cd3b53a5e0f18c24a3fc59b8c879c51519d557c7
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "compiler/nir/nir.h"
35 #include "main/api_exec.h"
36 #include "main/context.h"
37 #include "main/fbobject.h"
38 #include "main/extensions.h"
39 #include "main/imports.h"
40 #include "main/macros.h"
41 #include "main/points.h"
42 #include "main/version.h"
43 #include "main/vtxfmt.h"
44 #include "main/texobj.h"
45 #include "main/framebuffer.h"
46
47 #include "vbo/vbo_context.h"
48
49 #include "drivers/common/driverfuncs.h"
50 #include "drivers/common/meta.h"
51 #include "utils.h"
52
53 #include "brw_context.h"
54 #include "brw_defines.h"
55 #include "brw_blorp.h"
56 #include "brw_draw.h"
57 #include "brw_state.h"
58
59 #include "intel_batchbuffer.h"
60 #include "intel_buffer_objects.h"
61 #include "intel_buffers.h"
62 #include "intel_fbo.h"
63 #include "intel_mipmap_tree.h"
64 #include "intel_pixel.h"
65 #include "intel_image.h"
66 #include "intel_tex.h"
67 #include "intel_tex_obj.h"
68
69 #include "swrast_setup/swrast_setup.h"
70 #include "tnl/tnl.h"
71 #include "tnl/t_pipeline.h"
72 #include "util/ralloc.h"
73 #include "util/debug.h"
74 #include "isl/isl.h"
75
76 /***************************************
77 * Mesa's Driver Functions
78 ***************************************/
79
80 const char *const brw_vendor_string = "Intel Open Source Technology Center";
81
82 static const char *
83 get_bsw_model(const struct intel_screen *screen)
84 {
85 switch (screen->eu_total) {
86 case 16:
87 return "405";
88 case 12:
89 return "400";
90 default:
91 return " ";
92 }
93 }
94
95 const char *
96 brw_get_renderer_string(const struct intel_screen *screen)
97 {
98 const char *chipset;
99 static char buffer[128];
100 char *bsw = NULL;
101
102 switch (screen->deviceID) {
103 #undef CHIPSET
104 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
105 #include "pci_ids/i965_pci_ids.h"
106 default:
107 chipset = "Unknown Intel Chipset";
108 break;
109 }
110
111 /* Braswell branding is funny, so we have to fix it up here */
112 if (screen->deviceID == 0x22B1) {
113 bsw = strdup(chipset);
114 char *needle = strstr(bsw, "XXX");
115 if (needle) {
116 memcpy(needle, get_bsw_model(screen), 3);
117 chipset = bsw;
118 }
119 }
120
121 (void) driGetRendererString(buffer, chipset, 0);
122 free(bsw);
123 return buffer;
124 }
125
126 static const GLubyte *
127 intel_get_string(struct gl_context * ctx, GLenum name)
128 {
129 const struct brw_context *const brw = brw_context(ctx);
130
131 switch (name) {
132 case GL_VENDOR:
133 return (GLubyte *) brw_vendor_string;
134
135 case GL_RENDERER:
136 return
137 (GLubyte *) brw_get_renderer_string(brw->screen);
138
139 default:
140 return NULL;
141 }
142 }
143
144 static void
145 intel_viewport(struct gl_context *ctx)
146 {
147 struct brw_context *brw = brw_context(ctx);
148 __DRIcontext *driContext = brw->driContext;
149
150 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
151 if (driContext->driDrawablePriv)
152 dri2InvalidateDrawable(driContext->driDrawablePriv);
153 if (driContext->driReadablePriv)
154 dri2InvalidateDrawable(driContext->driReadablePriv);
155 }
156 }
157
158 static void
159 intel_update_framebuffer(struct gl_context *ctx,
160 struct gl_framebuffer *fb)
161 {
162 struct brw_context *brw = brw_context(ctx);
163
164 /* Quantize the derived default number of samples
165 */
166 fb->DefaultGeometry._NumSamples =
167 intel_quantize_num_samples(brw->screen,
168 fb->DefaultGeometry.NumSamples);
169 }
170
171 static bool
172 intel_disable_rb_aux_buffer(struct brw_context *brw, const drm_intel_bo *bo)
173 {
174 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
175 bool found = false;
176
177 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
178 const struct intel_renderbuffer *irb =
179 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
180
181 if (irb && irb->mt->bo == bo) {
182 found = brw->draw_aux_buffer_disabled[i] = true;
183 }
184 }
185
186 return found;
187 }
188
189 /* On Gen9 color buffers may be compressed by the hardware (lossless
190 * compression). There are, however, format restrictions and care needs to be
191 * taken that the sampler engine is capable for re-interpreting a buffer with
192 * format different the buffer was originally written with.
193 *
194 * For example, SRGB formats are not compressible and the sampler engine isn't
195 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
196 * color buffer needs to be resolved so that the sampling surface can be
197 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
198 * set).
199 */
200 static bool
201 intel_texture_view_requires_resolve(struct brw_context *brw,
202 struct intel_texture_object *intel_tex)
203 {
204 if (brw->gen < 9 ||
205 !intel_miptree_is_lossless_compressed(brw, intel_tex->mt))
206 return false;
207
208 const uint32_t brw_format = brw_format_for_mesa_format(intel_tex->_Format);
209
210 if (isl_format_supports_ccs_e(&brw->screen->devinfo, brw_format))
211 return false;
212
213 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
214 _mesa_get_format_name(intel_tex->_Format),
215 _mesa_get_format_name(intel_tex->mt->format));
216
217 if (intel_disable_rb_aux_buffer(brw, intel_tex->mt->bo))
218 perf_debug("Sampling renderbuffer with non-compressible format - "
219 "turning off compression");
220
221 return true;
222 }
223
224 static void
225 intel_update_state(struct gl_context * ctx, GLuint new_state)
226 {
227 struct brw_context *brw = brw_context(ctx);
228 struct intel_texture_object *tex_obj;
229 struct intel_renderbuffer *depth_irb;
230
231 if (ctx->swrast_context)
232 _swrast_InvalidateState(ctx, new_state);
233 _vbo_InvalidateState(ctx, new_state);
234
235 brw->NewGLState |= new_state;
236
237 _mesa_unlock_context_textures(ctx);
238
239 /* Resolve the depth buffer's HiZ buffer. */
240 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
241 if (depth_irb)
242 intel_renderbuffer_resolve_hiz(brw, depth_irb);
243
244 memset(brw->draw_aux_buffer_disabled, 0,
245 sizeof(brw->draw_aux_buffer_disabled));
246
247 /* Resolve depth buffer and render cache of each enabled texture. */
248 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
249 for (int i = 0; i <= maxEnabledUnit; i++) {
250 if (!ctx->Texture.Unit[i]._Current)
251 continue;
252 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
253 if (!tex_obj || !tex_obj->mt)
254 continue;
255 if (intel_miptree_sample_with_hiz(brw, tex_obj->mt))
256 intel_miptree_all_slices_resolve_hiz(brw, tex_obj->mt);
257 else
258 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
259 /* Sampling engine understands lossless compression and resolving
260 * those surfaces should be skipped for performance reasons.
261 */
262 const int flags = intel_texture_view_requires_resolve(brw, tex_obj) ?
263 0 : INTEL_MIPTREE_IGNORE_CCS_E;
264 intel_miptree_all_slices_resolve_color(brw, tex_obj->mt, flags);
265 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
266
267 if (tex_obj->base.StencilSampling ||
268 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
269 intel_update_r8stencil(brw, tex_obj->mt);
270 }
271 }
272
273 /* Resolve color for each active shader image. */
274 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
275 const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
276
277 if (unlikely(prog && prog->info.num_images)) {
278 for (unsigned j = 0; j < prog->info.num_images; j++) {
279 struct gl_image_unit *u =
280 &ctx->ImageUnits[prog->sh.ImageUnits[j]];
281 tex_obj = intel_texture_object(u->TexObj);
282
283 if (tex_obj && tex_obj->mt) {
284 /* Access to images is implemented using indirect messages
285 * against data port. Normal render target write understands
286 * lossless compression but unfortunately the typed/untyped
287 * read/write interface doesn't. Therefore even lossless
288 * compressed surfaces need to be resolved prior to accessing
289 * them. Hence skip setting INTEL_MIPTREE_IGNORE_CCS_E.
290 */
291 intel_miptree_all_slices_resolve_color(brw, tex_obj->mt, 0);
292
293 if (intel_miptree_is_lossless_compressed(brw, tex_obj->mt) &&
294 intel_disable_rb_aux_buffer(brw, tex_obj->mt->bo)) {
295 perf_debug("Using renderbuffer as shader image - turning "
296 "off lossless compression");
297 }
298
299 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
300 }
301 }
302 }
303 }
304
305 /* Resolve color buffers for non-coherent framebuffer fetch. */
306 if (!ctx->Extensions.MESA_shader_framebuffer_fetch &&
307 ctx->FragmentProgram._Current &&
308 ctx->FragmentProgram._Current->info.outputs_read) {
309 const struct gl_framebuffer *fb = ctx->DrawBuffer;
310
311 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
312 const struct intel_renderbuffer *irb =
313 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
314
315 if (irb &&
316 intel_miptree_resolve_color(
317 brw, irb->mt, irb->mt_level, irb->mt_layer, irb->layer_count,
318 INTEL_MIPTREE_IGNORE_CCS_E))
319 brw_render_cache_set_check_flush(brw, irb->mt->bo);
320 }
321 }
322
323 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of the
324 * single-sampled color renderbuffers because the CCS buffer isn't
325 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
326 * enabled because otherwise the surface state will be programmed with the
327 * linear equivalent format anyway.
328 */
329 if (brw->gen >= 9 && ctx->Color.sRGBEnabled) {
330 struct gl_framebuffer *fb = ctx->DrawBuffer;
331 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
332 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[i];
333
334 if (rb == NULL)
335 continue;
336
337 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
338 struct intel_mipmap_tree *mt = irb->mt;
339
340 if (mt == NULL ||
341 mt->num_samples > 1 ||
342 _mesa_get_srgb_format_linear(mt->format) == mt->format)
343 continue;
344
345 /* Lossless compression is not supported for SRGB formats, it
346 * should be impossible to get here with such surfaces.
347 */
348 assert(!intel_miptree_is_lossless_compressed(brw, mt));
349 intel_miptree_all_slices_resolve_color(brw, mt, 0);
350 brw_render_cache_set_check_flush(brw, mt->bo);
351 }
352 }
353
354 _mesa_lock_context_textures(ctx);
355
356 if (new_state & _NEW_BUFFERS) {
357 intel_update_framebuffer(ctx, ctx->DrawBuffer);
358 if (ctx->DrawBuffer != ctx->ReadBuffer)
359 intel_update_framebuffer(ctx, ctx->ReadBuffer);
360 }
361 }
362
363 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
364
365 static void
366 intel_flush_front(struct gl_context *ctx)
367 {
368 struct brw_context *brw = brw_context(ctx);
369 __DRIcontext *driContext = brw->driContext;
370 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
371 __DRIscreen *const dri_screen = brw->screen->driScrnPriv;
372
373 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
374 if (flushFront(dri_screen) && driDrawable &&
375 driDrawable->loaderPrivate) {
376
377 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
378 *
379 * This potentially resolves both front and back buffer. It
380 * is unnecessary to resolve the back, but harms nothing except
381 * performance. And no one cares about front-buffer render
382 * performance.
383 */
384 intel_resolve_for_dri2_flush(brw, driDrawable);
385 intel_batchbuffer_flush(brw);
386
387 flushFront(dri_screen)(driDrawable, driDrawable->loaderPrivate);
388
389 /* We set the dirty bit in intel_prepare_render() if we're
390 * front buffer rendering once we get there.
391 */
392 brw->front_buffer_dirty = false;
393 }
394 }
395 }
396
397 static void
398 intel_glFlush(struct gl_context *ctx)
399 {
400 struct brw_context *brw = brw_context(ctx);
401
402 intel_batchbuffer_flush(brw);
403 intel_flush_front(ctx);
404
405 brw->need_flush_throttle = true;
406 }
407
408 static void
409 intel_finish(struct gl_context * ctx)
410 {
411 struct brw_context *brw = brw_context(ctx);
412
413 intel_glFlush(ctx);
414
415 if (brw->batch.last_bo)
416 drm_intel_bo_wait_rendering(brw->batch.last_bo);
417 }
418
419 static void
420 brw_init_driver_functions(struct brw_context *brw,
421 struct dd_function_table *functions)
422 {
423 _mesa_init_driver_functions(functions);
424
425 /* GLX uses DRI2 invalidate events to handle window resizing.
426 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
427 * which doesn't provide a mechanism for snooping the event queues.
428 *
429 * So EGL still relies on viewport hacks to handle window resizing.
430 * This should go away with DRI3000.
431 */
432 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
433 functions->Viewport = intel_viewport;
434
435 functions->Flush = intel_glFlush;
436 functions->Finish = intel_finish;
437 functions->GetString = intel_get_string;
438 functions->UpdateState = intel_update_state;
439
440 intelInitTextureFuncs(functions);
441 intelInitTextureImageFuncs(functions);
442 intelInitTextureSubImageFuncs(functions);
443 intelInitTextureCopyImageFuncs(functions);
444 intelInitCopyImageFuncs(functions);
445 intelInitClearFuncs(functions);
446 intelInitBufferFuncs(functions);
447 intelInitPixelFuncs(functions);
448 intelInitBufferObjectFuncs(functions);
449 brw_init_syncobj_functions(functions);
450 brw_init_object_purgeable_functions(functions);
451
452 brwInitFragProgFuncs( functions );
453 brw_init_common_queryobj_functions(functions);
454 if (brw->gen >= 8 || brw->is_haswell)
455 hsw_init_queryobj_functions(functions);
456 else if (brw->gen >= 6)
457 gen6_init_queryobj_functions(functions);
458 else
459 gen4_init_queryobj_functions(functions);
460 brw_init_compute_functions(functions);
461 if (brw->gen >= 7)
462 brw_init_conditional_render_functions(functions);
463
464 functions->QueryInternalFormat = brw_query_internal_format;
465
466 functions->NewTransformFeedback = brw_new_transform_feedback;
467 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
468 if (can_do_mi_math_and_lrr(brw->screen)) {
469 functions->BeginTransformFeedback = hsw_begin_transform_feedback;
470 functions->EndTransformFeedback = hsw_end_transform_feedback;
471 functions->PauseTransformFeedback = hsw_pause_transform_feedback;
472 functions->ResumeTransformFeedback = hsw_resume_transform_feedback;
473 } else if (brw->gen >= 7) {
474 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
475 functions->EndTransformFeedback = gen7_end_transform_feedback;
476 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
477 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
478 functions->GetTransformFeedbackVertexCount =
479 brw_get_transform_feedback_vertex_count;
480 } else {
481 functions->BeginTransformFeedback = brw_begin_transform_feedback;
482 functions->EndTransformFeedback = brw_end_transform_feedback;
483 functions->PauseTransformFeedback = brw_pause_transform_feedback;
484 functions->ResumeTransformFeedback = brw_resume_transform_feedback;
485 functions->GetTransformFeedbackVertexCount =
486 brw_get_transform_feedback_vertex_count;
487 }
488
489 if (brw->gen >= 6)
490 functions->GetSamplePosition = gen6_get_sample_position;
491 }
492
493 static void
494 brw_initialize_context_constants(struct brw_context *brw)
495 {
496 struct gl_context *ctx = &brw->ctx;
497 const struct brw_compiler *compiler = brw->screen->compiler;
498
499 const bool stage_exists[MESA_SHADER_STAGES] = {
500 [MESA_SHADER_VERTEX] = true,
501 [MESA_SHADER_TESS_CTRL] = brw->gen >= 7,
502 [MESA_SHADER_TESS_EVAL] = brw->gen >= 7,
503 [MESA_SHADER_GEOMETRY] = brw->gen >= 6,
504 [MESA_SHADER_FRAGMENT] = true,
505 [MESA_SHADER_COMPUTE] =
506 ((ctx->API == API_OPENGL_COMPAT || ctx->API == API_OPENGL_CORE) &&
507 ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
508 (ctx->API == API_OPENGLES2 &&
509 ctx->Const.MaxComputeWorkGroupSize[0] >= 128) ||
510 _mesa_extension_override_enables.ARB_compute_shader,
511 };
512
513 unsigned num_stages = 0;
514 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
515 if (stage_exists[i])
516 num_stages++;
517 }
518
519 unsigned max_samplers =
520 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
521
522 ctx->Const.MaxDualSourceDrawBuffers = 1;
523 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
524 ctx->Const.MaxCombinedShaderOutputResources =
525 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
526
527 ctx->Const.QueryCounterBits.Timestamp = 36;
528
529 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
530 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
531 if (brw->gen >= 7) {
532 ctx->Const.MaxRenderbufferSize = 16384;
533 ctx->Const.MaxTextureLevels = MIN2(15 /* 16384 */, MAX_TEXTURE_LEVELS);
534 ctx->Const.MaxCubeTextureLevels = 15; /* 16384 */
535 } else {
536 ctx->Const.MaxRenderbufferSize = 8192;
537 ctx->Const.MaxTextureLevels = MIN2(14 /* 8192 */, MAX_TEXTURE_LEVELS);
538 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
539 }
540 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
541 ctx->Const.MaxArrayTextureLayers = brw->gen >= 7 ? 2048 : 512;
542 ctx->Const.MaxTextureMbytes = 1536;
543 ctx->Const.MaxTextureRectSize = 1 << 12;
544 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
545 ctx->Const.MaxTextureLodBias = 15.0;
546 ctx->Const.StripTextureBorder = true;
547 if (brw->gen >= 7) {
548 ctx->Const.MaxProgramTextureGatherComponents = 4;
549 ctx->Const.MinProgramTextureGatherOffset = -32;
550 ctx->Const.MaxProgramTextureGatherOffset = 31;
551 } else if (brw->gen == 6) {
552 ctx->Const.MaxProgramTextureGatherComponents = 1;
553 ctx->Const.MinProgramTextureGatherOffset = -8;
554 ctx->Const.MaxProgramTextureGatherOffset = 7;
555 }
556
557 ctx->Const.MaxUniformBlockSize = 65536;
558
559 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
560 struct gl_program_constants *prog = &ctx->Const.Program[i];
561
562 if (!stage_exists[i])
563 continue;
564
565 prog->MaxTextureImageUnits = max_samplers;
566
567 prog->MaxUniformBlocks = BRW_MAX_UBO;
568 prog->MaxCombinedUniformComponents =
569 prog->MaxUniformComponents +
570 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
571
572 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
573 prog->MaxAtomicBuffers = BRW_MAX_ABO;
574 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
575 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
576 }
577
578 ctx->Const.MaxTextureUnits =
579 MIN2(ctx->Const.MaxTextureCoordUnits,
580 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
581
582 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
583 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
584 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
585 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
586 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
587 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
588 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
589
590
591 /* Hardware only supports a limited number of transform feedback buffers.
592 * So we need to override the Mesa default (which is based only on software
593 * limits).
594 */
595 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
596
597 /* On Gen6, in the worst case, we use up one binding table entry per
598 * transform feedback component (see comments above the definition of
599 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
600 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
601 * BRW_MAX_SOL_BINDINGS.
602 *
603 * In "separate components" mode, we need to divide this value by
604 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
605 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
606 */
607 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
608 ctx->Const.MaxTransformFeedbackSeparateComponents =
609 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
610
611 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount =
612 !can_do_mi_math_and_lrr(brw->screen);
613
614 int max_samples;
615 const int *msaa_modes = intel_supported_msaa_modes(brw->screen);
616 const int clamp_max_samples =
617 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
618
619 if (clamp_max_samples < 0) {
620 max_samples = msaa_modes[0];
621 } else {
622 /* Select the largest supported MSAA mode that does not exceed
623 * clamp_max_samples.
624 */
625 max_samples = 0;
626 for (int i = 0; msaa_modes[i] != 0; ++i) {
627 if (msaa_modes[i] <= clamp_max_samples) {
628 max_samples = msaa_modes[i];
629 break;
630 }
631 }
632 }
633
634 ctx->Const.MaxSamples = max_samples;
635 ctx->Const.MaxColorTextureSamples = max_samples;
636 ctx->Const.MaxDepthTextureSamples = max_samples;
637 ctx->Const.MaxIntegerSamples = max_samples;
638 ctx->Const.MaxImageSamples = 0;
639
640 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
641 * to map indices of rectangular grid to sample numbers within a pixel.
642 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
643 * extension implementation. For more details see the comment above
644 * gen6_set_sample_maps() definition.
645 */
646 gen6_set_sample_maps(ctx);
647
648 ctx->Const.MinLineWidth = 1.0;
649 ctx->Const.MinLineWidthAA = 1.0;
650 if (brw->gen >= 6) {
651 ctx->Const.MaxLineWidth = 7.375;
652 ctx->Const.MaxLineWidthAA = 7.375;
653 ctx->Const.LineWidthGranularity = 0.125;
654 } else {
655 ctx->Const.MaxLineWidth = 7.0;
656 ctx->Const.MaxLineWidthAA = 7.0;
657 ctx->Const.LineWidthGranularity = 0.5;
658 }
659
660 /* For non-antialiased lines, we have to round the line width to the
661 * nearest whole number. Make sure that we don't advertise a line
662 * width that, when rounded, will be beyond the actual hardware
663 * maximum.
664 */
665 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
666
667 ctx->Const.MinPointSize = 1.0;
668 ctx->Const.MinPointSizeAA = 1.0;
669 ctx->Const.MaxPointSize = 255.0;
670 ctx->Const.MaxPointSizeAA = 255.0;
671 ctx->Const.PointSizeGranularity = 1.0;
672
673 if (brw->gen >= 5 || brw->is_g4x)
674 ctx->Const.MaxClipPlanes = 8;
675
676 ctx->Const.GLSLTessLevelsAsInputs = true;
677 ctx->Const.LowerTCSPatchVerticesIn = brw->gen >= 8;
678 ctx->Const.LowerTESPatchVerticesIn = true;
679 ctx->Const.PrimitiveRestartForPatches = true;
680
681 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
682 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
683 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
684 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
685 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
686 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
687 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
688 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
689 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
690 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
691 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
692 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
693 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
694 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
695
696 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
697 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
698 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
699 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
700 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
701 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
702 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
703 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
704 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
705 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
706 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
707
708 /* Fragment shaders use real, 32-bit twos-complement integers for all
709 * integer types.
710 */
711 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
712 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
713 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
714 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
715 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
716
717 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
718 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
719 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
720 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
721 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
722
723 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
724 * but we're not sure how it's actually done for vertex order,
725 * that affect provoking vertex decision. Always use last vertex
726 * convention for quad primitive which works as expected for now.
727 */
728 if (brw->gen >= 6)
729 ctx->Const.QuadsFollowProvokingVertexConvention = false;
730
731 ctx->Const.NativeIntegers = true;
732 ctx->Const.VertexID_is_zero_based = true;
733
734 /* Regarding the CMP instruction, the Ivybridge PRM says:
735 *
736 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
737 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
738 * 0xFFFFFFFF) is assigned to dst."
739 *
740 * but PRMs for earlier generations say
741 *
742 * "In dword format, one GRF may store up to 8 results. When the register
743 * is used later as a vector of Booleans, as only LSB at each channel
744 * contains meaning [sic] data, software should make sure all higher bits
745 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
746 *
747 * We select the representation of a true boolean uniform to be ~0, and fix
748 * the results of Gen <= 5 CMP instruction's with -(result & 1).
749 */
750 ctx->Const.UniformBooleanTrue = ~0;
751
752 /* From the gen4 PRM, volume 4 page 127:
753 *
754 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
755 * the base address of the first element of the surface, computed in
756 * software by adding the surface base address to the byte offset of
757 * the element in the buffer."
758 *
759 * However, unaligned accesses are slower, so enforce buffer alignment.
760 */
761 ctx->Const.UniformBufferOffsetAlignment = 16;
762
763 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
764 * that we can safely have the CPU and GPU writing the same SSBO on
765 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
766 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
767 * be updating disjoint regions of the buffer simultaneously and that will
768 * break if the regions overlap the same cacheline.
769 */
770 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
771 ctx->Const.TextureBufferOffsetAlignment = 16;
772 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
773
774 if (brw->gen >= 6) {
775 ctx->Const.MaxVarying = 32;
776 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
777 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
778 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
779 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
780 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
781 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
782 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
783 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
784 }
785
786 /* We want the GLSL compiler to emit code that uses condition codes */
787 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
788 ctx->Const.ShaderCompilerOptions[i] =
789 brw->screen->compiler->glsl_compiler_options[i];
790 }
791
792 if (brw->gen >= 7) {
793 ctx->Const.MaxViewportWidth = 32768;
794 ctx->Const.MaxViewportHeight = 32768;
795 }
796
797 /* ARB_viewport_array, OES_viewport_array */
798 if (brw->gen >= 6) {
799 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
800 ctx->Const.ViewportSubpixelBits = 0;
801
802 /* Cast to float before negating because MaxViewportWidth is unsigned.
803 */
804 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
805 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
806 }
807
808 /* ARB_gpu_shader5 */
809 if (brw->gen >= 7)
810 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
811
812 /* ARB_framebuffer_no_attachments */
813 ctx->Const.MaxFramebufferWidth = 16384;
814 ctx->Const.MaxFramebufferHeight = 16384;
815 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
816 ctx->Const.MaxFramebufferSamples = max_samples;
817
818 /* OES_primitive_bounding_box */
819 ctx->Const.NoPrimitiveBoundingBoxOutput = true;
820 }
821
822 static void
823 brw_initialize_cs_context_constants(struct brw_context *brw)
824 {
825 struct gl_context *ctx = &brw->ctx;
826 const struct intel_screen *screen = brw->screen;
827 struct gen_device_info *devinfo = &brw->screen->devinfo;
828
829 /* FINISHME: Do this for all platforms that the kernel supports */
830 if (brw->is_cherryview &&
831 screen->subslice_total > 0 && screen->eu_total > 0) {
832 /* Logical CS threads = EUs per subslice * 7 threads per EU */
833 uint32_t max_cs_threads = screen->eu_total / screen->subslice_total * 7;
834
835 /* Fuse configurations may give more threads than expected, never less. */
836 if (max_cs_threads > devinfo->max_cs_threads)
837 devinfo->max_cs_threads = max_cs_threads;
838 }
839
840 /* Maximum number of scalar compute shader invocations that can be run in
841 * parallel in the same subslice assuming SIMD32 dispatch.
842 *
843 * We don't advertise more than 64 threads, because we are limited to 64 by
844 * our usage of thread_width_max in the gpgpu walker command. This only
845 * currently impacts Haswell, which otherwise might be able to advertise 70
846 * threads. With SIMD32 and 64 threads, Haswell still provides twice the
847 * required the number of invocation needed for ARB_compute_shader.
848 */
849 const unsigned max_threads = MIN2(64, devinfo->max_cs_threads);
850 const uint32_t max_invocations = 32 * max_threads;
851 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
852 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
853 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
854 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
855 ctx->Const.MaxComputeSharedMemorySize = 64 * 1024;
856 }
857
858 /**
859 * Process driconf (drirc) options, setting appropriate context flags.
860 *
861 * intelInitExtensions still pokes at optionCache directly, in order to
862 * avoid advertising various extensions. No flags are set, so it makes
863 * sense to continue doing that there.
864 */
865 static void
866 brw_process_driconf_options(struct brw_context *brw)
867 {
868 struct gl_context *ctx = &brw->ctx;
869
870 driOptionCache *options = &brw->optionCache;
871 driParseConfigFiles(options, &brw->screen->optionCache,
872 brw->driContext->driScreenPriv->myNum, "i965");
873
874 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
875 switch (bo_reuse_mode) {
876 case DRI_CONF_BO_REUSE_DISABLED:
877 break;
878 case DRI_CONF_BO_REUSE_ALL:
879 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
880 break;
881 }
882
883 if (!driQueryOptionb(options, "hiz")) {
884 brw->has_hiz = false;
885 /* On gen6, you can only do separate stencil with HIZ. */
886 if (brw->gen == 6)
887 brw->has_separate_stencil = false;
888 }
889
890 if (driQueryOptionb(options, "always_flush_batch")) {
891 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
892 brw->always_flush_batch = true;
893 }
894
895 if (driQueryOptionb(options, "always_flush_cache")) {
896 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
897 brw->always_flush_cache = true;
898 }
899
900 if (driQueryOptionb(options, "disable_throttling")) {
901 fprintf(stderr, "disabling flush throttling\n");
902 brw->disable_throttling = true;
903 }
904
905 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
906
907 if (driQueryOptionb(&brw->optionCache, "precise_trig"))
908 brw->screen->compiler->precise_trig = true;
909
910 ctx->Const.ForceGLSLExtensionsWarn =
911 driQueryOptionb(options, "force_glsl_extensions_warn");
912
913 ctx->Const.ForceGLSLVersion =
914 driQueryOptioni(options, "force_glsl_version");
915
916 ctx->Const.DisableGLSLLineContinuations =
917 driQueryOptionb(options, "disable_glsl_line_continuations");
918
919 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
920 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
921
922 ctx->Const.AllowHigherCompatVersion =
923 driQueryOptionb(options, "allow_higher_compat_version");
924
925 ctx->Const.GLSLZeroInit = driQueryOptionb(options, "glsl_zero_init");
926
927 brw->dual_color_blend_by_location =
928 driQueryOptionb(options, "dual_color_blend_by_location");
929 }
930
931 GLboolean
932 brwCreateContext(gl_api api,
933 const struct gl_config *mesaVis,
934 __DRIcontext *driContextPriv,
935 unsigned major_version,
936 unsigned minor_version,
937 uint32_t flags,
938 bool notify_reset,
939 unsigned *dri_ctx_error,
940 void *sharedContextPrivate)
941 {
942 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
943 struct intel_screen *screen = driContextPriv->driScreenPriv->driverPrivate;
944 const struct gen_device_info *devinfo = &screen->devinfo;
945 struct dd_function_table functions;
946
947 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
948 * provides us with context reset notifications.
949 */
950 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
951 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
952
953 if (screen->has_context_reset_notification)
954 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
955
956 if (flags & ~allowed_flags) {
957 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
958 return false;
959 }
960
961 struct brw_context *brw = rzalloc(NULL, struct brw_context);
962 if (!brw) {
963 fprintf(stderr, "%s: failed to alloc context\n", __func__);
964 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
965 return false;
966 }
967
968 driContextPriv->driverPrivate = brw;
969 brw->driContext = driContextPriv;
970 brw->screen = screen;
971 brw->bufmgr = screen->bufmgr;
972
973 brw->gen = devinfo->gen;
974 brw->gt = devinfo->gt;
975 brw->is_g4x = devinfo->is_g4x;
976 brw->is_baytrail = devinfo->is_baytrail;
977 brw->is_haswell = devinfo->is_haswell;
978 brw->is_cherryview = devinfo->is_cherryview;
979 brw->is_broxton = devinfo->is_broxton;
980 brw->has_llc = devinfo->has_llc;
981 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
982 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
983 brw->has_pln = devinfo->has_pln;
984 brw->has_compr4 = devinfo->has_compr4;
985 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
986 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
987 brw->needs_unlit_centroid_workaround =
988 devinfo->needs_unlit_centroid_workaround;
989
990 brw->must_use_separate_stencil = devinfo->must_use_separate_stencil;
991 brw->has_swizzling = screen->hw_has_swizzling;
992
993 isl_device_init(&brw->isl_dev, devinfo, screen->hw_has_swizzling);
994
995 brw->vs.base.stage = MESA_SHADER_VERTEX;
996 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
997 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
998 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
999 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
1000 if (brw->gen >= 8) {
1001 gen8_init_vtable_surface_functions(brw);
1002 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
1003 } else if (brw->gen >= 7) {
1004 gen7_init_vtable_surface_functions(brw);
1005 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
1006 } else if (brw->gen >= 6) {
1007 gen6_init_vtable_surface_functions(brw);
1008 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
1009 } else {
1010 gen4_init_vtable_surface_functions(brw);
1011 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
1012 }
1013
1014 brw_init_driver_functions(brw, &functions);
1015
1016 if (notify_reset)
1017 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
1018
1019 struct gl_context *ctx = &brw->ctx;
1020
1021 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
1022 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1023 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
1024 intelDestroyContext(driContextPriv);
1025 return false;
1026 }
1027
1028 driContextSetFlags(ctx, flags);
1029
1030 /* Initialize the software rasterizer and helper modules.
1031 *
1032 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
1033 * software fallbacks (which we have to support on legacy GL to do weird
1034 * glDrawPixels(), glBitmap(), and other functions).
1035 */
1036 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
1037 _swrast_CreateContext(ctx);
1038 }
1039
1040 _vbo_CreateContext(ctx);
1041 if (ctx->swrast_context) {
1042 _tnl_CreateContext(ctx);
1043 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
1044 _swsetup_CreateContext(ctx);
1045
1046 /* Configure swrast to match hardware characteristics: */
1047 _swrast_allow_pixel_fog(ctx, false);
1048 _swrast_allow_vertex_fog(ctx, true);
1049 }
1050
1051 _mesa_meta_init(ctx);
1052
1053 brw_process_driconf_options(brw);
1054
1055 if (INTEL_DEBUG & DEBUG_PERF)
1056 brw->perf_debug = true;
1057
1058 brw_initialize_cs_context_constants(brw);
1059 brw_initialize_context_constants(brw);
1060
1061 ctx->Const.ResetStrategy = notify_reset
1062 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
1063
1064 /* Reinitialize the context point state. It depends on ctx->Const values. */
1065 _mesa_init_point(ctx);
1066
1067 intel_fbo_init(brw);
1068
1069 intel_batchbuffer_init(&brw->batch, brw->bufmgr, brw->has_llc);
1070
1071 if (brw->gen >= 6) {
1072 /* Create a new hardware context. Using a hardware context means that
1073 * our GPU state will be saved/restored on context switch, allowing us
1074 * to assume that the GPU is in the same state we left it in.
1075 *
1076 * This is required for transform feedback buffer offsets, query objects,
1077 * and also allows us to reduce how much state we have to emit.
1078 */
1079 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
1080
1081 if (!brw->hw_ctx) {
1082 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
1083 intelDestroyContext(driContextPriv);
1084 return false;
1085 }
1086 }
1087
1088 if (brw_init_pipe_control(brw, devinfo)) {
1089 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1090 intelDestroyContext(driContextPriv);
1091 return false;
1092 }
1093
1094 brw_init_state(brw);
1095
1096 intelInitExtensions(ctx);
1097
1098 brw_init_surface_formats(brw);
1099
1100 if (brw->gen >= 6)
1101 brw_blorp_init(brw);
1102
1103 brw->urb.size = devinfo->urb.size;
1104
1105 if (brw->gen == 6)
1106 brw->urb.gs_present = false;
1107
1108 brw->prim_restart.in_progress = false;
1109 brw->prim_restart.enable_cut_index = false;
1110 brw->gs.enabled = false;
1111 brw->sf.viewport_transform_enable = true;
1112 brw->clip.viewport_count = 1;
1113
1114 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
1115
1116 brw->max_gtt_map_object_size = screen->max_gtt_map_object_size;
1117
1118 ctx->VertexProgram._MaintainTnlProgram = true;
1119 ctx->FragmentProgram._MaintainTexEnvProgram = true;
1120
1121 brw_draw_init( brw );
1122
1123 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
1124 /* Turn on some extra GL_ARB_debug_output generation. */
1125 brw->perf_debug = true;
1126 }
1127
1128 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0) {
1129 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
1130 ctx->Const.RobustAccess = GL_TRUE;
1131 }
1132
1133 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1134 brw_init_shader_time(brw);
1135
1136 _mesa_compute_version(ctx);
1137
1138 _mesa_initialize_dispatch_tables(ctx);
1139 _mesa_initialize_vbo_vtxfmt(ctx);
1140
1141 if (ctx->Extensions.INTEL_performance_query)
1142 brw_init_performance_queries(brw);
1143
1144 vbo_use_buffer_objects(ctx);
1145 vbo_always_unmap_buffers(ctx);
1146
1147 return true;
1148 }
1149
1150 void
1151 intelDestroyContext(__DRIcontext * driContextPriv)
1152 {
1153 struct brw_context *brw =
1154 (struct brw_context *) driContextPriv->driverPrivate;
1155 struct gl_context *ctx = &brw->ctx;
1156
1157 /* Dump a final BMP in case the application doesn't call SwapBuffers */
1158 if (INTEL_DEBUG & DEBUG_AUB) {
1159 intel_batchbuffer_flush(brw);
1160 aub_dump_bmp(&brw->ctx);
1161 }
1162
1163 _mesa_meta_free(&brw->ctx);
1164
1165 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1166 /* Force a report. */
1167 brw->shader_time.report_time = 0;
1168
1169 brw_collect_and_report_shader_time(brw);
1170 brw_destroy_shader_time(brw);
1171 }
1172
1173 if (brw->gen >= 6)
1174 blorp_finish(&brw->blorp);
1175
1176 brw_destroy_state(brw);
1177 brw_draw_destroy(brw);
1178
1179 drm_intel_bo_unreference(brw->curbe.curbe_bo);
1180 if (brw->vs.base.scratch_bo)
1181 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
1182 if (brw->tcs.base.scratch_bo)
1183 drm_intel_bo_unreference(brw->tcs.base.scratch_bo);
1184 if (brw->tes.base.scratch_bo)
1185 drm_intel_bo_unreference(brw->tes.base.scratch_bo);
1186 if (brw->gs.base.scratch_bo)
1187 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
1188 if (brw->wm.base.scratch_bo)
1189 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
1190
1191 drm_intel_gem_context_destroy(brw->hw_ctx);
1192
1193 if (ctx->swrast_context) {
1194 _swsetup_DestroyContext(&brw->ctx);
1195 _tnl_DestroyContext(&brw->ctx);
1196 }
1197 _vbo_DestroyContext(&brw->ctx);
1198
1199 if (ctx->swrast_context)
1200 _swrast_DestroyContext(&brw->ctx);
1201
1202 brw_fini_pipe_control(brw);
1203 intel_batchbuffer_free(&brw->batch);
1204
1205 drm_intel_bo_unreference(brw->throttle_batch[1]);
1206 drm_intel_bo_unreference(brw->throttle_batch[0]);
1207 brw->throttle_batch[1] = NULL;
1208 brw->throttle_batch[0] = NULL;
1209
1210 driDestroyOptionCache(&brw->optionCache);
1211
1212 /* free the Mesa context */
1213 _mesa_free_context_data(&brw->ctx);
1214
1215 ralloc_free(brw);
1216 driContextPriv->driverPrivate = NULL;
1217 }
1218
1219 GLboolean
1220 intelUnbindContext(__DRIcontext * driContextPriv)
1221 {
1222 /* Unset current context and dispath table */
1223 _mesa_make_current(NULL, NULL, NULL);
1224
1225 return true;
1226 }
1227
1228 /**
1229 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1230 * on window system framebuffers.
1231 *
1232 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1233 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1234 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1235 * for a visual where you're guaranteed to be capable, but it turns out that
1236 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1237 * incapable ones, because there's no difference between the two in resources
1238 * used. Applications thus get built that accidentally rely on the default
1239 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1240 * great...
1241 *
1242 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1243 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1244 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1245 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1246 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1247 * and get no sRGB encode (assuming that both kinds of visual are available).
1248 * Thus our choice to support sRGB by default on our visuals for desktop would
1249 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1250 *
1251 * Unfortunately, renderbuffer setup happens before a context is created. So
1252 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1253 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1254 * yet), we go turn that back off before anyone finds out.
1255 */
1256 static void
1257 intel_gles3_srgb_workaround(struct brw_context *brw,
1258 struct gl_framebuffer *fb)
1259 {
1260 struct gl_context *ctx = &brw->ctx;
1261
1262 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1263 return;
1264
1265 /* Some day when we support the sRGB capable bit on visuals available for
1266 * GLES, we'll need to respect that and not disable things here.
1267 */
1268 fb->Visual.sRGBCapable = false;
1269 for (int i = 0; i < BUFFER_COUNT; i++) {
1270 struct gl_renderbuffer *rb = fb->Attachment[i].Renderbuffer;
1271 if (rb)
1272 rb->Format = _mesa_get_srgb_format_linear(rb->Format);
1273 }
1274 }
1275
1276 GLboolean
1277 intelMakeCurrent(__DRIcontext * driContextPriv,
1278 __DRIdrawable * driDrawPriv,
1279 __DRIdrawable * driReadPriv)
1280 {
1281 struct brw_context *brw;
1282 GET_CURRENT_CONTEXT(curCtx);
1283
1284 if (driContextPriv)
1285 brw = (struct brw_context *) driContextPriv->driverPrivate;
1286 else
1287 brw = NULL;
1288
1289 /* According to the glXMakeCurrent() man page: "Pending commands to
1290 * the previous context, if any, are flushed before it is released."
1291 * But only flush if we're actually changing contexts.
1292 */
1293 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1294 _mesa_flush(curCtx);
1295 }
1296
1297 if (driContextPriv) {
1298 struct gl_context *ctx = &brw->ctx;
1299 struct gl_framebuffer *fb, *readFb;
1300
1301 if (driDrawPriv == NULL) {
1302 fb = _mesa_get_incomplete_framebuffer();
1303 } else {
1304 fb = driDrawPriv->driverPrivate;
1305 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1306 }
1307
1308 if (driReadPriv == NULL) {
1309 readFb = _mesa_get_incomplete_framebuffer();
1310 } else {
1311 readFb = driReadPriv->driverPrivate;
1312 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1313 }
1314
1315 /* The sRGB workaround changes the renderbuffer's format. We must change
1316 * the format before the renderbuffer's miptree get's allocated, otherwise
1317 * the formats of the renderbuffer and its miptree will differ.
1318 */
1319 intel_gles3_srgb_workaround(brw, fb);
1320 intel_gles3_srgb_workaround(brw, readFb);
1321
1322 /* If the context viewport hasn't been initialized, force a call out to
1323 * the loader to get buffers so we have a drawable size for the initial
1324 * viewport. */
1325 if (!brw->ctx.ViewportInitialized)
1326 intel_prepare_render(brw);
1327
1328 _mesa_make_current(ctx, fb, readFb);
1329 } else {
1330 _mesa_make_current(NULL, NULL, NULL);
1331 }
1332
1333 return true;
1334 }
1335
1336 void
1337 intel_resolve_for_dri2_flush(struct brw_context *brw,
1338 __DRIdrawable *drawable)
1339 {
1340 if (brw->gen < 6) {
1341 /* MSAA and fast color clear are not supported, so don't waste time
1342 * checking whether a resolve is needed.
1343 */
1344 return;
1345 }
1346
1347 struct gl_framebuffer *fb = drawable->driverPrivate;
1348 struct intel_renderbuffer *rb;
1349
1350 /* Usually, only the back buffer will need to be downsampled. However,
1351 * the front buffer will also need it if the user has rendered into it.
1352 */
1353 static const gl_buffer_index buffers[2] = {
1354 BUFFER_BACK_LEFT,
1355 BUFFER_FRONT_LEFT,
1356 };
1357
1358 for (int i = 0; i < 2; ++i) {
1359 rb = intel_get_renderbuffer(fb, buffers[i]);
1360 if (rb == NULL || rb->mt == NULL)
1361 continue;
1362 if (rb->mt->num_samples <= 1) {
1363 assert(rb->mt_layer == 0 && rb->mt_level == 0 &&
1364 rb->layer_count == 1);
1365 intel_miptree_resolve_color(brw, rb->mt, 0, 0, 1, 0);
1366 } else {
1367 intel_renderbuffer_downsample(brw, rb);
1368 }
1369 }
1370 }
1371
1372 static unsigned
1373 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1374 {
1375 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1376 }
1377
1378 static void
1379 intel_query_dri2_buffers(struct brw_context *brw,
1380 __DRIdrawable *drawable,
1381 __DRIbuffer **buffers,
1382 int *count);
1383
1384 static void
1385 intel_process_dri2_buffer(struct brw_context *brw,
1386 __DRIdrawable *drawable,
1387 __DRIbuffer *buffer,
1388 struct intel_renderbuffer *rb,
1389 const char *buffer_name);
1390
1391 static void
1392 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1393
1394 static void
1395 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1396 {
1397 struct gl_framebuffer *fb = drawable->driverPrivate;
1398 struct intel_renderbuffer *rb;
1399 __DRIbuffer *buffers = NULL;
1400 int i, count;
1401 const char *region_name;
1402
1403 /* Set this up front, so that in case our buffers get invalidated
1404 * while we're getting new buffers, we don't clobber the stamp and
1405 * thus ignore the invalidate. */
1406 drawable->lastStamp = drawable->dri2.stamp;
1407
1408 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1409 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1410
1411 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1412
1413 if (buffers == NULL)
1414 return;
1415
1416 for (i = 0; i < count; i++) {
1417 switch (buffers[i].attachment) {
1418 case __DRI_BUFFER_FRONT_LEFT:
1419 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1420 region_name = "dri2 front buffer";
1421 break;
1422
1423 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1424 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1425 region_name = "dri2 fake front buffer";
1426 break;
1427
1428 case __DRI_BUFFER_BACK_LEFT:
1429 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1430 region_name = "dri2 back buffer";
1431 break;
1432
1433 case __DRI_BUFFER_DEPTH:
1434 case __DRI_BUFFER_HIZ:
1435 case __DRI_BUFFER_DEPTH_STENCIL:
1436 case __DRI_BUFFER_STENCIL:
1437 case __DRI_BUFFER_ACCUM:
1438 default:
1439 fprintf(stderr,
1440 "unhandled buffer attach event, attachment type %d\n",
1441 buffers[i].attachment);
1442 return;
1443 }
1444
1445 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1446 }
1447
1448 }
1449
1450 void
1451 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1452 {
1453 struct brw_context *brw = context->driverPrivate;
1454 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1455
1456 /* Set this up front, so that in case our buffers get invalidated
1457 * while we're getting new buffers, we don't clobber the stamp and
1458 * thus ignore the invalidate. */
1459 drawable->lastStamp = drawable->dri2.stamp;
1460
1461 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1462 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1463
1464 if (dri_screen->image.loader)
1465 intel_update_image_buffers(brw, drawable);
1466 else
1467 intel_update_dri2_buffers(brw, drawable);
1468
1469 driUpdateFramebufferSize(&brw->ctx, drawable);
1470 }
1471
1472 /**
1473 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1474 * state is required.
1475 */
1476 void
1477 intel_prepare_render(struct brw_context *brw)
1478 {
1479 struct gl_context *ctx = &brw->ctx;
1480 __DRIcontext *driContext = brw->driContext;
1481 __DRIdrawable *drawable;
1482
1483 drawable = driContext->driDrawablePriv;
1484 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1485 if (drawable->lastStamp != drawable->dri2.stamp)
1486 intel_update_renderbuffers(driContext, drawable);
1487 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1488 }
1489
1490 drawable = driContext->driReadablePriv;
1491 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1492 if (drawable->lastStamp != drawable->dri2.stamp)
1493 intel_update_renderbuffers(driContext, drawable);
1494 driContext->dri2.read_stamp = drawable->dri2.stamp;
1495 }
1496
1497 /* If we're currently rendering to the front buffer, the rendering
1498 * that will happen next will probably dirty the front buffer. So
1499 * mark it as dirty here.
1500 */
1501 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer))
1502 brw->front_buffer_dirty = true;
1503 }
1504
1505 /**
1506 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1507 *
1508 * To determine which DRI buffers to request, examine the renderbuffers
1509 * attached to the drawable's framebuffer. Then request the buffers with
1510 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1511 *
1512 * This is called from intel_update_renderbuffers().
1513 *
1514 * \param drawable Drawable whose buffers are queried.
1515 * \param buffers [out] List of buffers returned by DRI2 query.
1516 * \param buffer_count [out] Number of buffers returned.
1517 *
1518 * \see intel_update_renderbuffers()
1519 * \see DRI2GetBuffers()
1520 * \see DRI2GetBuffersWithFormat()
1521 */
1522 static void
1523 intel_query_dri2_buffers(struct brw_context *brw,
1524 __DRIdrawable *drawable,
1525 __DRIbuffer **buffers,
1526 int *buffer_count)
1527 {
1528 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1529 struct gl_framebuffer *fb = drawable->driverPrivate;
1530 int i = 0;
1531 unsigned attachments[8];
1532
1533 struct intel_renderbuffer *front_rb;
1534 struct intel_renderbuffer *back_rb;
1535
1536 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1537 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1538
1539 memset(attachments, 0, sizeof(attachments));
1540 if ((_mesa_is_front_buffer_drawing(fb) ||
1541 _mesa_is_front_buffer_reading(fb) ||
1542 !back_rb) && front_rb) {
1543 /* If a fake front buffer is in use, then querying for
1544 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1545 * the real front buffer to the fake front buffer. So before doing the
1546 * query, we need to make sure all the pending drawing has landed in the
1547 * real front buffer.
1548 */
1549 intel_batchbuffer_flush(brw);
1550 intel_flush_front(&brw->ctx);
1551
1552 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1553 attachments[i++] = intel_bits_per_pixel(front_rb);
1554 } else if (front_rb && brw->front_buffer_dirty) {
1555 /* We have pending front buffer rendering, but we aren't querying for a
1556 * front buffer. If the front buffer we have is a fake front buffer,
1557 * the X server is going to throw it away when it processes the query.
1558 * So before doing the query, make sure all the pending drawing has
1559 * landed in the real front buffer.
1560 */
1561 intel_batchbuffer_flush(brw);
1562 intel_flush_front(&brw->ctx);
1563 }
1564
1565 if (back_rb) {
1566 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1567 attachments[i++] = intel_bits_per_pixel(back_rb);
1568 }
1569
1570 assert(i <= ARRAY_SIZE(attachments));
1571
1572 *buffers =
1573 dri_screen->dri2.loader->getBuffersWithFormat(drawable,
1574 &drawable->w,
1575 &drawable->h,
1576 attachments, i / 2,
1577 buffer_count,
1578 drawable->loaderPrivate);
1579 }
1580
1581 /**
1582 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1583 *
1584 * This is called from intel_update_renderbuffers().
1585 *
1586 * \par Note:
1587 * DRI buffers whose attachment point is DRI2BufferStencil or
1588 * DRI2BufferDepthStencil are handled as special cases.
1589 *
1590 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1591 * that is passed to drm_intel_bo_gem_create_from_name().
1592 *
1593 * \see intel_update_renderbuffers()
1594 */
1595 static void
1596 intel_process_dri2_buffer(struct brw_context *brw,
1597 __DRIdrawable *drawable,
1598 __DRIbuffer *buffer,
1599 struct intel_renderbuffer *rb,
1600 const char *buffer_name)
1601 {
1602 struct gl_framebuffer *fb = drawable->driverPrivate;
1603 drm_intel_bo *bo;
1604
1605 if (!rb)
1606 return;
1607
1608 unsigned num_samples = rb->Base.Base.NumSamples;
1609
1610 /* We try to avoid closing and reopening the same BO name, because the first
1611 * use of a mapping of the buffer involves a bunch of page faulting which is
1612 * moderately expensive.
1613 */
1614 struct intel_mipmap_tree *last_mt;
1615 if (num_samples == 0)
1616 last_mt = rb->mt;
1617 else
1618 last_mt = rb->singlesample_mt;
1619
1620 uint32_t old_name = 0;
1621 if (last_mt) {
1622 /* The bo already has a name because the miptree was created by a
1623 * previous call to intel_process_dri2_buffer(). If a bo already has a
1624 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1625 * create a new name.
1626 */
1627 drm_intel_bo_flink(last_mt->bo, &old_name);
1628 }
1629
1630 if (old_name == buffer->name)
1631 return;
1632
1633 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1634 fprintf(stderr,
1635 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1636 buffer->name, buffer->attachment,
1637 buffer->cpp, buffer->pitch);
1638 }
1639
1640 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1641 buffer->name);
1642 if (!bo) {
1643 fprintf(stderr,
1644 "Failed to open BO for returned DRI2 buffer "
1645 "(%dx%d, %s, named %d).\n"
1646 "This is likely a bug in the X Server that will lead to a "
1647 "crash soon.\n",
1648 drawable->w, drawable->h, buffer_name, buffer->name);
1649 return;
1650 }
1651
1652 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1653 drawable->w, drawable->h,
1654 buffer->pitch);
1655
1656 if (_mesa_is_front_buffer_drawing(fb) &&
1657 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1658 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1659 rb->Base.Base.NumSamples > 1) {
1660 intel_renderbuffer_upsample(brw, rb);
1661 }
1662
1663 assert(rb->mt);
1664
1665 drm_intel_bo_unreference(bo);
1666 }
1667
1668 /**
1669 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1670 *
1671 * To determine which DRI buffers to request, examine the renderbuffers
1672 * attached to the drawable's framebuffer. Then request the buffers from
1673 * the image loader
1674 *
1675 * This is called from intel_update_renderbuffers().
1676 *
1677 * \param drawable Drawable whose buffers are queried.
1678 * \param buffers [out] List of buffers returned by DRI2 query.
1679 * \param buffer_count [out] Number of buffers returned.
1680 *
1681 * \see intel_update_renderbuffers()
1682 */
1683
1684 static void
1685 intel_update_image_buffer(struct brw_context *intel,
1686 __DRIdrawable *drawable,
1687 struct intel_renderbuffer *rb,
1688 __DRIimage *buffer,
1689 enum __DRIimageBufferMask buffer_type)
1690 {
1691 struct gl_framebuffer *fb = drawable->driverPrivate;
1692
1693 if (!rb || !buffer->bo)
1694 return;
1695
1696 unsigned num_samples = rb->Base.Base.NumSamples;
1697
1698 /* Check and see if we're already bound to the right
1699 * buffer object
1700 */
1701 struct intel_mipmap_tree *last_mt;
1702 if (num_samples == 0)
1703 last_mt = rb->mt;
1704 else
1705 last_mt = rb->singlesample_mt;
1706
1707 if (last_mt && last_mt->bo == buffer->bo)
1708 return;
1709
1710 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1711 buffer->width, buffer->height,
1712 buffer->pitch);
1713
1714 if (_mesa_is_front_buffer_drawing(fb) &&
1715 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1716 rb->Base.Base.NumSamples > 1) {
1717 intel_renderbuffer_upsample(intel, rb);
1718 }
1719 }
1720
1721 static void
1722 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1723 {
1724 struct gl_framebuffer *fb = drawable->driverPrivate;
1725 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1726 struct intel_renderbuffer *front_rb;
1727 struct intel_renderbuffer *back_rb;
1728 struct __DRIimageList images;
1729 unsigned int format;
1730 uint32_t buffer_mask = 0;
1731 int ret;
1732
1733 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1734 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1735
1736 if (back_rb)
1737 format = intel_rb_format(back_rb);
1738 else if (front_rb)
1739 format = intel_rb_format(front_rb);
1740 else
1741 return;
1742
1743 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1744 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1745 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1746 }
1747
1748 if (back_rb)
1749 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1750
1751 ret = dri_screen->image.loader->getBuffers(drawable,
1752 driGLFormatToImageFormat(format),
1753 &drawable->dri2.stamp,
1754 drawable->loaderPrivate,
1755 buffer_mask,
1756 &images);
1757 if (!ret)
1758 return;
1759
1760 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1761 drawable->w = images.front->width;
1762 drawable->h = images.front->height;
1763 intel_update_image_buffer(brw,
1764 drawable,
1765 front_rb,
1766 images.front,
1767 __DRI_IMAGE_BUFFER_FRONT);
1768 }
1769 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1770 drawable->w = images.back->width;
1771 drawable->h = images.back->height;
1772 intel_update_image_buffer(brw,
1773 drawable,
1774 back_rb,
1775 images.back,
1776 __DRI_IMAGE_BUFFER_BACK);
1777 }
1778 }