i965/tex_image: Use meta for instead of the blitter PBO TexImage and GetTexImage
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44
45 #include "vbo/vbo_context.h"
46
47 #include "drivers/common/driverfuncs.h"
48 #include "drivers/common/meta.h"
49 #include "utils.h"
50
51 #include "brw_context.h"
52 #include "brw_defines.h"
53 #include "brw_draw.h"
54 #include "brw_state.h"
55
56 #include "intel_batchbuffer.h"
57 #include "intel_buffer_objects.h"
58 #include "intel_buffers.h"
59 #include "intel_fbo.h"
60 #include "intel_mipmap_tree.h"
61 #include "intel_pixel.h"
62 #include "intel_image.h"
63 #include "intel_tex.h"
64 #include "intel_tex_obj.h"
65
66 #include "swrast_setup/swrast_setup.h"
67 #include "tnl/tnl.h"
68 #include "tnl/t_pipeline.h"
69 #include "util/ralloc.h"
70
71 /***************************************
72 * Mesa's Driver Functions
73 ***************************************/
74
75 static size_t
76 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
77 GLenum internalFormat, int samples[16])
78 {
79 struct brw_context *brw = brw_context(ctx);
80
81 (void) target;
82
83 switch (brw->gen) {
84 case 9:
85 case 8:
86 samples[0] = 8;
87 samples[1] = 4;
88 samples[2] = 2;
89 return 3;
90
91 case 7:
92 samples[0] = 8;
93 samples[1] = 4;
94 return 2;
95
96 case 6:
97 samples[0] = 4;
98 return 1;
99
100 default:
101 assert(brw->gen < 6);
102 samples[0] = 1;
103 return 1;
104 }
105 }
106
107 const char *const brw_vendor_string = "Intel Open Source Technology Center";
108
109 const char *
110 brw_get_renderer_string(unsigned deviceID)
111 {
112 const char *chipset;
113 static char buffer[128];
114
115 switch (deviceID) {
116 #undef CHIPSET
117 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
118 #include "pci_ids/i965_pci_ids.h"
119 default:
120 chipset = "Unknown Intel Chipset";
121 break;
122 }
123
124 (void) driGetRendererString(buffer, chipset, 0);
125 return buffer;
126 }
127
128 static const GLubyte *
129 intel_get_string(struct gl_context * ctx, GLenum name)
130 {
131 const struct brw_context *const brw = brw_context(ctx);
132
133 switch (name) {
134 case GL_VENDOR:
135 return (GLubyte *) brw_vendor_string;
136
137 case GL_RENDERER:
138 return
139 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
140
141 default:
142 return NULL;
143 }
144 }
145
146 static void
147 intel_viewport(struct gl_context *ctx)
148 {
149 struct brw_context *brw = brw_context(ctx);
150 __DRIcontext *driContext = brw->driContext;
151
152 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
153 dri2InvalidateDrawable(driContext->driDrawablePriv);
154 dri2InvalidateDrawable(driContext->driReadablePriv);
155 }
156 }
157
158 static void
159 intel_update_state(struct gl_context * ctx, GLuint new_state)
160 {
161 struct brw_context *brw = brw_context(ctx);
162 struct intel_texture_object *tex_obj;
163 struct intel_renderbuffer *depth_irb;
164
165 if (ctx->swrast_context)
166 _swrast_InvalidateState(ctx, new_state);
167 _vbo_InvalidateState(ctx, new_state);
168
169 brw->NewGLState |= new_state;
170
171 _mesa_unlock_context_textures(ctx);
172
173 /* Resolve the depth buffer's HiZ buffer. */
174 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
175 if (depth_irb)
176 intel_renderbuffer_resolve_hiz(brw, depth_irb);
177
178 /* Resolve depth buffer and render cache of each enabled texture. */
179 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
180 for (int i = 0; i <= maxEnabledUnit; i++) {
181 if (!ctx->Texture.Unit[i]._Current)
182 continue;
183 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
184 if (!tex_obj || !tex_obj->mt)
185 continue;
186 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
187 intel_miptree_resolve_color(brw, tex_obj->mt);
188 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
189 }
190
191 _mesa_lock_context_textures(ctx);
192 }
193
194 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
195
196 static void
197 intel_flush_front(struct gl_context *ctx)
198 {
199 struct brw_context *brw = brw_context(ctx);
200 __DRIcontext *driContext = brw->driContext;
201 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
202 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
203
204 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
205 if (flushFront(screen) && driDrawable &&
206 driDrawable->loaderPrivate) {
207
208 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
209 *
210 * This potentially resolves both front and back buffer. It
211 * is unnecessary to resolve the back, but harms nothing except
212 * performance. And no one cares about front-buffer render
213 * performance.
214 */
215 intel_resolve_for_dri2_flush(brw, driDrawable);
216 intel_batchbuffer_flush(brw);
217
218 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
219
220 /* We set the dirty bit in intel_prepare_render() if we're
221 * front buffer rendering once we get there.
222 */
223 brw->front_buffer_dirty = false;
224 }
225 }
226 }
227
228 static void
229 intel_glFlush(struct gl_context *ctx)
230 {
231 struct brw_context *brw = brw_context(ctx);
232
233 intel_batchbuffer_flush(brw);
234 intel_flush_front(ctx);
235 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
236 brw->need_throttle = true;
237 }
238
239 static void
240 intel_finish(struct gl_context * ctx)
241 {
242 struct brw_context *brw = brw_context(ctx);
243
244 intel_glFlush(ctx);
245
246 if (brw->batch.last_bo)
247 drm_intel_bo_wait_rendering(brw->batch.last_bo);
248 }
249
250 static void
251 brw_init_driver_functions(struct brw_context *brw,
252 struct dd_function_table *functions)
253 {
254 _mesa_init_driver_functions(functions);
255
256 /* GLX uses DRI2 invalidate events to handle window resizing.
257 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
258 * which doesn't provide a mechanism for snooping the event queues.
259 *
260 * So EGL still relies on viewport hacks to handle window resizing.
261 * This should go away with DRI3000.
262 */
263 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
264 functions->Viewport = intel_viewport;
265
266 functions->Flush = intel_glFlush;
267 functions->Finish = intel_finish;
268 functions->GetString = intel_get_string;
269 functions->UpdateState = intel_update_state;
270
271 intelInitTextureFuncs(functions);
272 intelInitTextureImageFuncs(functions);
273 intelInitTextureSubImageFuncs(functions);
274 intelInitTextureCopyImageFuncs(functions);
275 intelInitCopyImageFuncs(functions);
276 intelInitClearFuncs(functions);
277 intelInitBufferFuncs(functions);
278 intelInitPixelFuncs(functions);
279 intelInitBufferObjectFuncs(functions);
280 intel_init_syncobj_functions(functions);
281 brw_init_object_purgeable_functions(functions);
282
283 brwInitFragProgFuncs( functions );
284 brw_init_common_queryobj_functions(functions);
285 if (brw->gen >= 6)
286 gen6_init_queryobj_functions(functions);
287 else
288 gen4_init_queryobj_functions(functions);
289
290 functions->QuerySamplesForFormat = brw_query_samples_for_format;
291
292 functions->NewTransformFeedback = brw_new_transform_feedback;
293 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
294 functions->GetTransformFeedbackVertexCount =
295 brw_get_transform_feedback_vertex_count;
296 if (brw->gen >= 7) {
297 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
298 functions->EndTransformFeedback = gen7_end_transform_feedback;
299 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
300 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
301 } else {
302 functions->BeginTransformFeedback = brw_begin_transform_feedback;
303 functions->EndTransformFeedback = brw_end_transform_feedback;
304 }
305
306 if (brw->gen >= 6)
307 functions->GetSamplePosition = gen6_get_sample_position;
308 }
309
310 static void
311 brw_initialize_context_constants(struct brw_context *brw)
312 {
313 struct gl_context *ctx = &brw->ctx;
314
315 unsigned max_samplers =
316 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
317
318 ctx->Const.QueryCounterBits.Timestamp = 36;
319
320 ctx->Const.StripTextureBorder = true;
321
322 ctx->Const.MaxDualSourceDrawBuffers = 1;
323 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
324 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits = max_samplers;
325 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
326 ctx->Const.MaxTextureUnits =
327 MIN2(ctx->Const.MaxTextureCoordUnits,
328 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
329 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits = max_samplers;
330 if (brw->gen >= 6)
331 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = max_samplers;
332 else
333 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = 0;
334 if (_mesa_extension_override_enables.ARB_compute_shader) {
335 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = BRW_MAX_TEX_UNIT;
336 ctx->Const.MaxUniformBufferBindings += 12;
337 } else {
338 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = 0;
339 }
340 ctx->Const.MaxCombinedTextureImageUnits =
341 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits +
342 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits +
343 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits +
344 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
345
346 ctx->Const.MaxTextureLevels = 14; /* 8192 */
347 if (ctx->Const.MaxTextureLevels > MAX_TEXTURE_LEVELS)
348 ctx->Const.MaxTextureLevels = MAX_TEXTURE_LEVELS;
349 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
350 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
351 ctx->Const.MaxTextureMbytes = 1536;
352
353 if (brw->gen >= 7)
354 ctx->Const.MaxArrayTextureLayers = 2048;
355 else
356 ctx->Const.MaxArrayTextureLayers = 512;
357
358 ctx->Const.MaxTextureRectSize = 1 << 12;
359
360 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
361
362 ctx->Const.MaxRenderbufferSize = 8192;
363
364 /* Hardware only supports a limited number of transform feedback buffers.
365 * So we need to override the Mesa default (which is based only on software
366 * limits).
367 */
368 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
369
370 /* On Gen6, in the worst case, we use up one binding table entry per
371 * transform feedback component (see comments above the definition of
372 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
373 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
374 * BRW_MAX_SOL_BINDINGS.
375 *
376 * In "separate components" mode, we need to divide this value by
377 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
378 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
379 */
380 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
381 ctx->Const.MaxTransformFeedbackSeparateComponents =
382 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
383
384 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
385
386 int max_samples;
387 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
388 const int clamp_max_samples =
389 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
390
391 if (clamp_max_samples < 0) {
392 max_samples = msaa_modes[0];
393 } else {
394 /* Select the largest supported MSAA mode that does not exceed
395 * clamp_max_samples.
396 */
397 max_samples = 0;
398 for (int i = 0; msaa_modes[i] != 0; ++i) {
399 if (msaa_modes[i] <= clamp_max_samples) {
400 max_samples = msaa_modes[i];
401 break;
402 }
403 }
404 }
405
406 ctx->Const.MaxSamples = max_samples;
407 ctx->Const.MaxColorTextureSamples = max_samples;
408 ctx->Const.MaxDepthTextureSamples = max_samples;
409 ctx->Const.MaxIntegerSamples = max_samples;
410
411 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
412 * to map indices of rectangular grid to sample numbers within a pixel.
413 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
414 * extension implementation. For more details see the comment above
415 * gen6_set_sample_maps() definition.
416 */
417 gen6_set_sample_maps(ctx);
418
419 if (brw->gen >= 7)
420 ctx->Const.MaxProgramTextureGatherComponents = 4;
421 else if (brw->gen == 6)
422 ctx->Const.MaxProgramTextureGatherComponents = 1;
423
424 ctx->Const.MinLineWidth = 1.0;
425 ctx->Const.MinLineWidthAA = 1.0;
426 if (brw->gen >= 9 || brw->is_cherryview) {
427 ctx->Const.MaxLineWidth = 40.0;
428 ctx->Const.MaxLineWidthAA = 40.0;
429 ctx->Const.LineWidthGranularity = 0.125;
430 } else if (brw->gen >= 6) {
431 ctx->Const.MaxLineWidth = 7.875;
432 ctx->Const.MaxLineWidthAA = 7.875;
433 ctx->Const.LineWidthGranularity = 0.125;
434 } else {
435 ctx->Const.MaxLineWidth = 7.0;
436 ctx->Const.MaxLineWidthAA = 7.0;
437 ctx->Const.LineWidthGranularity = 0.5;
438 }
439
440 ctx->Const.MinPointSize = 1.0;
441 ctx->Const.MinPointSizeAA = 1.0;
442 ctx->Const.MaxPointSize = 255.0;
443 ctx->Const.MaxPointSizeAA = 255.0;
444 ctx->Const.PointSizeGranularity = 1.0;
445
446 if (brw->gen >= 5 || brw->is_g4x)
447 ctx->Const.MaxClipPlanes = 8;
448
449 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
450 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
451 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
452 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
453 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
454 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
455 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
456 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
457 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
458 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
459 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
460 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
461 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
462 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
463
464 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
465 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
466 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
467 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
468 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
469 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
470 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
471 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
472 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
473 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
474 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
475
476 /* Fragment shaders use real, 32-bit twos-complement integers for all
477 * integer types.
478 */
479 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
480 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
481 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
482 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
483 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
484
485 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
486 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
487 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
488 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
489 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
490
491 if (brw->gen >= 7) {
492 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
493 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
494 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
495 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
496 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers = BRW_MAX_ABO;
497 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers = BRW_MAX_ABO;
498 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers = BRW_MAX_ABO;
499 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers = BRW_MAX_ABO;
500 ctx->Const.MaxCombinedAtomicBuffers = 3 * BRW_MAX_ABO;
501 }
502
503 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
504 * but we're not sure how it's actually done for vertex order,
505 * that affect provoking vertex decision. Always use last vertex
506 * convention for quad primitive which works as expected for now.
507 */
508 if (brw->gen >= 6)
509 ctx->Const.QuadsFollowProvokingVertexConvention = false;
510
511 ctx->Const.NativeIntegers = true;
512 ctx->Const.VertexID_is_zero_based = true;
513
514 /* Regarding the CMP instruction, the Ivybridge PRM says:
515 *
516 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
517 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
518 * 0xFFFFFFFF) is assigned to dst."
519 *
520 * but PRMs for earlier generations say
521 *
522 * "In dword format, one GRF may store up to 8 results. When the register
523 * is used later as a vector of Booleans, as only LSB at each channel
524 * contains meaning [sic] data, software should make sure all higher bits
525 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
526 *
527 * We select the representation of a true boolean uniform to be ~0, and fix
528 * the results of Gen <= 5 CMP instruction's with -(result & 1).
529 */
530 ctx->Const.UniformBooleanTrue = ~0;
531
532 /* From the gen4 PRM, volume 4 page 127:
533 *
534 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
535 * the base address of the first element of the surface, computed in
536 * software by adding the surface base address to the byte offset of
537 * the element in the buffer."
538 *
539 * However, unaligned accesses are slower, so enforce buffer alignment.
540 */
541 ctx->Const.UniformBufferOffsetAlignment = 16;
542 ctx->Const.TextureBufferOffsetAlignment = 16;
543
544 if (brw->gen >= 6) {
545 ctx->Const.MaxVarying = 32;
546 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
547 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
548 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
549 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
550 }
551
552 /* We want the GLSL compiler to emit code that uses condition codes */
553 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
554 ctx->Const.ShaderCompilerOptions[i].MaxIfDepth = brw->gen < 6 ? 16 : UINT_MAX;
555 ctx->Const.ShaderCompilerOptions[i].EmitCondCodes = true;
556 ctx->Const.ShaderCompilerOptions[i].EmitNoNoise = true;
557 ctx->Const.ShaderCompilerOptions[i].EmitNoMainReturn = true;
558 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectInput = true;
559 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectOutput =
560 (i == MESA_SHADER_FRAGMENT);
561 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectTemp =
562 (i == MESA_SHADER_FRAGMENT);
563 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectUniform = false;
564 ctx->Const.ShaderCompilerOptions[i].LowerClipDistance = true;
565 }
566
567 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS = true;
568 ctx->Const.ShaderCompilerOptions[MESA_SHADER_GEOMETRY].OptimizeForAOS = true;
569
570 if (brw->scalar_vs) {
571 /* If we're using the scalar backend for vertex shaders, we need to
572 * configure these accordingly.
573 */
574 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].EmitNoIndirectOutput = true;
575 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].EmitNoIndirectTemp = true;
576 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS = false;
577 }
578
579 /* ARB_viewport_array */
580 if (brw->gen >= 7 && ctx->API == API_OPENGL_CORE) {
581 ctx->Const.MaxViewports = GEN7_NUM_VIEWPORTS;
582 ctx->Const.ViewportSubpixelBits = 0;
583
584 /* Cast to float before negating becuase MaxViewportWidth is unsigned.
585 */
586 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
587 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
588 }
589
590 /* ARB_gpu_shader5 */
591 if (brw->gen >= 7)
592 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
593 }
594
595 /**
596 * Process driconf (drirc) options, setting appropriate context flags.
597 *
598 * intelInitExtensions still pokes at optionCache directly, in order to
599 * avoid advertising various extensions. No flags are set, so it makes
600 * sense to continue doing that there.
601 */
602 static void
603 brw_process_driconf_options(struct brw_context *brw)
604 {
605 struct gl_context *ctx = &brw->ctx;
606
607 driOptionCache *options = &brw->optionCache;
608 driParseConfigFiles(options, &brw->intelScreen->optionCache,
609 brw->driContext->driScreenPriv->myNum, "i965");
610
611 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
612 switch (bo_reuse_mode) {
613 case DRI_CONF_BO_REUSE_DISABLED:
614 break;
615 case DRI_CONF_BO_REUSE_ALL:
616 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
617 break;
618 }
619
620 if (!driQueryOptionb(options, "hiz")) {
621 brw->has_hiz = false;
622 /* On gen6, you can only do separate stencil with HIZ. */
623 if (brw->gen == 6)
624 brw->has_separate_stencil = false;
625 }
626
627 if (driQueryOptionb(options, "always_flush_batch")) {
628 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
629 brw->always_flush_batch = true;
630 }
631
632 if (driQueryOptionb(options, "always_flush_cache")) {
633 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
634 brw->always_flush_cache = true;
635 }
636
637 if (driQueryOptionb(options, "disable_throttling")) {
638 fprintf(stderr, "disabling flush throttling\n");
639 brw->disable_throttling = true;
640 }
641
642 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
643
644 ctx->Const.ForceGLSLExtensionsWarn =
645 driQueryOptionb(options, "force_glsl_extensions_warn");
646
647 ctx->Const.DisableGLSLLineContinuations =
648 driQueryOptionb(options, "disable_glsl_line_continuations");
649
650 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
651 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
652 }
653
654 GLboolean
655 brwCreateContext(gl_api api,
656 const struct gl_config *mesaVis,
657 __DRIcontext *driContextPriv,
658 unsigned major_version,
659 unsigned minor_version,
660 uint32_t flags,
661 bool notify_reset,
662 unsigned *dri_ctx_error,
663 void *sharedContextPrivate)
664 {
665 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
666 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
667 struct intel_screen *screen = sPriv->driverPrivate;
668 const struct brw_device_info *devinfo = screen->devinfo;
669 struct dd_function_table functions;
670
671 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
672 * provides us with context reset notifications.
673 */
674 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
675 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
676
677 if (screen->has_context_reset_notification)
678 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
679
680 if (flags & ~allowed_flags) {
681 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
682 return false;
683 }
684
685 struct brw_context *brw = rzalloc(NULL, struct brw_context);
686 if (!brw) {
687 fprintf(stderr, "%s: failed to alloc context\n", __FUNCTION__);
688 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
689 return false;
690 }
691
692 driContextPriv->driverPrivate = brw;
693 brw->driContext = driContextPriv;
694 brw->intelScreen = screen;
695 brw->bufmgr = screen->bufmgr;
696
697 brw->gen = devinfo->gen;
698 brw->gt = devinfo->gt;
699 brw->is_g4x = devinfo->is_g4x;
700 brw->is_baytrail = devinfo->is_baytrail;
701 brw->is_haswell = devinfo->is_haswell;
702 brw->is_cherryview = devinfo->is_cherryview;
703 brw->has_llc = devinfo->has_llc;
704 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
705 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
706 brw->has_pln = devinfo->has_pln;
707 brw->has_compr4 = devinfo->has_compr4;
708 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
709 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
710 brw->needs_unlit_centroid_workaround =
711 devinfo->needs_unlit_centroid_workaround;
712
713 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
714 brw->has_swizzling = screen->hw_has_swizzling;
715
716 brw->vs.base.stage = MESA_SHADER_VERTEX;
717 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
718 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
719 if (brw->gen >= 8) {
720 gen8_init_vtable_surface_functions(brw);
721 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
722 } else if (brw->gen >= 7) {
723 gen7_init_vtable_surface_functions(brw);
724 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
725 } else if (brw->gen >= 6) {
726 gen6_init_vtable_surface_functions(brw);
727 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
728 } else {
729 gen4_init_vtable_surface_functions(brw);
730 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
731 }
732
733 brw_init_driver_functions(brw, &functions);
734
735 if (notify_reset)
736 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
737
738 struct gl_context *ctx = &brw->ctx;
739
740 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
741 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
742 fprintf(stderr, "%s: failed to init mesa context\n", __FUNCTION__);
743 intelDestroyContext(driContextPriv);
744 return false;
745 }
746
747 driContextSetFlags(ctx, flags);
748
749 /* Initialize the software rasterizer and helper modules.
750 *
751 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
752 * software fallbacks (which we have to support on legacy GL to do weird
753 * glDrawPixels(), glBitmap(), and other functions).
754 */
755 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
756 _swrast_CreateContext(ctx);
757 }
758
759 _vbo_CreateContext(ctx);
760 if (ctx->swrast_context) {
761 _tnl_CreateContext(ctx);
762 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
763 _swsetup_CreateContext(ctx);
764
765 /* Configure swrast to match hardware characteristics: */
766 _swrast_allow_pixel_fog(ctx, false);
767 _swrast_allow_vertex_fog(ctx, true);
768 }
769
770 _mesa_meta_init(ctx);
771
772 brw_process_driconf_options(brw);
773 brw_process_intel_debug_variable(brw);
774
775 if (brw->gen >= 8 && !(INTEL_DEBUG & DEBUG_VEC4VS))
776 brw->scalar_vs = true;
777
778 brw_initialize_context_constants(brw);
779
780 ctx->Const.ResetStrategy = notify_reset
781 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
782
783 /* Reinitialize the context point state. It depends on ctx->Const values. */
784 _mesa_init_point(ctx);
785
786 intel_fbo_init(brw);
787
788 intel_batchbuffer_init(brw);
789
790 if (brw->gen >= 6) {
791 /* Create a new hardware context. Using a hardware context means that
792 * our GPU state will be saved/restored on context switch, allowing us
793 * to assume that the GPU is in the same state we left it in.
794 *
795 * This is required for transform feedback buffer offsets, query objects,
796 * and also allows us to reduce how much state we have to emit.
797 */
798 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
799
800 if (!brw->hw_ctx) {
801 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
802 intelDestroyContext(driContextPriv);
803 return false;
804 }
805 }
806
807 brw_init_state(brw);
808
809 intelInitExtensions(ctx);
810
811 brw_init_surface_formats(brw);
812
813 brw->max_vs_threads = devinfo->max_vs_threads;
814 brw->max_gs_threads = devinfo->max_gs_threads;
815 brw->max_wm_threads = devinfo->max_wm_threads;
816 brw->urb.size = devinfo->urb.size;
817 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
818 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
819 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
820
821 /* Estimate the size of the mappable aperture into the GTT. There's an
822 * ioctl to get the whole GTT size, but not one to get the mappable subset.
823 * It turns out it's basically always 256MB, though some ancient hardware
824 * was smaller.
825 */
826 uint32_t gtt_size = 256 * 1024 * 1024;
827
828 /* We don't want to map two objects such that a memcpy between them would
829 * just fault one mapping in and then the other over and over forever. So
830 * we would need to divide the GTT size by 2. Additionally, some GTT is
831 * taken up by things like the framebuffer and the ringbuffer and such, so
832 * be more conservative.
833 */
834 brw->max_gtt_map_object_size = gtt_size / 4;
835
836 if (brw->gen == 6)
837 brw->urb.gs_present = false;
838
839 brw->prim_restart.in_progress = false;
840 brw->prim_restart.enable_cut_index = false;
841 brw->gs.enabled = false;
842 brw->sf.viewport_transform_enable = true;
843
844 ctx->VertexProgram._MaintainTnlProgram = true;
845 ctx->FragmentProgram._MaintainTexEnvProgram = true;
846
847 brw_draw_init( brw );
848
849 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
850 /* Turn on some extra GL_ARB_debug_output generation. */
851 brw->perf_debug = true;
852 }
853
854 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
855 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
856
857 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
858 brw_init_shader_time(brw);
859
860 _mesa_compute_version(ctx);
861
862 _mesa_initialize_dispatch_tables(ctx);
863 _mesa_initialize_vbo_vtxfmt(ctx);
864
865 if (ctx->Extensions.AMD_performance_monitor) {
866 brw_init_performance_monitors(brw);
867 }
868
869 vbo_use_buffer_objects(ctx);
870 vbo_always_unmap_buffers(ctx);
871
872 return true;
873 }
874
875 void
876 intelDestroyContext(__DRIcontext * driContextPriv)
877 {
878 struct brw_context *brw =
879 (struct brw_context *) driContextPriv->driverPrivate;
880 struct gl_context *ctx = &brw->ctx;
881
882 assert(brw); /* should never be null */
883 if (!brw)
884 return;
885
886 /* Dump a final BMP in case the application doesn't call SwapBuffers */
887 if (INTEL_DEBUG & DEBUG_AUB) {
888 intel_batchbuffer_flush(brw);
889 aub_dump_bmp(&brw->ctx);
890 }
891
892 _mesa_meta_free(&brw->ctx);
893 brw_meta_fast_clear_free(brw);
894
895 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
896 /* Force a report. */
897 brw->shader_time.report_time = 0;
898
899 brw_collect_and_report_shader_time(brw);
900 brw_destroy_shader_time(brw);
901 }
902
903 brw_destroy_state(brw);
904 brw_draw_destroy(brw);
905
906 drm_intel_bo_unreference(brw->curbe.curbe_bo);
907
908 drm_intel_gem_context_destroy(brw->hw_ctx);
909
910 if (ctx->swrast_context) {
911 _swsetup_DestroyContext(&brw->ctx);
912 _tnl_DestroyContext(&brw->ctx);
913 }
914 _vbo_DestroyContext(&brw->ctx);
915
916 if (ctx->swrast_context)
917 _swrast_DestroyContext(&brw->ctx);
918
919 intel_batchbuffer_free(brw);
920
921 drm_intel_bo_unreference(brw->first_post_swapbuffers_batch);
922 brw->first_post_swapbuffers_batch = NULL;
923
924 driDestroyOptionCache(&brw->optionCache);
925
926 /* free the Mesa context */
927 _mesa_free_context_data(&brw->ctx);
928
929 ralloc_free(brw);
930 driContextPriv->driverPrivate = NULL;
931 }
932
933 GLboolean
934 intelUnbindContext(__DRIcontext * driContextPriv)
935 {
936 /* Unset current context and dispath table */
937 _mesa_make_current(NULL, NULL, NULL);
938
939 return true;
940 }
941
942 /**
943 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
944 * on window system framebuffers.
945 *
946 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
947 * your renderbuffer can do sRGB encode, and you can flip a switch that does
948 * sRGB encode if the renderbuffer can handle it. You can ask specifically
949 * for a visual where you're guaranteed to be capable, but it turns out that
950 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
951 * incapable ones, becuase there's no difference between the two in resources
952 * used. Applications thus get built that accidentally rely on the default
953 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
954 * great...
955 *
956 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
957 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
958 * So they removed the enable knob and made it "if the renderbuffer is sRGB
959 * capable, do sRGB encode". Then, for your window system renderbuffers, you
960 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
961 * and get no sRGB encode (assuming that both kinds of visual are available).
962 * Thus our choice to support sRGB by default on our visuals for desktop would
963 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
964 *
965 * Unfortunately, renderbuffer setup happens before a context is created. So
966 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
967 * context (without an sRGB visual, though we don't have sRGB visuals exposed
968 * yet), we go turn that back off before anyone finds out.
969 */
970 static void
971 intel_gles3_srgb_workaround(struct brw_context *brw,
972 struct gl_framebuffer *fb)
973 {
974 struct gl_context *ctx = &brw->ctx;
975
976 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
977 return;
978
979 /* Some day when we support the sRGB capable bit on visuals available for
980 * GLES, we'll need to respect that and not disable things here.
981 */
982 fb->Visual.sRGBCapable = false;
983 for (int i = 0; i < BUFFER_COUNT; i++) {
984 if (fb->Attachment[i].Renderbuffer &&
985 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
986 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
987 }
988 }
989 }
990
991 GLboolean
992 intelMakeCurrent(__DRIcontext * driContextPriv,
993 __DRIdrawable * driDrawPriv,
994 __DRIdrawable * driReadPriv)
995 {
996 struct brw_context *brw;
997 GET_CURRENT_CONTEXT(curCtx);
998
999 if (driContextPriv)
1000 brw = (struct brw_context *) driContextPriv->driverPrivate;
1001 else
1002 brw = NULL;
1003
1004 /* According to the glXMakeCurrent() man page: "Pending commands to
1005 * the previous context, if any, are flushed before it is released."
1006 * But only flush if we're actually changing contexts.
1007 */
1008 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1009 _mesa_flush(curCtx);
1010 }
1011
1012 if (driContextPriv) {
1013 struct gl_context *ctx = &brw->ctx;
1014 struct gl_framebuffer *fb, *readFb;
1015
1016 if (driDrawPriv == NULL) {
1017 fb = _mesa_get_incomplete_framebuffer();
1018 } else {
1019 fb = driDrawPriv->driverPrivate;
1020 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1021 }
1022
1023 if (driReadPriv == NULL) {
1024 readFb = _mesa_get_incomplete_framebuffer();
1025 } else {
1026 readFb = driReadPriv->driverPrivate;
1027 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1028 }
1029
1030 /* The sRGB workaround changes the renderbuffer's format. We must change
1031 * the format before the renderbuffer's miptree get's allocated, otherwise
1032 * the formats of the renderbuffer and its miptree will differ.
1033 */
1034 intel_gles3_srgb_workaround(brw, fb);
1035 intel_gles3_srgb_workaround(brw, readFb);
1036
1037 /* If the context viewport hasn't been initialized, force a call out to
1038 * the loader to get buffers so we have a drawable size for the initial
1039 * viewport. */
1040 if (!brw->ctx.ViewportInitialized)
1041 intel_prepare_render(brw);
1042
1043 _mesa_make_current(ctx, fb, readFb);
1044 } else {
1045 _mesa_make_current(NULL, NULL, NULL);
1046 }
1047
1048 return true;
1049 }
1050
1051 void
1052 intel_resolve_for_dri2_flush(struct brw_context *brw,
1053 __DRIdrawable *drawable)
1054 {
1055 if (brw->gen < 6) {
1056 /* MSAA and fast color clear are not supported, so don't waste time
1057 * checking whether a resolve is needed.
1058 */
1059 return;
1060 }
1061
1062 struct gl_framebuffer *fb = drawable->driverPrivate;
1063 struct intel_renderbuffer *rb;
1064
1065 /* Usually, only the back buffer will need to be downsampled. However,
1066 * the front buffer will also need it if the user has rendered into it.
1067 */
1068 static const gl_buffer_index buffers[2] = {
1069 BUFFER_BACK_LEFT,
1070 BUFFER_FRONT_LEFT,
1071 };
1072
1073 for (int i = 0; i < 2; ++i) {
1074 rb = intel_get_renderbuffer(fb, buffers[i]);
1075 if (rb == NULL || rb->mt == NULL)
1076 continue;
1077 if (rb->mt->num_samples <= 1)
1078 intel_miptree_resolve_color(brw, rb->mt);
1079 else
1080 intel_renderbuffer_downsample(brw, rb);
1081 }
1082 }
1083
1084 static unsigned
1085 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1086 {
1087 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1088 }
1089
1090 static void
1091 intel_query_dri2_buffers(struct brw_context *brw,
1092 __DRIdrawable *drawable,
1093 __DRIbuffer **buffers,
1094 int *count);
1095
1096 static void
1097 intel_process_dri2_buffer(struct brw_context *brw,
1098 __DRIdrawable *drawable,
1099 __DRIbuffer *buffer,
1100 struct intel_renderbuffer *rb,
1101 const char *buffer_name);
1102
1103 static void
1104 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1105
1106 static void
1107 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1108 {
1109 struct gl_framebuffer *fb = drawable->driverPrivate;
1110 struct intel_renderbuffer *rb;
1111 __DRIbuffer *buffers = NULL;
1112 int i, count;
1113 const char *region_name;
1114
1115 /* Set this up front, so that in case our buffers get invalidated
1116 * while we're getting new buffers, we don't clobber the stamp and
1117 * thus ignore the invalidate. */
1118 drawable->lastStamp = drawable->dri2.stamp;
1119
1120 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1121 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1122
1123 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1124
1125 if (buffers == NULL)
1126 return;
1127
1128 for (i = 0; i < count; i++) {
1129 switch (buffers[i].attachment) {
1130 case __DRI_BUFFER_FRONT_LEFT:
1131 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1132 region_name = "dri2 front buffer";
1133 break;
1134
1135 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1136 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1137 region_name = "dri2 fake front buffer";
1138 break;
1139
1140 case __DRI_BUFFER_BACK_LEFT:
1141 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1142 region_name = "dri2 back buffer";
1143 break;
1144
1145 case __DRI_BUFFER_DEPTH:
1146 case __DRI_BUFFER_HIZ:
1147 case __DRI_BUFFER_DEPTH_STENCIL:
1148 case __DRI_BUFFER_STENCIL:
1149 case __DRI_BUFFER_ACCUM:
1150 default:
1151 fprintf(stderr,
1152 "unhandled buffer attach event, attachment type %d\n",
1153 buffers[i].attachment);
1154 return;
1155 }
1156
1157 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1158 }
1159
1160 }
1161
1162 void
1163 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1164 {
1165 struct brw_context *brw = context->driverPrivate;
1166 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1167
1168 /* Set this up front, so that in case our buffers get invalidated
1169 * while we're getting new buffers, we don't clobber the stamp and
1170 * thus ignore the invalidate. */
1171 drawable->lastStamp = drawable->dri2.stamp;
1172
1173 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1174 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1175
1176 if (screen->image.loader)
1177 intel_update_image_buffers(brw, drawable);
1178 else
1179 intel_update_dri2_buffers(brw, drawable);
1180
1181 driUpdateFramebufferSize(&brw->ctx, drawable);
1182 }
1183
1184 /**
1185 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1186 * state is required.
1187 */
1188 void
1189 intel_prepare_render(struct brw_context *brw)
1190 {
1191 struct gl_context *ctx = &brw->ctx;
1192 __DRIcontext *driContext = brw->driContext;
1193 __DRIdrawable *drawable;
1194
1195 drawable = driContext->driDrawablePriv;
1196 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1197 if (drawable->lastStamp != drawable->dri2.stamp)
1198 intel_update_renderbuffers(driContext, drawable);
1199 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1200 }
1201
1202 drawable = driContext->driReadablePriv;
1203 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1204 if (drawable->lastStamp != drawable->dri2.stamp)
1205 intel_update_renderbuffers(driContext, drawable);
1206 driContext->dri2.read_stamp = drawable->dri2.stamp;
1207 }
1208
1209 /* If we're currently rendering to the front buffer, the rendering
1210 * that will happen next will probably dirty the front buffer. So
1211 * mark it as dirty here.
1212 */
1213 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
1214 brw->front_buffer_dirty = true;
1215
1216 /* Wait for the swapbuffers before the one we just emitted, so we
1217 * don't get too many swaps outstanding for apps that are GPU-heavy
1218 * but not CPU-heavy.
1219 *
1220 * We're using intelDRI2Flush (called from the loader before
1221 * swapbuffer) and glFlush (for front buffer rendering) as the
1222 * indicator that a frame is done and then throttle when we get
1223 * here as we prepare to render the next frame. At this point for
1224 * round trips for swap/copy and getting new buffers are done and
1225 * we'll spend less time waiting on the GPU.
1226 *
1227 * Unfortunately, we don't have a handle to the batch containing
1228 * the swap, and getting our hands on that doesn't seem worth it,
1229 * so we just us the first batch we emitted after the last swap.
1230 */
1231 if (brw->need_throttle && brw->first_post_swapbuffers_batch) {
1232 if (!brw->disable_throttling)
1233 drm_intel_bo_wait_rendering(brw->first_post_swapbuffers_batch);
1234 drm_intel_bo_unreference(brw->first_post_swapbuffers_batch);
1235 brw->first_post_swapbuffers_batch = NULL;
1236 brw->need_throttle = false;
1237 }
1238 }
1239
1240 /**
1241 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1242 *
1243 * To determine which DRI buffers to request, examine the renderbuffers
1244 * attached to the drawable's framebuffer. Then request the buffers with
1245 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1246 *
1247 * This is called from intel_update_renderbuffers().
1248 *
1249 * \param drawable Drawable whose buffers are queried.
1250 * \param buffers [out] List of buffers returned by DRI2 query.
1251 * \param buffer_count [out] Number of buffers returned.
1252 *
1253 * \see intel_update_renderbuffers()
1254 * \see DRI2GetBuffers()
1255 * \see DRI2GetBuffersWithFormat()
1256 */
1257 static void
1258 intel_query_dri2_buffers(struct brw_context *brw,
1259 __DRIdrawable *drawable,
1260 __DRIbuffer **buffers,
1261 int *buffer_count)
1262 {
1263 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1264 struct gl_framebuffer *fb = drawable->driverPrivate;
1265 int i = 0;
1266 unsigned attachments[8];
1267
1268 struct intel_renderbuffer *front_rb;
1269 struct intel_renderbuffer *back_rb;
1270
1271 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1272 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1273
1274 memset(attachments, 0, sizeof(attachments));
1275 if ((brw_is_front_buffer_drawing(fb) ||
1276 brw_is_front_buffer_reading(fb) ||
1277 !back_rb) && front_rb) {
1278 /* If a fake front buffer is in use, then querying for
1279 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1280 * the real front buffer to the fake front buffer. So before doing the
1281 * query, we need to make sure all the pending drawing has landed in the
1282 * real front buffer.
1283 */
1284 intel_batchbuffer_flush(brw);
1285 intel_flush_front(&brw->ctx);
1286
1287 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1288 attachments[i++] = intel_bits_per_pixel(front_rb);
1289 } else if (front_rb && brw->front_buffer_dirty) {
1290 /* We have pending front buffer rendering, but we aren't querying for a
1291 * front buffer. If the front buffer we have is a fake front buffer,
1292 * the X server is going to throw it away when it processes the query.
1293 * So before doing the query, make sure all the pending drawing has
1294 * landed in the real front buffer.
1295 */
1296 intel_batchbuffer_flush(brw);
1297 intel_flush_front(&brw->ctx);
1298 }
1299
1300 if (back_rb) {
1301 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1302 attachments[i++] = intel_bits_per_pixel(back_rb);
1303 }
1304
1305 assert(i <= ARRAY_SIZE(attachments));
1306
1307 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1308 &drawable->w,
1309 &drawable->h,
1310 attachments, i / 2,
1311 buffer_count,
1312 drawable->loaderPrivate);
1313 }
1314
1315 /**
1316 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1317 *
1318 * This is called from intel_update_renderbuffers().
1319 *
1320 * \par Note:
1321 * DRI buffers whose attachment point is DRI2BufferStencil or
1322 * DRI2BufferDepthStencil are handled as special cases.
1323 *
1324 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1325 * that is passed to drm_intel_bo_gem_create_from_name().
1326 *
1327 * \see intel_update_renderbuffers()
1328 */
1329 static void
1330 intel_process_dri2_buffer(struct brw_context *brw,
1331 __DRIdrawable *drawable,
1332 __DRIbuffer *buffer,
1333 struct intel_renderbuffer *rb,
1334 const char *buffer_name)
1335 {
1336 struct gl_framebuffer *fb = drawable->driverPrivate;
1337 drm_intel_bo *bo;
1338
1339 if (!rb)
1340 return;
1341
1342 unsigned num_samples = rb->Base.Base.NumSamples;
1343
1344 /* We try to avoid closing and reopening the same BO name, because the first
1345 * use of a mapping of the buffer involves a bunch of page faulting which is
1346 * moderately expensive.
1347 */
1348 struct intel_mipmap_tree *last_mt;
1349 if (num_samples == 0)
1350 last_mt = rb->mt;
1351 else
1352 last_mt = rb->singlesample_mt;
1353
1354 uint32_t old_name = 0;
1355 if (last_mt) {
1356 /* The bo already has a name because the miptree was created by a
1357 * previous call to intel_process_dri2_buffer(). If a bo already has a
1358 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1359 * create a new name.
1360 */
1361 drm_intel_bo_flink(last_mt->bo, &old_name);
1362 }
1363
1364 if (old_name == buffer->name)
1365 return;
1366
1367 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1368 fprintf(stderr,
1369 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1370 buffer->name, buffer->attachment,
1371 buffer->cpp, buffer->pitch);
1372 }
1373
1374 intel_miptree_release(&rb->mt);
1375 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1376 buffer->name);
1377 if (!bo) {
1378 fprintf(stderr,
1379 "Failed to open BO for returned DRI2 buffer "
1380 "(%dx%d, %s, named %d).\n"
1381 "This is likely a bug in the X Server that will lead to a "
1382 "crash soon.\n",
1383 drawable->w, drawable->h, buffer_name, buffer->name);
1384 return;
1385 }
1386
1387 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1388 drawable->w, drawable->h,
1389 buffer->pitch);
1390
1391 if (brw_is_front_buffer_drawing(fb) &&
1392 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1393 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1394 rb->Base.Base.NumSamples > 1) {
1395 intel_renderbuffer_upsample(brw, rb);
1396 }
1397
1398 assert(rb->mt);
1399
1400 drm_intel_bo_unreference(bo);
1401 }
1402
1403 /**
1404 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1405 *
1406 * To determine which DRI buffers to request, examine the renderbuffers
1407 * attached to the drawable's framebuffer. Then request the buffers from
1408 * the image loader
1409 *
1410 * This is called from intel_update_renderbuffers().
1411 *
1412 * \param drawable Drawable whose buffers are queried.
1413 * \param buffers [out] List of buffers returned by DRI2 query.
1414 * \param buffer_count [out] Number of buffers returned.
1415 *
1416 * \see intel_update_renderbuffers()
1417 */
1418
1419 static void
1420 intel_update_image_buffer(struct brw_context *intel,
1421 __DRIdrawable *drawable,
1422 struct intel_renderbuffer *rb,
1423 __DRIimage *buffer,
1424 enum __DRIimageBufferMask buffer_type)
1425 {
1426 struct gl_framebuffer *fb = drawable->driverPrivate;
1427
1428 if (!rb || !buffer->bo)
1429 return;
1430
1431 unsigned num_samples = rb->Base.Base.NumSamples;
1432
1433 /* Check and see if we're already bound to the right
1434 * buffer object
1435 */
1436 struct intel_mipmap_tree *last_mt;
1437 if (num_samples == 0)
1438 last_mt = rb->mt;
1439 else
1440 last_mt = rb->singlesample_mt;
1441
1442 if (last_mt && last_mt->bo == buffer->bo)
1443 return;
1444
1445 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1446 buffer->width, buffer->height,
1447 buffer->pitch);
1448
1449 if (brw_is_front_buffer_drawing(fb) &&
1450 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1451 rb->Base.Base.NumSamples > 1) {
1452 intel_renderbuffer_upsample(intel, rb);
1453 }
1454 }
1455
1456 static void
1457 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1458 {
1459 struct gl_framebuffer *fb = drawable->driverPrivate;
1460 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1461 struct intel_renderbuffer *front_rb;
1462 struct intel_renderbuffer *back_rb;
1463 struct __DRIimageList images;
1464 unsigned int format;
1465 uint32_t buffer_mask = 0;
1466
1467 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1468 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1469
1470 if (back_rb)
1471 format = intel_rb_format(back_rb);
1472 else if (front_rb)
1473 format = intel_rb_format(front_rb);
1474 else
1475 return;
1476
1477 if (front_rb && (brw_is_front_buffer_drawing(fb) ||
1478 brw_is_front_buffer_reading(fb) || !back_rb)) {
1479 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1480 }
1481
1482 if (back_rb)
1483 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1484
1485 (*screen->image.loader->getBuffers) (drawable,
1486 driGLFormatToImageFormat(format),
1487 &drawable->dri2.stamp,
1488 drawable->loaderPrivate,
1489 buffer_mask,
1490 &images);
1491
1492 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1493 drawable->w = images.front->width;
1494 drawable->h = images.front->height;
1495 intel_update_image_buffer(brw,
1496 drawable,
1497 front_rb,
1498 images.front,
1499 __DRI_IMAGE_BUFFER_FRONT);
1500 }
1501 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1502 drawable->w = images.back->width;
1503 drawable->h = images.back->height;
1504 intel_update_image_buffer(brw,
1505 drawable,
1506 back_rb,
1507 images.back,
1508 __DRI_IMAGE_BUFFER_BACK);
1509 }
1510 }