438 functions->Flush = intel_glFlush;
439 functions->Finish = intel_finish;
440 functions->GetString = intel_get_string;
441 functions->UpdateState = intel_update_state;
442
443 intelInitTextureFuncs(functions);
444 intelInitTextureImageFuncs(functions);
445 intelInitTextureSubImageFuncs(functions);
446 intelInitTextureCopyImageFuncs(functions);
447 intelInitCopyImageFuncs(functions);
448 intelInitClearFuncs(functions);
449 intelInitBufferFuncs(functions);
450 intelInitPixelFuncs(functions);
451 intelInitBufferObjectFuncs(functions);
452 brw_init_syncobj_functions(functions);
453 brw_init_object_purgeable_functions(functions);
454
455 brwInitFragProgFuncs( functions );
456 brw_init_common_queryobj_functions(functions);
457 if (brw->gen >= 8 || brw->is_haswell)
458 hsw_init_queryobj_functions(functions);
459 else if (brw->gen >= 6)
460 gen6_init_queryobj_functions(functions);
461 else
462 gen4_init_queryobj_functions(functions);
463 brw_init_compute_functions(functions);
464 if (brw->gen >= 7)
465 brw_init_conditional_render_functions(functions);
466
467 functions->QueryInternalFormat = brw_query_internal_format;
468
469 functions->NewTransformFeedback = brw_new_transform_feedback;
470 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
471 if (brw->screen->has_mi_math_and_lrr) {
472 functions->BeginTransformFeedback = hsw_begin_transform_feedback;
473 functions->EndTransformFeedback = hsw_end_transform_feedback;
474 functions->PauseTransformFeedback = hsw_pause_transform_feedback;
475 functions->ResumeTransformFeedback = hsw_resume_transform_feedback;
476 } else if (brw->gen >= 7) {
477 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
478 functions->EndTransformFeedback = gen7_end_transform_feedback;
479 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
480 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
481 functions->GetTransformFeedbackVertexCount =
482 brw_get_transform_feedback_vertex_count;
483 } else {
484 functions->BeginTransformFeedback = brw_begin_transform_feedback;
485 functions->EndTransformFeedback = brw_end_transform_feedback;
486 }
487
488 if (brw->gen >= 6)
489 functions->GetSamplePosition = gen6_get_sample_position;
490 }
491
492 static void
493 brw_initialize_context_constants(struct brw_context *brw)
494 {
495 struct gl_context *ctx = &brw->ctx;
496 const struct brw_compiler *compiler = brw->screen->compiler;
497
498 const bool stage_exists[MESA_SHADER_STAGES] = {
499 [MESA_SHADER_VERTEX] = true,
500 [MESA_SHADER_TESS_CTRL] = brw->gen >= 7,
501 [MESA_SHADER_TESS_EVAL] = brw->gen >= 7,
502 [MESA_SHADER_GEOMETRY] = brw->gen >= 6,
503 [MESA_SHADER_FRAGMENT] = true,
504 [MESA_SHADER_COMPUTE] =
505 ((ctx->API == API_OPENGL_COMPAT || ctx->API == API_OPENGL_CORE) &&
506 ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
507 (ctx->API == API_OPENGLES2 &&
508 ctx->Const.MaxComputeWorkGroupSize[0] >= 128) ||
509 _mesa_extension_override_enables.ARB_compute_shader,
510 };
511
512 unsigned num_stages = 0;
513 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
514 if (stage_exists[i])
515 num_stages++;
516 }
517
518 unsigned max_samplers =
519 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
520
521 ctx->Const.MaxDualSourceDrawBuffers = 1;
522 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
523 ctx->Const.MaxCombinedShaderOutputResources =
524 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
525
526 ctx->Const.QueryCounterBits.Timestamp = 36;
527
528 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
529 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
530 ctx->Const.MaxRenderbufferSize = 8192;
531 ctx->Const.MaxTextureLevels = MIN2(14 /* 8192 */, MAX_TEXTURE_LEVELS);
532 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
533 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
534 ctx->Const.MaxArrayTextureLayers = brw->gen >= 7 ? 2048 : 512;
535 ctx->Const.MaxTextureMbytes = 1536;
536 ctx->Const.MaxTextureRectSize = 1 << 12;
537 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
538 ctx->Const.StripTextureBorder = true;
539 if (brw->gen >= 7) {
540 ctx->Const.MaxProgramTextureGatherComponents = 4;
541 ctx->Const.MinProgramTextureGatherOffset = -32;
542 ctx->Const.MaxProgramTextureGatherOffset = 31;
543 } else if (brw->gen == 6) {
544 ctx->Const.MaxProgramTextureGatherComponents = 1;
545 ctx->Const.MinProgramTextureGatherOffset = -8;
546 ctx->Const.MaxProgramTextureGatherOffset = 7;
547 }
548
549 ctx->Const.MaxUniformBlockSize = 65536;
550
551 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
552 struct gl_program_constants *prog = &ctx->Const.Program[i];
553
554 if (!stage_exists[i])
555 continue;
556
557 prog->MaxTextureImageUnits = max_samplers;
558
559 prog->MaxUniformBlocks = BRW_MAX_UBO;
560 prog->MaxCombinedUniformComponents =
561 prog->MaxUniformComponents +
562 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
563
564 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
565 prog->MaxAtomicBuffers = BRW_MAX_ABO;
566 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
567 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
568 }
569
570 ctx->Const.MaxTextureUnits =
571 MIN2(ctx->Const.MaxTextureCoordUnits,
572 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
573
574 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
575 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
576 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
577 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
578 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
579 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
580 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
581
582
583 /* Hardware only supports a limited number of transform feedback buffers.
584 * So we need to override the Mesa default (which is based only on software
585 * limits).
586 */
587 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
588
589 /* On Gen6, in the worst case, we use up one binding table entry per
590 * transform feedback component (see comments above the definition of
591 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
592 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
593 * BRW_MAX_SOL_BINDINGS.
594 *
595 * In "separate components" mode, we need to divide this value by
596 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
597 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
598 */
599 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
600 ctx->Const.MaxTransformFeedbackSeparateComponents =
601 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
602
603 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount =
604 !brw->screen->has_mi_math_and_lrr;
605
606 int max_samples;
607 const int *msaa_modes = intel_supported_msaa_modes(brw->screen);
608 const int clamp_max_samples =
609 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
610
611 if (clamp_max_samples < 0) {
612 max_samples = msaa_modes[0];
613 } else {
614 /* Select the largest supported MSAA mode that does not exceed
615 * clamp_max_samples.
616 */
617 max_samples = 0;
618 for (int i = 0; msaa_modes[i] != 0; ++i) {
619 if (msaa_modes[i] <= clamp_max_samples) {
620 max_samples = msaa_modes[i];
621 break;
622 }
623 }
624 }
625
626 ctx->Const.MaxSamples = max_samples;
627 ctx->Const.MaxColorTextureSamples = max_samples;
628 ctx->Const.MaxDepthTextureSamples = max_samples;
629 ctx->Const.MaxIntegerSamples = max_samples;
630 ctx->Const.MaxImageSamples = 0;
631
632 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
633 * to map indices of rectangular grid to sample numbers within a pixel.
634 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
635 * extension implementation. For more details see the comment above
636 * gen6_set_sample_maps() definition.
637 */
638 gen6_set_sample_maps(ctx);
639
640 ctx->Const.MinLineWidth = 1.0;
641 ctx->Const.MinLineWidthAA = 1.0;
642 if (brw->gen >= 6) {
643 ctx->Const.MaxLineWidth = 7.375;
644 ctx->Const.MaxLineWidthAA = 7.375;
645 ctx->Const.LineWidthGranularity = 0.125;
646 } else {
647 ctx->Const.MaxLineWidth = 7.0;
648 ctx->Const.MaxLineWidthAA = 7.0;
649 ctx->Const.LineWidthGranularity = 0.5;
650 }
651
652 /* For non-antialiased lines, we have to round the line width to the
653 * nearest whole number. Make sure that we don't advertise a line
654 * width that, when rounded, will be beyond the actual hardware
655 * maximum.
656 */
657 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
658
659 ctx->Const.MinPointSize = 1.0;
660 ctx->Const.MinPointSizeAA = 1.0;
661 ctx->Const.MaxPointSize = 255.0;
662 ctx->Const.MaxPointSizeAA = 255.0;
663 ctx->Const.PointSizeGranularity = 1.0;
664
665 if (brw->gen >= 5 || brw->is_g4x)
666 ctx->Const.MaxClipPlanes = 8;
667
668 ctx->Const.LowerTessLevel = true;
669 ctx->Const.LowerTCSPatchVerticesIn = brw->gen >= 8;
670 ctx->Const.LowerTESPatchVerticesIn = true;
671 ctx->Const.PrimitiveRestartForPatches = true;
672
673 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
674 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
675 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
676 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
677 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
678 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
679 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
680 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
681 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
682 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
683 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
684 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
685 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
686 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
687
688 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
689 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
690 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
691 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
692 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
693 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
694 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
695 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
696 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
697 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
698 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
699
700 /* Fragment shaders use real, 32-bit twos-complement integers for all
701 * integer types.
702 */
703 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
704 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
705 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
706 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
707 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
708
709 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
710 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
711 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
712 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
713 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
714
715 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
716 * but we're not sure how it's actually done for vertex order,
717 * that affect provoking vertex decision. Always use last vertex
718 * convention for quad primitive which works as expected for now.
719 */
720 if (brw->gen >= 6)
721 ctx->Const.QuadsFollowProvokingVertexConvention = false;
722
723 ctx->Const.NativeIntegers = true;
724 ctx->Const.VertexID_is_zero_based = true;
725
726 /* Regarding the CMP instruction, the Ivybridge PRM says:
727 *
728 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
729 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
730 * 0xFFFFFFFF) is assigned to dst."
731 *
732 * but PRMs for earlier generations say
733 *
734 * "In dword format, one GRF may store up to 8 results. When the register
735 * is used later as a vector of Booleans, as only LSB at each channel
736 * contains meaning [sic] data, software should make sure all higher bits
737 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
738 *
739 * We select the representation of a true boolean uniform to be ~0, and fix
740 * the results of Gen <= 5 CMP instruction's with -(result & 1).
741 */
742 ctx->Const.UniformBooleanTrue = ~0;
743
744 /* From the gen4 PRM, volume 4 page 127:
745 *
746 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
747 * the base address of the first element of the surface, computed in
748 * software by adding the surface base address to the byte offset of
749 * the element in the buffer."
750 *
751 * However, unaligned accesses are slower, so enforce buffer alignment.
752 */
753 ctx->Const.UniformBufferOffsetAlignment = 16;
754
755 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
756 * that we can safely have the CPU and GPU writing the same SSBO on
757 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
758 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
759 * be updating disjoint regions of the buffer simultaneously and that will
760 * break if the regions overlap the same cacheline.
761 */
762 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
763 ctx->Const.TextureBufferOffsetAlignment = 16;
764 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
765
766 if (brw->gen >= 6) {
767 ctx->Const.MaxVarying = 32;
768 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
769 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
770 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
771 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
772 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
773 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
774 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
775 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
776 }
777
778 /* We want the GLSL compiler to emit code that uses condition codes */
779 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
780 ctx->Const.ShaderCompilerOptions[i] =
781 brw->screen->compiler->glsl_compiler_options[i];
782 }
783
784 if (brw->gen >= 7) {
785 ctx->Const.MaxViewportWidth = 32768;
786 ctx->Const.MaxViewportHeight = 32768;
787 }
788
789 /* ARB_viewport_array, OES_viewport_array */
790 if ((brw->gen >= 6 && ctx->API == API_OPENGL_CORE) ||
791 (brw->gen >= 8 && ctx->API == API_OPENGLES2)) {
792 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
793 ctx->Const.ViewportSubpixelBits = 0;
794
795 /* Cast to float before negating because MaxViewportWidth is unsigned.
796 */
797 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
798 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
799 }
800
801 /* ARB_gpu_shader5 */
802 if (brw->gen >= 7)
803 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
804
805 /* ARB_framebuffer_no_attachments */
806 ctx->Const.MaxFramebufferWidth = 16384;
807 ctx->Const.MaxFramebufferHeight = 16384;
808 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
809 ctx->Const.MaxFramebufferSamples = max_samples;
810
811 /* OES_primitive_bounding_box */
812 ctx->Const.NoPrimitiveBoundingBoxOutput = true;
813 }
814
815 static void
816 brw_initialize_cs_context_constants(struct brw_context *brw)
817 {
818 struct gl_context *ctx = &brw->ctx;
819 const struct intel_screen *screen = brw->screen;
820 struct gen_device_info *devinfo = &brw->screen->devinfo;
821
822 /* FINISHME: Do this for all platforms that the kernel supports */
823 if (brw->is_cherryview &&
824 screen->subslice_total > 0 && screen->eu_total > 0) {
825 /* Logical CS threads = EUs per subslice * 7 threads per EU */
826 uint32_t max_cs_threads = screen->eu_total / screen->subslice_total * 7;
827
828 /* Fuse configurations may give more threads than expected, never less. */
829 if (max_cs_threads > devinfo->max_cs_threads)
830 devinfo->max_cs_threads = max_cs_threads;
831 }
832
833 /* Maximum number of scalar compute shader invocations that can be run in
834 * parallel in the same subslice assuming SIMD32 dispatch.
835 *
836 * We don't advertise more than 64 threads, because we are limited to 64 by
837 * our usage of thread_width_max in the gpgpu walker command. This only
838 * currently impacts Haswell, which otherwise might be able to advertise 70
839 * threads. With SIMD32 and 64 threads, Haswell still provides twice the
840 * required the number of invocation needed for ARB_compute_shader.
841 */
842 const unsigned max_threads = MIN2(64, devinfo->max_cs_threads);
843 const uint32_t max_invocations = 32 * max_threads;
844 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
845 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
846 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
847 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
848 ctx->Const.MaxComputeSharedMemorySize = 64 * 1024;
849 }
850
851 /**
852 * Process driconf (drirc) options, setting appropriate context flags.
853 *
854 * intelInitExtensions still pokes at optionCache directly, in order to
855 * avoid advertising various extensions. No flags are set, so it makes
856 * sense to continue doing that there.
857 */
858 static void
859 brw_process_driconf_options(struct brw_context *brw)
860 {
861 struct gl_context *ctx = &brw->ctx;
862
863 driOptionCache *options = &brw->optionCache;
864 driParseConfigFiles(options, &brw->screen->optionCache,
865 brw->driContext->driScreenPriv->myNum, "i965");
866
867 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
868 switch (bo_reuse_mode) {
869 case DRI_CONF_BO_REUSE_DISABLED:
870 break;
871 case DRI_CONF_BO_REUSE_ALL:
872 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
873 break;
874 }
875
876 if (!driQueryOptionb(options, "hiz")) {
877 brw->has_hiz = false;
878 /* On gen6, you can only do separate stencil with HIZ. */
879 if (brw->gen == 6)
880 brw->has_separate_stencil = false;
881 }
882
883 if (driQueryOptionb(options, "always_flush_batch")) {
884 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
885 brw->always_flush_batch = true;
886 }
887
888 if (driQueryOptionb(options, "always_flush_cache")) {
889 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
890 brw->always_flush_cache = true;
891 }
892
893 if (driQueryOptionb(options, "disable_throttling")) {
894 fprintf(stderr, "disabling flush throttling\n");
895 brw->disable_throttling = true;
896 }
897
898 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
899
900 if (driQueryOptionb(&brw->optionCache, "precise_trig"))
901 brw->screen->compiler->precise_trig = true;
902
903 ctx->Const.ForceGLSLExtensionsWarn =
904 driQueryOptionb(options, "force_glsl_extensions_warn");
905
906 ctx->Const.DisableGLSLLineContinuations =
907 driQueryOptionb(options, "disable_glsl_line_continuations");
908
909 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
910 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
911
912 ctx->Const.GLSLZeroInit = driQueryOptionb(options, "glsl_zero_init");
913
914 brw->dual_color_blend_by_location =
915 driQueryOptionb(options, "dual_color_blend_by_location");
916 }
917
918 GLboolean
919 brwCreateContext(gl_api api,
920 const struct gl_config *mesaVis,
921 __DRIcontext *driContextPriv,
922 unsigned major_version,
923 unsigned minor_version,
924 uint32_t flags,
925 bool notify_reset,
926 unsigned *dri_ctx_error,
927 void *sharedContextPrivate)
928 {
929 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
930 struct intel_screen *screen = driContextPriv->driScreenPriv->driverPrivate;
931 const struct gen_device_info *devinfo = &screen->devinfo;
932 struct dd_function_table functions;
933
934 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
935 * provides us with context reset notifications.
936 */
937 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
938 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
939
940 if (screen->has_context_reset_notification)
941 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
942
943 if (flags & ~allowed_flags) {
944 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
945 return false;
946 }
947
948 struct brw_context *brw = rzalloc(NULL, struct brw_context);
949 if (!brw) {
950 fprintf(stderr, "%s: failed to alloc context\n", __func__);
951 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
952 return false;
953 }
954
955 driContextPriv->driverPrivate = brw;
956 brw->driContext = driContextPriv;
957 brw->screen = screen;
958 brw->bufmgr = screen->bufmgr;
959
960 brw->gen = devinfo->gen;
961 brw->gt = devinfo->gt;
962 brw->is_g4x = devinfo->is_g4x;
963 brw->is_baytrail = devinfo->is_baytrail;
964 brw->is_haswell = devinfo->is_haswell;
965 brw->is_cherryview = devinfo->is_cherryview;
966 brw->is_broxton = devinfo->is_broxton;
967 brw->has_llc = devinfo->has_llc;
968 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
969 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
970 brw->has_pln = devinfo->has_pln;
971 brw->has_compr4 = devinfo->has_compr4;
972 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
973 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
974 brw->needs_unlit_centroid_workaround =
975 devinfo->needs_unlit_centroid_workaround;
976
977 brw->must_use_separate_stencil = devinfo->must_use_separate_stencil;
978 brw->has_swizzling = screen->hw_has_swizzling;
979
980 isl_device_init(&brw->isl_dev, devinfo, screen->hw_has_swizzling);
981
982 brw->vs.base.stage = MESA_SHADER_VERTEX;
983 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
984 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
985 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
986 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
987 if (brw->gen >= 8) {
988 gen8_init_vtable_surface_functions(brw);
989 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
990 } else if (brw->gen >= 7) {
991 gen7_init_vtable_surface_functions(brw);
992 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
993 } else if (brw->gen >= 6) {
994 gen6_init_vtable_surface_functions(brw);
995 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
996 } else {
997 gen4_init_vtable_surface_functions(brw);
998 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
999 }
1000
1001 brw_init_driver_functions(brw, &functions);
1002
1003 if (notify_reset)
1004 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
1005
1006 struct gl_context *ctx = &brw->ctx;
1007
1008 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
1009 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1010 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
1011 intelDestroyContext(driContextPriv);
1012 return false;
1013 }
1014
1015 driContextSetFlags(ctx, flags);
1016
1017 /* Initialize the software rasterizer and helper modules.
1018 *
1019 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
1020 * software fallbacks (which we have to support on legacy GL to do weird
1021 * glDrawPixels(), glBitmap(), and other functions).
1022 */
1023 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
1024 _swrast_CreateContext(ctx);
1025 }
1026
1027 _vbo_CreateContext(ctx);
1028 if (ctx->swrast_context) {
1029 _tnl_CreateContext(ctx);
1030 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
1031 _swsetup_CreateContext(ctx);
1032
1033 /* Configure swrast to match hardware characteristics: */
1034 _swrast_allow_pixel_fog(ctx, false);
1035 _swrast_allow_vertex_fog(ctx, true);
1036 }
1037
1038 _mesa_meta_init(ctx);
1039
1040 brw_process_driconf_options(brw);
1041
1042 if (INTEL_DEBUG & DEBUG_PERF)
1043 brw->perf_debug = true;
1044
1045 brw_initialize_cs_context_constants(brw);
1046 brw_initialize_context_constants(brw);
1047
1048 ctx->Const.ResetStrategy = notify_reset
1049 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
1050
1051 /* Reinitialize the context point state. It depends on ctx->Const values. */
1052 _mesa_init_point(ctx);
1053
1054 intel_fbo_init(brw);
1055
1056 intel_batchbuffer_init(brw);
1057
1058 if (brw->gen >= 6) {
1059 /* Create a new hardware context. Using a hardware context means that
1060 * our GPU state will be saved/restored on context switch, allowing us
1061 * to assume that the GPU is in the same state we left it in.
1062 *
1063 * This is required for transform feedback buffer offsets, query objects,
1064 * and also allows us to reduce how much state we have to emit.
1065 */
1066 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
1067
1068 if (!brw->hw_ctx) {
1069 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
1070 intelDestroyContext(driContextPriv);
1071 return false;
1072 }
1073 }
1074
1075 if (brw_init_pipe_control(brw, devinfo)) {
1076 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1077 intelDestroyContext(driContextPriv);
1078 return false;
1079 }
1080
1081 brw_init_state(brw);
1082
1083 intelInitExtensions(ctx);
1084
1085 brw_init_surface_formats(brw);
1086
1087 if (brw->gen >= 6)
1088 brw_blorp_init(brw);
1089
1090 brw->urb.size = devinfo->urb.size;
1091
1092 if (brw->gen == 6)
1093 brw->urb.gs_present = false;
1094
1095 brw->prim_restart.in_progress = false;
1096 brw->prim_restart.enable_cut_index = false;
1097 brw->gs.enabled = false;
1098 brw->sf.viewport_transform_enable = true;
1099 brw->clip.viewport_count = 1;
1100
1101 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
1102
1103 brw->max_gtt_map_object_size = screen->max_gtt_map_object_size;
1104
1105 brw->use_resource_streamer = screen->has_resource_streamer &&
1106 (env_var_as_boolean("INTEL_USE_HW_BT", false) ||
1107 env_var_as_boolean("INTEL_USE_GATHER", false));
1108
1109 ctx->VertexProgram._MaintainTnlProgram = true;
1110 ctx->FragmentProgram._MaintainTexEnvProgram = true;
1111
1112 brw_draw_init( brw );
1113
1114 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
1115 /* Turn on some extra GL_ARB_debug_output generation. */
1116 brw->perf_debug = true;
1117 }
1118
1119 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0) {
1120 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
1121 ctx->Const.RobustAccess = GL_TRUE;
1122 }
1123
1124 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1125 brw_init_shader_time(brw);
1126
1127 _mesa_compute_version(ctx);
1128
1129 _mesa_initialize_dispatch_tables(ctx);
1130 _mesa_initialize_vbo_vtxfmt(ctx);
1131
1132 if (ctx->Extensions.AMD_performance_monitor) {
1133 brw_init_performance_monitors(brw);
1134 }
1135
1136 vbo_use_buffer_objects(ctx);
1137 vbo_always_unmap_buffers(ctx);
1138
1139 return true;
1140 }
1141
1142 void
1143 intelDestroyContext(__DRIcontext * driContextPriv)
1144 {
1145 struct brw_context *brw =
1146 (struct brw_context *) driContextPriv->driverPrivate;
1147 struct gl_context *ctx = &brw->ctx;
1148
1149 /* Dump a final BMP in case the application doesn't call SwapBuffers */
1150 if (INTEL_DEBUG & DEBUG_AUB) {
1151 intel_batchbuffer_flush(brw);
1152 aub_dump_bmp(&brw->ctx);
1153 }
1154
1155 _mesa_meta_free(&brw->ctx);
1156
1157 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1158 /* Force a report. */
1159 brw->shader_time.report_time = 0;
1160
1161 brw_collect_and_report_shader_time(brw);
1162 brw_destroy_shader_time(brw);
1163 }
1164
1165 if (brw->gen >= 6)
1166 blorp_finish(&brw->blorp);
1167
1168 brw_destroy_state(brw);
1169 brw_draw_destroy(brw);
1170
1171 drm_intel_bo_unreference(brw->curbe.curbe_bo);
1172 if (brw->vs.base.scratch_bo)
1173 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
1174 if (brw->tcs.base.scratch_bo)
1175 drm_intel_bo_unreference(brw->tcs.base.scratch_bo);
1176 if (brw->tes.base.scratch_bo)
1177 drm_intel_bo_unreference(brw->tes.base.scratch_bo);
1178 if (brw->gs.base.scratch_bo)
1179 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
1180 if (brw->wm.base.scratch_bo)
1181 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
1182
1183 gen7_reset_hw_bt_pool_offsets(brw);
1184 drm_intel_bo_unreference(brw->hw_bt_pool.bo);
1185 brw->hw_bt_pool.bo = NULL;
1186
1187 drm_intel_gem_context_destroy(brw->hw_ctx);
1188
1189 if (ctx->swrast_context) {
1190 _swsetup_DestroyContext(&brw->ctx);
1191 _tnl_DestroyContext(&brw->ctx);
1192 }
1193 _vbo_DestroyContext(&brw->ctx);
1194
1195 if (ctx->swrast_context)
1196 _swrast_DestroyContext(&brw->ctx);
1197
1198 brw_fini_pipe_control(brw);
1199 intel_batchbuffer_free(brw);
1200
1201 drm_intel_bo_unreference(brw->throttle_batch[1]);
1202 drm_intel_bo_unreference(brw->throttle_batch[0]);
1203 brw->throttle_batch[1] = NULL;
1204 brw->throttle_batch[0] = NULL;
1205
1206 driDestroyOptionCache(&brw->optionCache);
1207
1208 /* free the Mesa context */
1209 _mesa_free_context_data(&brw->ctx);
1210
1211 ralloc_free(brw);
1212 driContextPriv->driverPrivate = NULL;
1213 }
1214
1215 GLboolean
1216 intelUnbindContext(__DRIcontext * driContextPriv)
1217 {
1218 /* Unset current context and dispath table */
1219 _mesa_make_current(NULL, NULL, NULL);
1220
1221 return true;
1222 }
1223
1224 /**
1225 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1226 * on window system framebuffers.
1227 *
1228 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1229 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1230 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1231 * for a visual where you're guaranteed to be capable, but it turns out that
1232 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1233 * incapable ones, because there's no difference between the two in resources
1234 * used. Applications thus get built that accidentally rely on the default
1235 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1236 * great...
1237 *
1238 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1239 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1240 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1241 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1242 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1243 * and get no sRGB encode (assuming that both kinds of visual are available).
1244 * Thus our choice to support sRGB by default on our visuals for desktop would
1245 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1246 *
1247 * Unfortunately, renderbuffer setup happens before a context is created. So
1248 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1249 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1250 * yet), we go turn that back off before anyone finds out.
1251 */
1252 static void
1253 intel_gles3_srgb_workaround(struct brw_context *brw,
1254 struct gl_framebuffer *fb)
1255 {
1256 struct gl_context *ctx = &brw->ctx;
1257
1258 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1259 return;
1260
1261 /* Some day when we support the sRGB capable bit on visuals available for
1262 * GLES, we'll need to respect that and not disable things here.
1263 */
1264 fb->Visual.sRGBCapable = false;
1265 for (int i = 0; i < BUFFER_COUNT; i++) {
1266 struct gl_renderbuffer *rb = fb->Attachment[i].Renderbuffer;
1267 if (rb)
1268 rb->Format = _mesa_get_srgb_format_linear(rb->Format);
1269 }
1270 }
1271
1272 GLboolean
1273 intelMakeCurrent(__DRIcontext * driContextPriv,
1274 __DRIdrawable * driDrawPriv,
1275 __DRIdrawable * driReadPriv)
1276 {
1277 struct brw_context *brw;
1278 GET_CURRENT_CONTEXT(curCtx);
1279
1280 if (driContextPriv)
1281 brw = (struct brw_context *) driContextPriv->driverPrivate;
1282 else
1283 brw = NULL;
1284
1285 /* According to the glXMakeCurrent() man page: "Pending commands to
1286 * the previous context, if any, are flushed before it is released."
1287 * But only flush if we're actually changing contexts.
1288 */
1289 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1290 _mesa_flush(curCtx);
1291 }
1292
1293 if (driContextPriv) {
1294 struct gl_context *ctx = &brw->ctx;
1295 struct gl_framebuffer *fb, *readFb;
1296
1297 if (driDrawPriv == NULL) {
1298 fb = _mesa_get_incomplete_framebuffer();
1299 } else {
1300 fb = driDrawPriv->driverPrivate;
1301 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1302 }
1303
1304 if (driReadPriv == NULL) {
1305 readFb = _mesa_get_incomplete_framebuffer();
1306 } else {
1307 readFb = driReadPriv->driverPrivate;
1308 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1309 }
1310
1311 /* The sRGB workaround changes the renderbuffer's format. We must change
1312 * the format before the renderbuffer's miptree get's allocated, otherwise
1313 * the formats of the renderbuffer and its miptree will differ.
1314 */
1315 intel_gles3_srgb_workaround(brw, fb);
1316 intel_gles3_srgb_workaround(brw, readFb);
1317
1318 /* If the context viewport hasn't been initialized, force a call out to
1319 * the loader to get buffers so we have a drawable size for the initial
1320 * viewport. */
1321 if (!brw->ctx.ViewportInitialized)
1322 intel_prepare_render(brw);
1323
1324 _mesa_make_current(ctx, fb, readFb);
1325 } else {
1326 _mesa_make_current(NULL, NULL, NULL);
1327 }
1328
1329 return true;
1330 }
1331
1332 void
1333 intel_resolve_for_dri2_flush(struct brw_context *brw,
1334 __DRIdrawable *drawable)
1335 {
1336 if (brw->gen < 6) {
1337 /* MSAA and fast color clear are not supported, so don't waste time
1338 * checking whether a resolve is needed.
1339 */
1340 return;
1341 }
1342
1343 struct gl_framebuffer *fb = drawable->driverPrivate;
1344 struct intel_renderbuffer *rb;
1345
1346 /* Usually, only the back buffer will need to be downsampled. However,
1347 * the front buffer will also need it if the user has rendered into it.
1348 */
1349 static const gl_buffer_index buffers[2] = {
1350 BUFFER_BACK_LEFT,
1351 BUFFER_FRONT_LEFT,
1352 };
1353
1354 for (int i = 0; i < 2; ++i) {
1355 rb = intel_get_renderbuffer(fb, buffers[i]);
1356 if (rb == NULL || rb->mt == NULL)
1357 continue;
1358 if (rb->mt->num_samples <= 1) {
1359 assert(rb->mt_layer == 0 && rb->mt_level == 0 &&
1360 rb->layer_count == 1);
1361 intel_miptree_resolve_color(brw, rb->mt, 0, 0, 1, 0);
1362 } else {
1363 intel_renderbuffer_downsample(brw, rb);
1364 }
1365 }
1366 }
1367
1368 static unsigned
1369 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1370 {
1371 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1372 }
1373
1374 static void
1375 intel_query_dri2_buffers(struct brw_context *brw,
1376 __DRIdrawable *drawable,
1377 __DRIbuffer **buffers,
1378 int *count);
1379
1380 static void
1381 intel_process_dri2_buffer(struct brw_context *brw,
1382 __DRIdrawable *drawable,
1383 __DRIbuffer *buffer,
1384 struct intel_renderbuffer *rb,
1385 const char *buffer_name);
1386
1387 static void
1388 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1389
1390 static void
1391 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1392 {
1393 struct gl_framebuffer *fb = drawable->driverPrivate;
1394 struct intel_renderbuffer *rb;
1395 __DRIbuffer *buffers = NULL;
1396 int i, count;
1397 const char *region_name;
1398
1399 /* Set this up front, so that in case our buffers get invalidated
1400 * while we're getting new buffers, we don't clobber the stamp and
1401 * thus ignore the invalidate. */
1402 drawable->lastStamp = drawable->dri2.stamp;
1403
1404 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1405 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1406
1407 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1408
1409 if (buffers == NULL)
1410 return;
1411
1412 for (i = 0; i < count; i++) {
1413 switch (buffers[i].attachment) {
1414 case __DRI_BUFFER_FRONT_LEFT:
1415 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1416 region_name = "dri2 front buffer";
1417 break;
1418
1419 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1420 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1421 region_name = "dri2 fake front buffer";
1422 break;
1423
1424 case __DRI_BUFFER_BACK_LEFT:
1425 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1426 region_name = "dri2 back buffer";
1427 break;
1428
1429 case __DRI_BUFFER_DEPTH:
1430 case __DRI_BUFFER_HIZ:
1431 case __DRI_BUFFER_DEPTH_STENCIL:
1432 case __DRI_BUFFER_STENCIL:
1433 case __DRI_BUFFER_ACCUM:
1434 default:
1435 fprintf(stderr,
1436 "unhandled buffer attach event, attachment type %d\n",
1437 buffers[i].attachment);
1438 return;
1439 }
1440
1441 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1442 }
1443
1444 }
1445
1446 void
1447 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1448 {
1449 struct brw_context *brw = context->driverPrivate;
1450 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1451
1452 /* Set this up front, so that in case our buffers get invalidated
1453 * while we're getting new buffers, we don't clobber the stamp and
1454 * thus ignore the invalidate. */
1455 drawable->lastStamp = drawable->dri2.stamp;
1456
1457 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1458 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1459
1460 if (dri_screen->image.loader)
1461 intel_update_image_buffers(brw, drawable);
1462 else
1463 intel_update_dri2_buffers(brw, drawable);
1464
1465 driUpdateFramebufferSize(&brw->ctx, drawable);
1466 }
1467
1468 /**
1469 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1470 * state is required.
1471 */
1472 void
1473 intel_prepare_render(struct brw_context *brw)
1474 {
1475 struct gl_context *ctx = &brw->ctx;
1476 __DRIcontext *driContext = brw->driContext;
1477 __DRIdrawable *drawable;
1478
1479 drawable = driContext->driDrawablePriv;
1480 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1481 if (drawable->lastStamp != drawable->dri2.stamp)
1482 intel_update_renderbuffers(driContext, drawable);
1483 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1484 }
1485
1486 drawable = driContext->driReadablePriv;
1487 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1488 if (drawable->lastStamp != drawable->dri2.stamp)
1489 intel_update_renderbuffers(driContext, drawable);
1490 driContext->dri2.read_stamp = drawable->dri2.stamp;
1491 }
1492
1493 /* If we're currently rendering to the front buffer, the rendering
1494 * that will happen next will probably dirty the front buffer. So
1495 * mark it as dirty here.
1496 */
1497 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer))
1498 brw->front_buffer_dirty = true;
1499 }
1500
1501 /**
1502 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1503 *
1504 * To determine which DRI buffers to request, examine the renderbuffers
1505 * attached to the drawable's framebuffer. Then request the buffers with
1506 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1507 *
1508 * This is called from intel_update_renderbuffers().
1509 *
1510 * \param drawable Drawable whose buffers are queried.
1511 * \param buffers [out] List of buffers returned by DRI2 query.
1512 * \param buffer_count [out] Number of buffers returned.
1513 *
1514 * \see intel_update_renderbuffers()
1515 * \see DRI2GetBuffers()
1516 * \see DRI2GetBuffersWithFormat()
1517 */
1518 static void
1519 intel_query_dri2_buffers(struct brw_context *brw,
1520 __DRIdrawable *drawable,
1521 __DRIbuffer **buffers,
1522 int *buffer_count)
1523 {
1524 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1525 struct gl_framebuffer *fb = drawable->driverPrivate;
1526 int i = 0;
1527 unsigned attachments[8];
1528
1529 struct intel_renderbuffer *front_rb;
1530 struct intel_renderbuffer *back_rb;
1531
1532 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1533 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1534
1535 memset(attachments, 0, sizeof(attachments));
1536 if ((_mesa_is_front_buffer_drawing(fb) ||
1537 _mesa_is_front_buffer_reading(fb) ||
1538 !back_rb) && front_rb) {
1539 /* If a fake front buffer is in use, then querying for
1540 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1541 * the real front buffer to the fake front buffer. So before doing the
1542 * query, we need to make sure all the pending drawing has landed in the
1543 * real front buffer.
1544 */
1545 intel_batchbuffer_flush(brw);
1546 intel_flush_front(&brw->ctx);
1547
1548 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1549 attachments[i++] = intel_bits_per_pixel(front_rb);
1550 } else if (front_rb && brw->front_buffer_dirty) {
1551 /* We have pending front buffer rendering, but we aren't querying for a
1552 * front buffer. If the front buffer we have is a fake front buffer,
1553 * the X server is going to throw it away when it processes the query.
1554 * So before doing the query, make sure all the pending drawing has
1555 * landed in the real front buffer.
1556 */
1557 intel_batchbuffer_flush(brw);
1558 intel_flush_front(&brw->ctx);
1559 }
1560
1561 if (back_rb) {
1562 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1563 attachments[i++] = intel_bits_per_pixel(back_rb);
1564 }
1565
1566 assert(i <= ARRAY_SIZE(attachments));
1567
1568 *buffers =
1569 dri_screen->dri2.loader->getBuffersWithFormat(drawable,
1570 &drawable->w,
1571 &drawable->h,
1572 attachments, i / 2,
1573 buffer_count,
1574 drawable->loaderPrivate);
1575 }
1576
1577 /**
1578 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1579 *
1580 * This is called from intel_update_renderbuffers().
1581 *
1582 * \par Note:
1583 * DRI buffers whose attachment point is DRI2BufferStencil or
1584 * DRI2BufferDepthStencil are handled as special cases.
1585 *
1586 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1587 * that is passed to drm_intel_bo_gem_create_from_name().
1588 *
1589 * \see intel_update_renderbuffers()
1590 */
1591 static void
1592 intel_process_dri2_buffer(struct brw_context *brw,
1593 __DRIdrawable *drawable,
1594 __DRIbuffer *buffer,
1595 struct intel_renderbuffer *rb,
1596 const char *buffer_name)
1597 {
1598 struct gl_framebuffer *fb = drawable->driverPrivate;
1599 drm_intel_bo *bo;
1600
1601 if (!rb)
1602 return;
1603
1604 unsigned num_samples = rb->Base.Base.NumSamples;
1605
1606 /* We try to avoid closing and reopening the same BO name, because the first
1607 * use of a mapping of the buffer involves a bunch of page faulting which is
1608 * moderately expensive.
1609 */
1610 struct intel_mipmap_tree *last_mt;
1611 if (num_samples == 0)
1612 last_mt = rb->mt;
1613 else
1614 last_mt = rb->singlesample_mt;
1615
1616 uint32_t old_name = 0;
1617 if (last_mt) {
1618 /* The bo already has a name because the miptree was created by a
1619 * previous call to intel_process_dri2_buffer(). If a bo already has a
1620 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1621 * create a new name.
1622 */
1623 drm_intel_bo_flink(last_mt->bo, &old_name);
1624 }
1625
1626 if (old_name == buffer->name)
1627 return;
1628
1629 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1630 fprintf(stderr,
1631 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1632 buffer->name, buffer->attachment,
1633 buffer->cpp, buffer->pitch);
1634 }
1635
1636 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1637 buffer->name);
1638 if (!bo) {
1639 fprintf(stderr,
1640 "Failed to open BO for returned DRI2 buffer "
1641 "(%dx%d, %s, named %d).\n"
1642 "This is likely a bug in the X Server that will lead to a "
1643 "crash soon.\n",
1644 drawable->w, drawable->h, buffer_name, buffer->name);
1645 return;
1646 }
1647
1648 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1649 drawable->w, drawable->h,
1650 buffer->pitch);
1651
1652 if (_mesa_is_front_buffer_drawing(fb) &&
1653 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1654 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1655 rb->Base.Base.NumSamples > 1) {
1656 intel_renderbuffer_upsample(brw, rb);
1657 }
1658
1659 assert(rb->mt);
1660
1661 drm_intel_bo_unreference(bo);
1662 }
1663
1664 /**
1665 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1666 *
1667 * To determine which DRI buffers to request, examine the renderbuffers
1668 * attached to the drawable's framebuffer. Then request the buffers from
1669 * the image loader
1670 *
1671 * This is called from intel_update_renderbuffers().
1672 *
1673 * \param drawable Drawable whose buffers are queried.
1674 * \param buffers [out] List of buffers returned by DRI2 query.
1675 * \param buffer_count [out] Number of buffers returned.
1676 *
1677 * \see intel_update_renderbuffers()
1678 */
1679
1680 static void
1681 intel_update_image_buffer(struct brw_context *intel,
1682 __DRIdrawable *drawable,
1683 struct intel_renderbuffer *rb,
1684 __DRIimage *buffer,
1685 enum __DRIimageBufferMask buffer_type)
1686 {
1687 struct gl_framebuffer *fb = drawable->driverPrivate;
1688
1689 if (!rb || !buffer->bo)
1690 return;
1691
1692 unsigned num_samples = rb->Base.Base.NumSamples;
1693
1694 /* Check and see if we're already bound to the right
1695 * buffer object
1696 */
1697 struct intel_mipmap_tree *last_mt;
1698 if (num_samples == 0)
1699 last_mt = rb->mt;
1700 else
1701 last_mt = rb->singlesample_mt;
1702
1703 if (last_mt && last_mt->bo == buffer->bo)
1704 return;
1705
1706 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1707 buffer->width, buffer->height,
1708 buffer->pitch);
1709
1710 if (_mesa_is_front_buffer_drawing(fb) &&
1711 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1712 rb->Base.Base.NumSamples > 1) {
1713 intel_renderbuffer_upsample(intel, rb);
1714 }
1715 }
1716
1717 static void
1718 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1719 {
1720 struct gl_framebuffer *fb = drawable->driverPrivate;
1721 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1722 struct intel_renderbuffer *front_rb;
1723 struct intel_renderbuffer *back_rb;
1724 struct __DRIimageList images;
1725 unsigned int format;
1726 uint32_t buffer_mask = 0;
1727 int ret;
1728
1729 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1730 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1731
1732 if (back_rb)
1733 format = intel_rb_format(back_rb);
1734 else if (front_rb)
1735 format = intel_rb_format(front_rb);
1736 else
1737 return;
1738
1739 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1740 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1741 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1742 }
1743
1744 if (back_rb)
1745 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1746
1747 ret = dri_screen->image.loader->getBuffers(drawable,
1748 driGLFormatToImageFormat(format),
1749 &drawable->dri2.stamp,
1750 drawable->loaderPrivate,
1751 buffer_mask,
1752 &images);
1753 if (!ret)
1754 return;
1755
1756 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1757 drawable->w = images.front->width;
1758 drawable->h = images.front->height;
1759 intel_update_image_buffer(brw,
1760 drawable,
1761 front_rb,
1762 images.front,
1763 __DRI_IMAGE_BUFFER_FRONT);
1764 }
1765 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1766 drawable->w = images.back->width;
1767 drawable->h = images.back->height;
1768 intel_update_image_buffer(brw,
1769 drawable,
1770 back_rb,
1771 images.back,
1772 __DRI_IMAGE_BUFFER_BACK);
1773 }
1774 }