i965: Move brw_query_samples_for_format() to brw_queryformat.c
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44 #include "main/framebuffer.h"
45
46 #include "vbo/vbo_context.h"
47
48 #include "drivers/common/driverfuncs.h"
49 #include "drivers/common/meta.h"
50 #include "utils.h"
51
52 #include "brw_context.h"
53 #include "brw_defines.h"
54 #include "brw_compiler.h"
55 #include "brw_draw.h"
56 #include "brw_state.h"
57
58 #include "intel_batchbuffer.h"
59 #include "intel_buffer_objects.h"
60 #include "intel_buffers.h"
61 #include "intel_fbo.h"
62 #include "intel_mipmap_tree.h"
63 #include "intel_pixel.h"
64 #include "intel_image.h"
65 #include "intel_tex.h"
66 #include "intel_tex_obj.h"
67
68 #include "swrast_setup/swrast_setup.h"
69 #include "tnl/tnl.h"
70 #include "tnl/t_pipeline.h"
71 #include "util/ralloc.h"
72 #include "util/debug.h"
73
74 /***************************************
75 * Mesa's Driver Functions
76 ***************************************/
77
78 const char *const brw_vendor_string = "Intel Open Source Technology Center";
79
80 const char *
81 brw_get_renderer_string(unsigned deviceID)
82 {
83 const char *chipset;
84 static char buffer[128];
85
86 switch (deviceID) {
87 #undef CHIPSET
88 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
89 #include "pci_ids/i965_pci_ids.h"
90 default:
91 chipset = "Unknown Intel Chipset";
92 break;
93 }
94
95 (void) driGetRendererString(buffer, chipset, 0);
96 return buffer;
97 }
98
99 static const GLubyte *
100 intel_get_string(struct gl_context * ctx, GLenum name)
101 {
102 const struct brw_context *const brw = brw_context(ctx);
103
104 switch (name) {
105 case GL_VENDOR:
106 return (GLubyte *) brw_vendor_string;
107
108 case GL_RENDERER:
109 return
110 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
111
112 default:
113 return NULL;
114 }
115 }
116
117 static void
118 intel_viewport(struct gl_context *ctx)
119 {
120 struct brw_context *brw = brw_context(ctx);
121 __DRIcontext *driContext = brw->driContext;
122
123 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
124 if (driContext->driDrawablePriv)
125 dri2InvalidateDrawable(driContext->driDrawablePriv);
126 if (driContext->driReadablePriv)
127 dri2InvalidateDrawable(driContext->driReadablePriv);
128 }
129 }
130
131 static void
132 intel_update_framebuffer(struct gl_context *ctx,
133 struct gl_framebuffer *fb)
134 {
135 struct brw_context *brw = brw_context(ctx);
136
137 /* Quantize the derived default number of samples
138 */
139 fb->DefaultGeometry._NumSamples =
140 intel_quantize_num_samples(brw->intelScreen,
141 fb->DefaultGeometry.NumSamples);
142 }
143
144 static void
145 intel_update_state(struct gl_context * ctx, GLuint new_state)
146 {
147 struct brw_context *brw = brw_context(ctx);
148 struct intel_texture_object *tex_obj;
149 struct intel_renderbuffer *depth_irb;
150
151 if (ctx->swrast_context)
152 _swrast_InvalidateState(ctx, new_state);
153 _vbo_InvalidateState(ctx, new_state);
154
155 brw->NewGLState |= new_state;
156
157 _mesa_unlock_context_textures(ctx);
158
159 /* Resolve the depth buffer's HiZ buffer. */
160 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
161 if (depth_irb)
162 intel_renderbuffer_resolve_hiz(brw, depth_irb);
163
164 /* Resolve depth buffer and render cache of each enabled texture. */
165 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
166 for (int i = 0; i <= maxEnabledUnit; i++) {
167 if (!ctx->Texture.Unit[i]._Current)
168 continue;
169 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
170 if (!tex_obj || !tex_obj->mt)
171 continue;
172 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
173 /* Sampling engine understands lossless compression and resolving
174 * those surfaces should be skipped for performance reasons.
175 */
176 intel_miptree_resolve_color(brw, tex_obj->mt,
177 INTEL_MIPTREE_IGNORE_CCS_E);
178 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
179 }
180
181 /* Resolve color for each active shader image. */
182 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
183 const struct gl_shader *shader = ctx->_Shader->CurrentProgram[i] ?
184 ctx->_Shader->CurrentProgram[i]->_LinkedShaders[i] : NULL;
185
186 if (unlikely(shader && shader->NumImages)) {
187 for (unsigned j = 0; j < shader->NumImages; j++) {
188 struct gl_image_unit *u = &ctx->ImageUnits[shader->ImageUnits[j]];
189 tex_obj = intel_texture_object(u->TexObj);
190
191 if (tex_obj && tex_obj->mt) {
192 /* Access to images is implemented using indirect messages
193 * against data port. Normal render target write understands
194 * lossless compression but unfortunately the typed/untyped
195 * read/write interface doesn't. Therefore the compressed
196 * surfaces need to be resolved prior to accessing them.
197 */
198 intel_miptree_resolve_color(brw, tex_obj->mt, 0);
199 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
200 }
201 }
202 }
203 }
204
205 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of the
206 * single-sampled color renderbuffers because the CCS buffer isn't
207 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
208 * enabled because otherwise the surface state will be programmed with the
209 * linear equivalent format anyway.
210 */
211 if (brw->gen >= 9 && ctx->Color.sRGBEnabled) {
212 struct gl_framebuffer *fb = ctx->DrawBuffer;
213 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
214 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[i];
215
216 if (rb == NULL)
217 continue;
218
219 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
220 struct intel_mipmap_tree *mt = irb->mt;
221
222 if (mt == NULL ||
223 mt->num_samples > 1 ||
224 _mesa_get_srgb_format_linear(mt->format) == mt->format)
225 continue;
226
227 /* Lossless compression is not supported for SRGB formats, it
228 * should be impossible to get here with such surfaces.
229 */
230 assert(!intel_miptree_is_lossless_compressed(brw, mt));
231 intel_miptree_resolve_color(brw, mt, 0);
232 brw_render_cache_set_check_flush(brw, mt->bo);
233 }
234 }
235
236 _mesa_lock_context_textures(ctx);
237
238 if (new_state & _NEW_BUFFERS) {
239 intel_update_framebuffer(ctx, ctx->DrawBuffer);
240 if (ctx->DrawBuffer != ctx->ReadBuffer)
241 intel_update_framebuffer(ctx, ctx->ReadBuffer);
242 }
243 }
244
245 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
246
247 static void
248 intel_flush_front(struct gl_context *ctx)
249 {
250 struct brw_context *brw = brw_context(ctx);
251 __DRIcontext *driContext = brw->driContext;
252 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
253 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
254
255 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
256 if (flushFront(screen) && driDrawable &&
257 driDrawable->loaderPrivate) {
258
259 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
260 *
261 * This potentially resolves both front and back buffer. It
262 * is unnecessary to resolve the back, but harms nothing except
263 * performance. And no one cares about front-buffer render
264 * performance.
265 */
266 intel_resolve_for_dri2_flush(brw, driDrawable);
267 intel_batchbuffer_flush(brw);
268
269 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
270
271 /* We set the dirty bit in intel_prepare_render() if we're
272 * front buffer rendering once we get there.
273 */
274 brw->front_buffer_dirty = false;
275 }
276 }
277 }
278
279 static void
280 intel_glFlush(struct gl_context *ctx)
281 {
282 struct brw_context *brw = brw_context(ctx);
283
284 intel_batchbuffer_flush(brw);
285 intel_flush_front(ctx);
286
287 brw->need_flush_throttle = true;
288 }
289
290 static void
291 intel_finish(struct gl_context * ctx)
292 {
293 struct brw_context *brw = brw_context(ctx);
294
295 intel_glFlush(ctx);
296
297 if (brw->batch.last_bo)
298 drm_intel_bo_wait_rendering(brw->batch.last_bo);
299 }
300
301 static void
302 brw_init_driver_functions(struct brw_context *brw,
303 struct dd_function_table *functions)
304 {
305 _mesa_init_driver_functions(functions);
306
307 /* GLX uses DRI2 invalidate events to handle window resizing.
308 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
309 * which doesn't provide a mechanism for snooping the event queues.
310 *
311 * So EGL still relies on viewport hacks to handle window resizing.
312 * This should go away with DRI3000.
313 */
314 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
315 functions->Viewport = intel_viewport;
316
317 functions->Flush = intel_glFlush;
318 functions->Finish = intel_finish;
319 functions->GetString = intel_get_string;
320 functions->UpdateState = intel_update_state;
321
322 intelInitTextureFuncs(functions);
323 intelInitTextureImageFuncs(functions);
324 intelInitTextureSubImageFuncs(functions);
325 intelInitTextureCopyImageFuncs(functions);
326 intelInitCopyImageFuncs(functions);
327 intelInitClearFuncs(functions);
328 intelInitBufferFuncs(functions);
329 intelInitPixelFuncs(functions);
330 intelInitBufferObjectFuncs(functions);
331 intel_init_syncobj_functions(functions);
332 brw_init_object_purgeable_functions(functions);
333
334 brwInitFragProgFuncs( functions );
335 brw_init_common_queryobj_functions(functions);
336 if (brw->gen >= 6)
337 gen6_init_queryobj_functions(functions);
338 else
339 gen4_init_queryobj_functions(functions);
340 brw_init_compute_functions(functions);
341 if (brw->gen >= 7)
342 brw_init_conditional_render_functions(functions);
343
344 functions->QuerySamplesForFormat = brw_query_samples_for_format;
345 functions->QueryInternalFormat = brw_query_internal_format;
346
347 functions->NewTransformFeedback = brw_new_transform_feedback;
348 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
349 functions->GetTransformFeedbackVertexCount =
350 brw_get_transform_feedback_vertex_count;
351 if (brw->gen >= 7) {
352 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
353 functions->EndTransformFeedback = gen7_end_transform_feedback;
354 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
355 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
356 } else {
357 functions->BeginTransformFeedback = brw_begin_transform_feedback;
358 functions->EndTransformFeedback = brw_end_transform_feedback;
359 }
360
361 if (brw->gen >= 6)
362 functions->GetSamplePosition = gen6_get_sample_position;
363 }
364
365 static void
366 brw_initialize_context_constants(struct brw_context *brw)
367 {
368 struct gl_context *ctx = &brw->ctx;
369 const struct brw_compiler *compiler = brw->intelScreen->compiler;
370
371 const bool stage_exists[MESA_SHADER_STAGES] = {
372 [MESA_SHADER_VERTEX] = true,
373 [MESA_SHADER_TESS_CTRL] = brw->gen >= 7,
374 [MESA_SHADER_TESS_EVAL] = brw->gen >= 7,
375 [MESA_SHADER_GEOMETRY] = brw->gen >= 6,
376 [MESA_SHADER_FRAGMENT] = true,
377 [MESA_SHADER_COMPUTE] =
378 (ctx->API == API_OPENGL_CORE &&
379 ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
380 (ctx->API == API_OPENGLES2 &&
381 ctx->Const.MaxComputeWorkGroupSize[0] >= 128) ||
382 _mesa_extension_override_enables.ARB_compute_shader,
383 };
384
385 unsigned num_stages = 0;
386 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
387 if (stage_exists[i])
388 num_stages++;
389 }
390
391 unsigned max_samplers =
392 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
393
394 ctx->Const.MaxDualSourceDrawBuffers = 1;
395 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
396 ctx->Const.MaxCombinedShaderOutputResources =
397 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
398
399 ctx->Const.QueryCounterBits.Timestamp = 36;
400
401 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
402 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
403 ctx->Const.MaxRenderbufferSize = 8192;
404 ctx->Const.MaxTextureLevels = MIN2(14 /* 8192 */, MAX_TEXTURE_LEVELS);
405 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
406 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
407 ctx->Const.MaxArrayTextureLayers = brw->gen >= 7 ? 2048 : 512;
408 ctx->Const.MaxTextureMbytes = 1536;
409 ctx->Const.MaxTextureRectSize = 1 << 12;
410 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
411 ctx->Const.StripTextureBorder = true;
412 if (brw->gen >= 7)
413 ctx->Const.MaxProgramTextureGatherComponents = 4;
414 else if (brw->gen == 6)
415 ctx->Const.MaxProgramTextureGatherComponents = 1;
416
417 ctx->Const.MaxUniformBlockSize = 65536;
418
419 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
420 struct gl_program_constants *prog = &ctx->Const.Program[i];
421
422 if (!stage_exists[i])
423 continue;
424
425 prog->MaxTextureImageUnits = max_samplers;
426
427 prog->MaxUniformBlocks = BRW_MAX_UBO;
428 prog->MaxCombinedUniformComponents =
429 prog->MaxUniformComponents +
430 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
431
432 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
433 prog->MaxAtomicBuffers = BRW_MAX_ABO;
434 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
435 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
436 }
437
438 ctx->Const.MaxTextureUnits =
439 MIN2(ctx->Const.MaxTextureCoordUnits,
440 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
441
442 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
443 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
444 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
445 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
446 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
447 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
448 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
449
450
451 /* Hardware only supports a limited number of transform feedback buffers.
452 * So we need to override the Mesa default (which is based only on software
453 * limits).
454 */
455 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
456
457 /* On Gen6, in the worst case, we use up one binding table entry per
458 * transform feedback component (see comments above the definition of
459 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
460 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
461 * BRW_MAX_SOL_BINDINGS.
462 *
463 * In "separate components" mode, we need to divide this value by
464 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
465 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
466 */
467 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
468 ctx->Const.MaxTransformFeedbackSeparateComponents =
469 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
470
471 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
472
473 int max_samples;
474 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
475 const int clamp_max_samples =
476 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
477
478 if (clamp_max_samples < 0) {
479 max_samples = msaa_modes[0];
480 } else {
481 /* Select the largest supported MSAA mode that does not exceed
482 * clamp_max_samples.
483 */
484 max_samples = 0;
485 for (int i = 0; msaa_modes[i] != 0; ++i) {
486 if (msaa_modes[i] <= clamp_max_samples) {
487 max_samples = msaa_modes[i];
488 break;
489 }
490 }
491 }
492
493 ctx->Const.MaxSamples = max_samples;
494 ctx->Const.MaxColorTextureSamples = max_samples;
495 ctx->Const.MaxDepthTextureSamples = max_samples;
496 ctx->Const.MaxIntegerSamples = max_samples;
497 ctx->Const.MaxImageSamples = 0;
498
499 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
500 * to map indices of rectangular grid to sample numbers within a pixel.
501 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
502 * extension implementation. For more details see the comment above
503 * gen6_set_sample_maps() definition.
504 */
505 gen6_set_sample_maps(ctx);
506
507 ctx->Const.MinLineWidth = 1.0;
508 ctx->Const.MinLineWidthAA = 1.0;
509 if (brw->gen >= 6) {
510 ctx->Const.MaxLineWidth = 7.375;
511 ctx->Const.MaxLineWidthAA = 7.375;
512 ctx->Const.LineWidthGranularity = 0.125;
513 } else {
514 ctx->Const.MaxLineWidth = 7.0;
515 ctx->Const.MaxLineWidthAA = 7.0;
516 ctx->Const.LineWidthGranularity = 0.5;
517 }
518
519 /* For non-antialiased lines, we have to round the line width to the
520 * nearest whole number. Make sure that we don't advertise a line
521 * width that, when rounded, will be beyond the actual hardware
522 * maximum.
523 */
524 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
525
526 ctx->Const.MinPointSize = 1.0;
527 ctx->Const.MinPointSizeAA = 1.0;
528 ctx->Const.MaxPointSize = 255.0;
529 ctx->Const.MaxPointSizeAA = 255.0;
530 ctx->Const.PointSizeGranularity = 1.0;
531
532 if (brw->gen >= 5 || brw->is_g4x)
533 ctx->Const.MaxClipPlanes = 8;
534
535 ctx->Const.LowerTessLevel = true;
536
537 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
538 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
539 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
540 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
541 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
542 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
543 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
544 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
545 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
546 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
547 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
548 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
549 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
550 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
551
552 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
553 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
554 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
555 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
556 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
557 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
558 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
559 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
560 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
561 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
562 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
563
564 /* Fragment shaders use real, 32-bit twos-complement integers for all
565 * integer types.
566 */
567 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
568 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
569 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
570 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
571 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
572
573 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
574 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
575 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
576 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
577 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
578
579 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
580 * but we're not sure how it's actually done for vertex order,
581 * that affect provoking vertex decision. Always use last vertex
582 * convention for quad primitive which works as expected for now.
583 */
584 if (brw->gen >= 6)
585 ctx->Const.QuadsFollowProvokingVertexConvention = false;
586
587 ctx->Const.NativeIntegers = true;
588 ctx->Const.VertexID_is_zero_based = true;
589
590 /* Regarding the CMP instruction, the Ivybridge PRM says:
591 *
592 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
593 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
594 * 0xFFFFFFFF) is assigned to dst."
595 *
596 * but PRMs for earlier generations say
597 *
598 * "In dword format, one GRF may store up to 8 results. When the register
599 * is used later as a vector of Booleans, as only LSB at each channel
600 * contains meaning [sic] data, software should make sure all higher bits
601 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
602 *
603 * We select the representation of a true boolean uniform to be ~0, and fix
604 * the results of Gen <= 5 CMP instruction's with -(result & 1).
605 */
606 ctx->Const.UniformBooleanTrue = ~0;
607
608 /* From the gen4 PRM, volume 4 page 127:
609 *
610 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
611 * the base address of the first element of the surface, computed in
612 * software by adding the surface base address to the byte offset of
613 * the element in the buffer."
614 *
615 * However, unaligned accesses are slower, so enforce buffer alignment.
616 */
617 ctx->Const.UniformBufferOffsetAlignment = 16;
618
619 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
620 * that we can safely have the CPU and GPU writing the same SSBO on
621 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
622 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
623 * be updating disjoint regions of the buffer simultaneously and that will
624 * break if the regions overlap the same cacheline.
625 */
626 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
627 ctx->Const.TextureBufferOffsetAlignment = 16;
628 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
629
630 if (brw->gen >= 6) {
631 ctx->Const.MaxVarying = 32;
632 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
633 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
634 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
635 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
636 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
637 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
638 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
639 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
640 }
641
642 /* We want the GLSL compiler to emit code that uses condition codes */
643 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
644 ctx->Const.ShaderCompilerOptions[i] =
645 brw->intelScreen->compiler->glsl_compiler_options[i];
646 }
647
648 if (brw->gen >= 7) {
649 ctx->Const.MaxViewportWidth = 32768;
650 ctx->Const.MaxViewportHeight = 32768;
651 }
652
653 /* ARB_viewport_array */
654 if (brw->gen >= 6 && ctx->API == API_OPENGL_CORE) {
655 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
656 ctx->Const.ViewportSubpixelBits = 0;
657
658 /* Cast to float before negating because MaxViewportWidth is unsigned.
659 */
660 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
661 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
662 }
663
664 /* ARB_gpu_shader5 */
665 if (brw->gen >= 7)
666 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
667
668 /* ARB_framebuffer_no_attachments */
669 ctx->Const.MaxFramebufferWidth = ctx->Const.MaxViewportWidth;
670 ctx->Const.MaxFramebufferHeight = ctx->Const.MaxViewportHeight;
671 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
672 ctx->Const.MaxFramebufferSamples = max_samples;
673 }
674
675 static void
676 brw_initialize_cs_context_constants(struct brw_context *brw, unsigned max_threads)
677 {
678 struct gl_context *ctx = &brw->ctx;
679
680 /* For ES, we set these constants based on SIMD8.
681 *
682 * TODO: Once we can always generate SIMD16, we should update this.
683 *
684 * For GL, we assume we can generate a SIMD16 program, but this currently
685 * is not always true. This allows us to run more test cases, and will be
686 * required based on desktop GL compute shader requirements.
687 */
688 const int simd_size = ctx->API == API_OPENGL_CORE ? 16 : 8;
689
690 const uint32_t max_invocations = simd_size * max_threads;
691 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
692 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
693 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
694 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
695 ctx->Const.MaxComputeSharedMemorySize = 64 * 1024;
696 }
697
698 /**
699 * Process driconf (drirc) options, setting appropriate context flags.
700 *
701 * intelInitExtensions still pokes at optionCache directly, in order to
702 * avoid advertising various extensions. No flags are set, so it makes
703 * sense to continue doing that there.
704 */
705 static void
706 brw_process_driconf_options(struct brw_context *brw)
707 {
708 struct gl_context *ctx = &brw->ctx;
709
710 driOptionCache *options = &brw->optionCache;
711 driParseConfigFiles(options, &brw->intelScreen->optionCache,
712 brw->driContext->driScreenPriv->myNum, "i965");
713
714 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
715 switch (bo_reuse_mode) {
716 case DRI_CONF_BO_REUSE_DISABLED:
717 break;
718 case DRI_CONF_BO_REUSE_ALL:
719 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
720 break;
721 }
722
723 if (!driQueryOptionb(options, "hiz")) {
724 brw->has_hiz = false;
725 /* On gen6, you can only do separate stencil with HIZ. */
726 if (brw->gen == 6)
727 brw->has_separate_stencil = false;
728 }
729
730 if (driQueryOptionb(options, "always_flush_batch")) {
731 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
732 brw->always_flush_batch = true;
733 }
734
735 if (driQueryOptionb(options, "always_flush_cache")) {
736 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
737 brw->always_flush_cache = true;
738 }
739
740 if (driQueryOptionb(options, "disable_throttling")) {
741 fprintf(stderr, "disabling flush throttling\n");
742 brw->disable_throttling = true;
743 }
744
745 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
746
747 ctx->Const.ForceGLSLExtensionsWarn =
748 driQueryOptionb(options, "force_glsl_extensions_warn");
749
750 ctx->Const.DisableGLSLLineContinuations =
751 driQueryOptionb(options, "disable_glsl_line_continuations");
752
753 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
754 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
755
756 brw->dual_color_blend_by_location =
757 driQueryOptionb(options, "dual_color_blend_by_location");
758 }
759
760 GLboolean
761 brwCreateContext(gl_api api,
762 const struct gl_config *mesaVis,
763 __DRIcontext *driContextPriv,
764 unsigned major_version,
765 unsigned minor_version,
766 uint32_t flags,
767 bool notify_reset,
768 unsigned *dri_ctx_error,
769 void *sharedContextPrivate)
770 {
771 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
772 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
773 struct intel_screen *screen = sPriv->driverPrivate;
774 const struct brw_device_info *devinfo = screen->devinfo;
775 struct dd_function_table functions;
776
777 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
778 * provides us with context reset notifications.
779 */
780 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
781 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
782
783 if (screen->has_context_reset_notification)
784 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
785
786 if (flags & ~allowed_flags) {
787 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
788 return false;
789 }
790
791 struct brw_context *brw = rzalloc(NULL, struct brw_context);
792 if (!brw) {
793 fprintf(stderr, "%s: failed to alloc context\n", __func__);
794 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
795 return false;
796 }
797
798 driContextPriv->driverPrivate = brw;
799 brw->driContext = driContextPriv;
800 brw->intelScreen = screen;
801 brw->bufmgr = screen->bufmgr;
802
803 brw->gen = devinfo->gen;
804 brw->gt = devinfo->gt;
805 brw->is_g4x = devinfo->is_g4x;
806 brw->is_baytrail = devinfo->is_baytrail;
807 brw->is_haswell = devinfo->is_haswell;
808 brw->is_cherryview = devinfo->is_cherryview;
809 brw->is_broxton = devinfo->is_broxton;
810 brw->has_llc = devinfo->has_llc;
811 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
812 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
813 brw->has_pln = devinfo->has_pln;
814 brw->has_compr4 = devinfo->has_compr4;
815 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
816 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
817 brw->needs_unlit_centroid_workaround =
818 devinfo->needs_unlit_centroid_workaround;
819
820 brw->must_use_separate_stencil = devinfo->must_use_separate_stencil;
821 brw->has_swizzling = screen->hw_has_swizzling;
822
823 brw->vs.base.stage = MESA_SHADER_VERTEX;
824 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
825 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
826 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
827 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
828 if (brw->gen >= 8) {
829 gen8_init_vtable_surface_functions(brw);
830 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
831 } else if (brw->gen >= 7) {
832 gen7_init_vtable_surface_functions(brw);
833 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
834 } else if (brw->gen >= 6) {
835 gen6_init_vtable_surface_functions(brw);
836 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
837 } else {
838 gen4_init_vtable_surface_functions(brw);
839 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
840 }
841
842 brw_init_driver_functions(brw, &functions);
843
844 if (notify_reset)
845 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
846
847 struct gl_context *ctx = &brw->ctx;
848
849 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
850 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
851 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
852 intelDestroyContext(driContextPriv);
853 return false;
854 }
855
856 driContextSetFlags(ctx, flags);
857
858 /* Initialize the software rasterizer and helper modules.
859 *
860 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
861 * software fallbacks (which we have to support on legacy GL to do weird
862 * glDrawPixels(), glBitmap(), and other functions).
863 */
864 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
865 _swrast_CreateContext(ctx);
866 }
867
868 _vbo_CreateContext(ctx);
869 if (ctx->swrast_context) {
870 _tnl_CreateContext(ctx);
871 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
872 _swsetup_CreateContext(ctx);
873
874 /* Configure swrast to match hardware characteristics: */
875 _swrast_allow_pixel_fog(ctx, false);
876 _swrast_allow_vertex_fog(ctx, true);
877 }
878
879 _mesa_meta_init(ctx);
880
881 brw_process_driconf_options(brw);
882
883 if (INTEL_DEBUG & DEBUG_PERF)
884 brw->perf_debug = true;
885
886 brw_initialize_cs_context_constants(brw, devinfo->max_cs_threads);
887 brw_initialize_context_constants(brw);
888
889 ctx->Const.ResetStrategy = notify_reset
890 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
891
892 /* Reinitialize the context point state. It depends on ctx->Const values. */
893 _mesa_init_point(ctx);
894
895 intel_fbo_init(brw);
896
897 intel_batchbuffer_init(brw);
898
899 if (brw->gen >= 6) {
900 /* Create a new hardware context. Using a hardware context means that
901 * our GPU state will be saved/restored on context switch, allowing us
902 * to assume that the GPU is in the same state we left it in.
903 *
904 * This is required for transform feedback buffer offsets, query objects,
905 * and also allows us to reduce how much state we have to emit.
906 */
907 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
908
909 if (!brw->hw_ctx) {
910 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
911 intelDestroyContext(driContextPriv);
912 return false;
913 }
914 }
915
916 if (brw_init_pipe_control(brw, devinfo)) {
917 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
918 intelDestroyContext(driContextPriv);
919 return false;
920 }
921
922 brw_init_state(brw);
923
924 intelInitExtensions(ctx);
925
926 brw_init_surface_formats(brw);
927
928 brw->max_vs_threads = devinfo->max_vs_threads;
929 brw->max_hs_threads = devinfo->max_hs_threads;
930 brw->max_ds_threads = devinfo->max_ds_threads;
931 brw->max_gs_threads = devinfo->max_gs_threads;
932 brw->max_wm_threads = devinfo->max_wm_threads;
933 brw->max_cs_threads = devinfo->max_cs_threads;
934 brw->urb.size = devinfo->urb.size;
935 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
936 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
937 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
938 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
939 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
940
941 /* Estimate the size of the mappable aperture into the GTT. There's an
942 * ioctl to get the whole GTT size, but not one to get the mappable subset.
943 * It turns out it's basically always 256MB, though some ancient hardware
944 * was smaller.
945 */
946 uint32_t gtt_size = 256 * 1024 * 1024;
947
948 /* We don't want to map two objects such that a memcpy between them would
949 * just fault one mapping in and then the other over and over forever. So
950 * we would need to divide the GTT size by 2. Additionally, some GTT is
951 * taken up by things like the framebuffer and the ringbuffer and such, so
952 * be more conservative.
953 */
954 brw->max_gtt_map_object_size = gtt_size / 4;
955
956 if (brw->gen == 6)
957 brw->urb.gs_present = false;
958
959 brw->prim_restart.in_progress = false;
960 brw->prim_restart.enable_cut_index = false;
961 brw->gs.enabled = false;
962 brw->sf.viewport_transform_enable = true;
963
964 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
965
966 brw->use_resource_streamer = screen->has_resource_streamer &&
967 (env_var_as_boolean("INTEL_USE_HW_BT", false) ||
968 env_var_as_boolean("INTEL_USE_GATHER", false));
969
970 ctx->VertexProgram._MaintainTnlProgram = true;
971 ctx->FragmentProgram._MaintainTexEnvProgram = true;
972
973 brw_draw_init( brw );
974
975 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
976 /* Turn on some extra GL_ARB_debug_output generation. */
977 brw->perf_debug = true;
978 }
979
980 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
981 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
982
983 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
984 brw_init_shader_time(brw);
985
986 _mesa_compute_version(ctx);
987
988 _mesa_initialize_dispatch_tables(ctx);
989 _mesa_initialize_vbo_vtxfmt(ctx);
990
991 if (ctx->Extensions.AMD_performance_monitor) {
992 brw_init_performance_monitors(brw);
993 }
994
995 vbo_use_buffer_objects(ctx);
996 vbo_always_unmap_buffers(ctx);
997
998 return true;
999 }
1000
1001 void
1002 intelDestroyContext(__DRIcontext * driContextPriv)
1003 {
1004 struct brw_context *brw =
1005 (struct brw_context *) driContextPriv->driverPrivate;
1006 struct gl_context *ctx = &brw->ctx;
1007
1008 /* Dump a final BMP in case the application doesn't call SwapBuffers */
1009 if (INTEL_DEBUG & DEBUG_AUB) {
1010 intel_batchbuffer_flush(brw);
1011 aub_dump_bmp(&brw->ctx);
1012 }
1013
1014 _mesa_meta_free(&brw->ctx);
1015 brw_meta_fast_clear_free(brw);
1016
1017 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1018 /* Force a report. */
1019 brw->shader_time.report_time = 0;
1020
1021 brw_collect_and_report_shader_time(brw);
1022 brw_destroy_shader_time(brw);
1023 }
1024
1025 brw_destroy_state(brw);
1026 brw_draw_destroy(brw);
1027
1028 drm_intel_bo_unreference(brw->curbe.curbe_bo);
1029 if (brw->vs.base.scratch_bo)
1030 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
1031 if (brw->gs.base.scratch_bo)
1032 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
1033 if (brw->wm.base.scratch_bo)
1034 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
1035
1036 gen7_reset_hw_bt_pool_offsets(brw);
1037 drm_intel_bo_unreference(brw->hw_bt_pool.bo);
1038 brw->hw_bt_pool.bo = NULL;
1039
1040 drm_intel_gem_context_destroy(brw->hw_ctx);
1041
1042 if (ctx->swrast_context) {
1043 _swsetup_DestroyContext(&brw->ctx);
1044 _tnl_DestroyContext(&brw->ctx);
1045 }
1046 _vbo_DestroyContext(&brw->ctx);
1047
1048 if (ctx->swrast_context)
1049 _swrast_DestroyContext(&brw->ctx);
1050
1051 brw_fini_pipe_control(brw);
1052 intel_batchbuffer_free(brw);
1053
1054 drm_intel_bo_unreference(brw->throttle_batch[1]);
1055 drm_intel_bo_unreference(brw->throttle_batch[0]);
1056 brw->throttle_batch[1] = NULL;
1057 brw->throttle_batch[0] = NULL;
1058
1059 driDestroyOptionCache(&brw->optionCache);
1060
1061 /* free the Mesa context */
1062 _mesa_free_context_data(&brw->ctx);
1063
1064 ralloc_free(brw);
1065 driContextPriv->driverPrivate = NULL;
1066 }
1067
1068 GLboolean
1069 intelUnbindContext(__DRIcontext * driContextPriv)
1070 {
1071 /* Unset current context and dispath table */
1072 _mesa_make_current(NULL, NULL, NULL);
1073
1074 return true;
1075 }
1076
1077 /**
1078 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1079 * on window system framebuffers.
1080 *
1081 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1082 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1083 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1084 * for a visual where you're guaranteed to be capable, but it turns out that
1085 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1086 * incapable ones, because there's no difference between the two in resources
1087 * used. Applications thus get built that accidentally rely on the default
1088 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1089 * great...
1090 *
1091 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1092 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1093 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1094 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1095 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1096 * and get no sRGB encode (assuming that both kinds of visual are available).
1097 * Thus our choice to support sRGB by default on our visuals for desktop would
1098 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1099 *
1100 * Unfortunately, renderbuffer setup happens before a context is created. So
1101 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1102 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1103 * yet), we go turn that back off before anyone finds out.
1104 */
1105 static void
1106 intel_gles3_srgb_workaround(struct brw_context *brw,
1107 struct gl_framebuffer *fb)
1108 {
1109 struct gl_context *ctx = &brw->ctx;
1110
1111 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1112 return;
1113
1114 /* Some day when we support the sRGB capable bit on visuals available for
1115 * GLES, we'll need to respect that and not disable things here.
1116 */
1117 fb->Visual.sRGBCapable = false;
1118 for (int i = 0; i < BUFFER_COUNT; i++) {
1119 if (fb->Attachment[i].Renderbuffer &&
1120 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
1121 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
1122 }
1123 }
1124 }
1125
1126 GLboolean
1127 intelMakeCurrent(__DRIcontext * driContextPriv,
1128 __DRIdrawable * driDrawPriv,
1129 __DRIdrawable * driReadPriv)
1130 {
1131 struct brw_context *brw;
1132 GET_CURRENT_CONTEXT(curCtx);
1133
1134 if (driContextPriv)
1135 brw = (struct brw_context *) driContextPriv->driverPrivate;
1136 else
1137 brw = NULL;
1138
1139 /* According to the glXMakeCurrent() man page: "Pending commands to
1140 * the previous context, if any, are flushed before it is released."
1141 * But only flush if we're actually changing contexts.
1142 */
1143 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1144 _mesa_flush(curCtx);
1145 }
1146
1147 if (driContextPriv) {
1148 struct gl_context *ctx = &brw->ctx;
1149 struct gl_framebuffer *fb, *readFb;
1150
1151 if (driDrawPriv == NULL) {
1152 fb = _mesa_get_incomplete_framebuffer();
1153 } else {
1154 fb = driDrawPriv->driverPrivate;
1155 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1156 }
1157
1158 if (driReadPriv == NULL) {
1159 readFb = _mesa_get_incomplete_framebuffer();
1160 } else {
1161 readFb = driReadPriv->driverPrivate;
1162 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1163 }
1164
1165 /* The sRGB workaround changes the renderbuffer's format. We must change
1166 * the format before the renderbuffer's miptree get's allocated, otherwise
1167 * the formats of the renderbuffer and its miptree will differ.
1168 */
1169 intel_gles3_srgb_workaround(brw, fb);
1170 intel_gles3_srgb_workaround(brw, readFb);
1171
1172 /* If the context viewport hasn't been initialized, force a call out to
1173 * the loader to get buffers so we have a drawable size for the initial
1174 * viewport. */
1175 if (!brw->ctx.ViewportInitialized)
1176 intel_prepare_render(brw);
1177
1178 _mesa_make_current(ctx, fb, readFb);
1179 } else {
1180 _mesa_make_current(NULL, NULL, NULL);
1181 }
1182
1183 return true;
1184 }
1185
1186 void
1187 intel_resolve_for_dri2_flush(struct brw_context *brw,
1188 __DRIdrawable *drawable)
1189 {
1190 if (brw->gen < 6) {
1191 /* MSAA and fast color clear are not supported, so don't waste time
1192 * checking whether a resolve is needed.
1193 */
1194 return;
1195 }
1196
1197 struct gl_framebuffer *fb = drawable->driverPrivate;
1198 struct intel_renderbuffer *rb;
1199
1200 /* Usually, only the back buffer will need to be downsampled. However,
1201 * the front buffer will also need it if the user has rendered into it.
1202 */
1203 static const gl_buffer_index buffers[2] = {
1204 BUFFER_BACK_LEFT,
1205 BUFFER_FRONT_LEFT,
1206 };
1207
1208 for (int i = 0; i < 2; ++i) {
1209 rb = intel_get_renderbuffer(fb, buffers[i]);
1210 if (rb == NULL || rb->mt == NULL)
1211 continue;
1212 if (rb->mt->num_samples <= 1)
1213 intel_miptree_resolve_color(brw, rb->mt, 0);
1214 else
1215 intel_renderbuffer_downsample(brw, rb);
1216 }
1217 }
1218
1219 static unsigned
1220 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1221 {
1222 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1223 }
1224
1225 static void
1226 intel_query_dri2_buffers(struct brw_context *brw,
1227 __DRIdrawable *drawable,
1228 __DRIbuffer **buffers,
1229 int *count);
1230
1231 static void
1232 intel_process_dri2_buffer(struct brw_context *brw,
1233 __DRIdrawable *drawable,
1234 __DRIbuffer *buffer,
1235 struct intel_renderbuffer *rb,
1236 const char *buffer_name);
1237
1238 static void
1239 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1240
1241 static void
1242 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1243 {
1244 struct gl_framebuffer *fb = drawable->driverPrivate;
1245 struct intel_renderbuffer *rb;
1246 __DRIbuffer *buffers = NULL;
1247 int i, count;
1248 const char *region_name;
1249
1250 /* Set this up front, so that in case our buffers get invalidated
1251 * while we're getting new buffers, we don't clobber the stamp and
1252 * thus ignore the invalidate. */
1253 drawable->lastStamp = drawable->dri2.stamp;
1254
1255 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1256 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1257
1258 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1259
1260 if (buffers == NULL)
1261 return;
1262
1263 for (i = 0; i < count; i++) {
1264 switch (buffers[i].attachment) {
1265 case __DRI_BUFFER_FRONT_LEFT:
1266 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1267 region_name = "dri2 front buffer";
1268 break;
1269
1270 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1271 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1272 region_name = "dri2 fake front buffer";
1273 break;
1274
1275 case __DRI_BUFFER_BACK_LEFT:
1276 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1277 region_name = "dri2 back buffer";
1278 break;
1279
1280 case __DRI_BUFFER_DEPTH:
1281 case __DRI_BUFFER_HIZ:
1282 case __DRI_BUFFER_DEPTH_STENCIL:
1283 case __DRI_BUFFER_STENCIL:
1284 case __DRI_BUFFER_ACCUM:
1285 default:
1286 fprintf(stderr,
1287 "unhandled buffer attach event, attachment type %d\n",
1288 buffers[i].attachment);
1289 return;
1290 }
1291
1292 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1293 }
1294
1295 }
1296
1297 void
1298 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1299 {
1300 struct brw_context *brw = context->driverPrivate;
1301 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1302
1303 /* Set this up front, so that in case our buffers get invalidated
1304 * while we're getting new buffers, we don't clobber the stamp and
1305 * thus ignore the invalidate. */
1306 drawable->lastStamp = drawable->dri2.stamp;
1307
1308 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1309 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1310
1311 if (screen->image.loader)
1312 intel_update_image_buffers(brw, drawable);
1313 else
1314 intel_update_dri2_buffers(brw, drawable);
1315
1316 driUpdateFramebufferSize(&brw->ctx, drawable);
1317 }
1318
1319 /**
1320 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1321 * state is required.
1322 */
1323 void
1324 intel_prepare_render(struct brw_context *brw)
1325 {
1326 struct gl_context *ctx = &brw->ctx;
1327 __DRIcontext *driContext = brw->driContext;
1328 __DRIdrawable *drawable;
1329
1330 drawable = driContext->driDrawablePriv;
1331 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1332 if (drawable->lastStamp != drawable->dri2.stamp)
1333 intel_update_renderbuffers(driContext, drawable);
1334 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1335 }
1336
1337 drawable = driContext->driReadablePriv;
1338 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1339 if (drawable->lastStamp != drawable->dri2.stamp)
1340 intel_update_renderbuffers(driContext, drawable);
1341 driContext->dri2.read_stamp = drawable->dri2.stamp;
1342 }
1343
1344 /* If we're currently rendering to the front buffer, the rendering
1345 * that will happen next will probably dirty the front buffer. So
1346 * mark it as dirty here.
1347 */
1348 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer))
1349 brw->front_buffer_dirty = true;
1350 }
1351
1352 /**
1353 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1354 *
1355 * To determine which DRI buffers to request, examine the renderbuffers
1356 * attached to the drawable's framebuffer. Then request the buffers with
1357 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1358 *
1359 * This is called from intel_update_renderbuffers().
1360 *
1361 * \param drawable Drawable whose buffers are queried.
1362 * \param buffers [out] List of buffers returned by DRI2 query.
1363 * \param buffer_count [out] Number of buffers returned.
1364 *
1365 * \see intel_update_renderbuffers()
1366 * \see DRI2GetBuffers()
1367 * \see DRI2GetBuffersWithFormat()
1368 */
1369 static void
1370 intel_query_dri2_buffers(struct brw_context *brw,
1371 __DRIdrawable *drawable,
1372 __DRIbuffer **buffers,
1373 int *buffer_count)
1374 {
1375 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1376 struct gl_framebuffer *fb = drawable->driverPrivate;
1377 int i = 0;
1378 unsigned attachments[8];
1379
1380 struct intel_renderbuffer *front_rb;
1381 struct intel_renderbuffer *back_rb;
1382
1383 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1384 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1385
1386 memset(attachments, 0, sizeof(attachments));
1387 if ((_mesa_is_front_buffer_drawing(fb) ||
1388 _mesa_is_front_buffer_reading(fb) ||
1389 !back_rb) && front_rb) {
1390 /* If a fake front buffer is in use, then querying for
1391 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1392 * the real front buffer to the fake front buffer. So before doing the
1393 * query, we need to make sure all the pending drawing has landed in the
1394 * real front buffer.
1395 */
1396 intel_batchbuffer_flush(brw);
1397 intel_flush_front(&brw->ctx);
1398
1399 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1400 attachments[i++] = intel_bits_per_pixel(front_rb);
1401 } else if (front_rb && brw->front_buffer_dirty) {
1402 /* We have pending front buffer rendering, but we aren't querying for a
1403 * front buffer. If the front buffer we have is a fake front buffer,
1404 * the X server is going to throw it away when it processes the query.
1405 * So before doing the query, make sure all the pending drawing has
1406 * landed in the real front buffer.
1407 */
1408 intel_batchbuffer_flush(brw);
1409 intel_flush_front(&brw->ctx);
1410 }
1411
1412 if (back_rb) {
1413 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1414 attachments[i++] = intel_bits_per_pixel(back_rb);
1415 }
1416
1417 assert(i <= ARRAY_SIZE(attachments));
1418
1419 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1420 &drawable->w,
1421 &drawable->h,
1422 attachments, i / 2,
1423 buffer_count,
1424 drawable->loaderPrivate);
1425 }
1426
1427 /**
1428 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1429 *
1430 * This is called from intel_update_renderbuffers().
1431 *
1432 * \par Note:
1433 * DRI buffers whose attachment point is DRI2BufferStencil or
1434 * DRI2BufferDepthStencil are handled as special cases.
1435 *
1436 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1437 * that is passed to drm_intel_bo_gem_create_from_name().
1438 *
1439 * \see intel_update_renderbuffers()
1440 */
1441 static void
1442 intel_process_dri2_buffer(struct brw_context *brw,
1443 __DRIdrawable *drawable,
1444 __DRIbuffer *buffer,
1445 struct intel_renderbuffer *rb,
1446 const char *buffer_name)
1447 {
1448 struct gl_framebuffer *fb = drawable->driverPrivate;
1449 drm_intel_bo *bo;
1450
1451 if (!rb)
1452 return;
1453
1454 unsigned num_samples = rb->Base.Base.NumSamples;
1455
1456 /* We try to avoid closing and reopening the same BO name, because the first
1457 * use of a mapping of the buffer involves a bunch of page faulting which is
1458 * moderately expensive.
1459 */
1460 struct intel_mipmap_tree *last_mt;
1461 if (num_samples == 0)
1462 last_mt = rb->mt;
1463 else
1464 last_mt = rb->singlesample_mt;
1465
1466 uint32_t old_name = 0;
1467 if (last_mt) {
1468 /* The bo already has a name because the miptree was created by a
1469 * previous call to intel_process_dri2_buffer(). If a bo already has a
1470 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1471 * create a new name.
1472 */
1473 drm_intel_bo_flink(last_mt->bo, &old_name);
1474 }
1475
1476 if (old_name == buffer->name)
1477 return;
1478
1479 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1480 fprintf(stderr,
1481 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1482 buffer->name, buffer->attachment,
1483 buffer->cpp, buffer->pitch);
1484 }
1485
1486 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1487 buffer->name);
1488 if (!bo) {
1489 fprintf(stderr,
1490 "Failed to open BO for returned DRI2 buffer "
1491 "(%dx%d, %s, named %d).\n"
1492 "This is likely a bug in the X Server that will lead to a "
1493 "crash soon.\n",
1494 drawable->w, drawable->h, buffer_name, buffer->name);
1495 return;
1496 }
1497
1498 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1499 drawable->w, drawable->h,
1500 buffer->pitch);
1501
1502 if (_mesa_is_front_buffer_drawing(fb) &&
1503 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1504 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1505 rb->Base.Base.NumSamples > 1) {
1506 intel_renderbuffer_upsample(brw, rb);
1507 }
1508
1509 assert(rb->mt);
1510
1511 drm_intel_bo_unreference(bo);
1512 }
1513
1514 /**
1515 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1516 *
1517 * To determine which DRI buffers to request, examine the renderbuffers
1518 * attached to the drawable's framebuffer. Then request the buffers from
1519 * the image loader
1520 *
1521 * This is called from intel_update_renderbuffers().
1522 *
1523 * \param drawable Drawable whose buffers are queried.
1524 * \param buffers [out] List of buffers returned by DRI2 query.
1525 * \param buffer_count [out] Number of buffers returned.
1526 *
1527 * \see intel_update_renderbuffers()
1528 */
1529
1530 static void
1531 intel_update_image_buffer(struct brw_context *intel,
1532 __DRIdrawable *drawable,
1533 struct intel_renderbuffer *rb,
1534 __DRIimage *buffer,
1535 enum __DRIimageBufferMask buffer_type)
1536 {
1537 struct gl_framebuffer *fb = drawable->driverPrivate;
1538
1539 if (!rb || !buffer->bo)
1540 return;
1541
1542 unsigned num_samples = rb->Base.Base.NumSamples;
1543
1544 /* Check and see if we're already bound to the right
1545 * buffer object
1546 */
1547 struct intel_mipmap_tree *last_mt;
1548 if (num_samples == 0)
1549 last_mt = rb->mt;
1550 else
1551 last_mt = rb->singlesample_mt;
1552
1553 if (last_mt && last_mt->bo == buffer->bo)
1554 return;
1555
1556 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1557 buffer->width, buffer->height,
1558 buffer->pitch);
1559
1560 if (_mesa_is_front_buffer_drawing(fb) &&
1561 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1562 rb->Base.Base.NumSamples > 1) {
1563 intel_renderbuffer_upsample(intel, rb);
1564 }
1565 }
1566
1567 static void
1568 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1569 {
1570 struct gl_framebuffer *fb = drawable->driverPrivate;
1571 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1572 struct intel_renderbuffer *front_rb;
1573 struct intel_renderbuffer *back_rb;
1574 struct __DRIimageList images;
1575 unsigned int format;
1576 uint32_t buffer_mask = 0;
1577
1578 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1579 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1580
1581 if (back_rb)
1582 format = intel_rb_format(back_rb);
1583 else if (front_rb)
1584 format = intel_rb_format(front_rb);
1585 else
1586 return;
1587
1588 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1589 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1590 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1591 }
1592
1593 if (back_rb)
1594 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1595
1596 (*screen->image.loader->getBuffers) (drawable,
1597 driGLFormatToImageFormat(format),
1598 &drawable->dri2.stamp,
1599 drawable->loaderPrivate,
1600 buffer_mask,
1601 &images);
1602
1603 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1604 drawable->w = images.front->width;
1605 drawable->h = images.front->height;
1606 intel_update_image_buffer(brw,
1607 drawable,
1608 front_rb,
1609 images.front,
1610 __DRI_IMAGE_BUFFER_FRONT);
1611 }
1612 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1613 drawable->w = images.back->width;
1614 drawable->h = images.back->height;
1615 intel_update_image_buffer(brw,
1616 drawable,
1617 back_rb,
1618 images.back,
1619 __DRI_IMAGE_BUFFER_BACK);
1620 }
1621 }