i965: Enable resource streamer for the batchbuffer
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44
45 #include "vbo/vbo_context.h"
46
47 #include "drivers/common/driverfuncs.h"
48 #include "drivers/common/meta.h"
49 #include "utils.h"
50
51 #include "brw_context.h"
52 #include "brw_defines.h"
53 #include "brw_shader.h"
54 #include "brw_draw.h"
55 #include "brw_state.h"
56
57 #include "intel_batchbuffer.h"
58 #include "intel_buffer_objects.h"
59 #include "intel_buffers.h"
60 #include "intel_fbo.h"
61 #include "intel_mipmap_tree.h"
62 #include "intel_pixel.h"
63 #include "intel_image.h"
64 #include "intel_tex.h"
65 #include "intel_tex_obj.h"
66
67 #include "swrast_setup/swrast_setup.h"
68 #include "tnl/tnl.h"
69 #include "tnl/t_pipeline.h"
70 #include "util/ralloc.h"
71
72 /***************************************
73 * Mesa's Driver Functions
74 ***************************************/
75
76 static size_t
77 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
78 GLenum internalFormat, int samples[16])
79 {
80 struct brw_context *brw = brw_context(ctx);
81
82 (void) target;
83
84 switch (brw->gen) {
85 case 9:
86 case 8:
87 samples[0] = 8;
88 samples[1] = 4;
89 samples[2] = 2;
90 return 3;
91
92 case 7:
93 samples[0] = 8;
94 samples[1] = 4;
95 return 2;
96
97 case 6:
98 samples[0] = 4;
99 return 1;
100
101 default:
102 assert(brw->gen < 6);
103 samples[0] = 1;
104 return 1;
105 }
106 }
107
108 const char *const brw_vendor_string = "Intel Open Source Technology Center";
109
110 const char *
111 brw_get_renderer_string(unsigned deviceID)
112 {
113 const char *chipset;
114 static char buffer[128];
115
116 switch (deviceID) {
117 #undef CHIPSET
118 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
119 #include "pci_ids/i965_pci_ids.h"
120 default:
121 chipset = "Unknown Intel Chipset";
122 break;
123 }
124
125 (void) driGetRendererString(buffer, chipset, 0);
126 return buffer;
127 }
128
129 static const GLubyte *
130 intel_get_string(struct gl_context * ctx, GLenum name)
131 {
132 const struct brw_context *const brw = brw_context(ctx);
133
134 switch (name) {
135 case GL_VENDOR:
136 return (GLubyte *) brw_vendor_string;
137
138 case GL_RENDERER:
139 return
140 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
141
142 default:
143 return NULL;
144 }
145 }
146
147 static void
148 intel_viewport(struct gl_context *ctx)
149 {
150 struct brw_context *brw = brw_context(ctx);
151 __DRIcontext *driContext = brw->driContext;
152
153 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
154 dri2InvalidateDrawable(driContext->driDrawablePriv);
155 dri2InvalidateDrawable(driContext->driReadablePriv);
156 }
157 }
158
159 static void
160 intel_update_state(struct gl_context * ctx, GLuint new_state)
161 {
162 struct brw_context *brw = brw_context(ctx);
163 struct intel_texture_object *tex_obj;
164 struct intel_renderbuffer *depth_irb;
165
166 if (ctx->swrast_context)
167 _swrast_InvalidateState(ctx, new_state);
168 _vbo_InvalidateState(ctx, new_state);
169
170 brw->NewGLState |= new_state;
171
172 _mesa_unlock_context_textures(ctx);
173
174 /* Resolve the depth buffer's HiZ buffer. */
175 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
176 if (depth_irb)
177 intel_renderbuffer_resolve_hiz(brw, depth_irb);
178
179 /* Resolve depth buffer and render cache of each enabled texture. */
180 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
181 for (int i = 0; i <= maxEnabledUnit; i++) {
182 if (!ctx->Texture.Unit[i]._Current)
183 continue;
184 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
185 if (!tex_obj || !tex_obj->mt)
186 continue;
187 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
188 intel_miptree_resolve_color(brw, tex_obj->mt);
189 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
190 }
191
192 _mesa_lock_context_textures(ctx);
193 }
194
195 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
196
197 static void
198 intel_flush_front(struct gl_context *ctx)
199 {
200 struct brw_context *brw = brw_context(ctx);
201 __DRIcontext *driContext = brw->driContext;
202 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
203 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
204
205 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
206 if (flushFront(screen) && driDrawable &&
207 driDrawable->loaderPrivate) {
208
209 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
210 *
211 * This potentially resolves both front and back buffer. It
212 * is unnecessary to resolve the back, but harms nothing except
213 * performance. And no one cares about front-buffer render
214 * performance.
215 */
216 intel_resolve_for_dri2_flush(brw, driDrawable);
217 intel_batchbuffer_flush(brw);
218
219 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
220
221 /* We set the dirty bit in intel_prepare_render() if we're
222 * front buffer rendering once we get there.
223 */
224 brw->front_buffer_dirty = false;
225 }
226 }
227 }
228
229 static void
230 intel_glFlush(struct gl_context *ctx)
231 {
232 struct brw_context *brw = brw_context(ctx);
233
234 intel_batchbuffer_flush(brw);
235 intel_flush_front(ctx);
236
237 brw->need_flush_throttle = true;
238 }
239
240 static void
241 intel_finish(struct gl_context * ctx)
242 {
243 struct brw_context *brw = brw_context(ctx);
244
245 intel_glFlush(ctx);
246
247 if (brw->batch.last_bo)
248 drm_intel_bo_wait_rendering(brw->batch.last_bo);
249 }
250
251 static void
252 brw_init_driver_functions(struct brw_context *brw,
253 struct dd_function_table *functions)
254 {
255 _mesa_init_driver_functions(functions);
256
257 /* GLX uses DRI2 invalidate events to handle window resizing.
258 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
259 * which doesn't provide a mechanism for snooping the event queues.
260 *
261 * So EGL still relies on viewport hacks to handle window resizing.
262 * This should go away with DRI3000.
263 */
264 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
265 functions->Viewport = intel_viewport;
266
267 functions->Flush = intel_glFlush;
268 functions->Finish = intel_finish;
269 functions->GetString = intel_get_string;
270 functions->UpdateState = intel_update_state;
271
272 intelInitTextureFuncs(functions);
273 intelInitTextureImageFuncs(functions);
274 intelInitTextureSubImageFuncs(functions);
275 intelInitTextureCopyImageFuncs(functions);
276 intelInitCopyImageFuncs(functions);
277 intelInitClearFuncs(functions);
278 intelInitBufferFuncs(functions);
279 intelInitPixelFuncs(functions);
280 intelInitBufferObjectFuncs(functions);
281 intel_init_syncobj_functions(functions);
282 brw_init_object_purgeable_functions(functions);
283
284 brwInitFragProgFuncs( functions );
285 brw_init_common_queryobj_functions(functions);
286 if (brw->gen >= 6)
287 gen6_init_queryobj_functions(functions);
288 else
289 gen4_init_queryobj_functions(functions);
290 brw_init_compute_functions(functions);
291 if (brw->gen >= 7)
292 brw_init_conditional_render_functions(functions);
293
294 functions->QuerySamplesForFormat = brw_query_samples_for_format;
295
296 functions->NewTransformFeedback = brw_new_transform_feedback;
297 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
298 functions->GetTransformFeedbackVertexCount =
299 brw_get_transform_feedback_vertex_count;
300 if (brw->gen >= 7) {
301 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
302 functions->EndTransformFeedback = gen7_end_transform_feedback;
303 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
304 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
305 } else {
306 functions->BeginTransformFeedback = brw_begin_transform_feedback;
307 functions->EndTransformFeedback = brw_end_transform_feedback;
308 }
309
310 if (brw->gen >= 6)
311 functions->GetSamplePosition = gen6_get_sample_position;
312 }
313
314 static void
315 brw_initialize_context_constants(struct brw_context *brw)
316 {
317 struct gl_context *ctx = &brw->ctx;
318
319 unsigned max_samplers =
320 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
321
322 ctx->Const.QueryCounterBits.Timestamp = 36;
323
324 ctx->Const.StripTextureBorder = true;
325
326 ctx->Const.MaxDualSourceDrawBuffers = 1;
327 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
328 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits = max_samplers;
329 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
330 ctx->Const.MaxTextureUnits =
331 MIN2(ctx->Const.MaxTextureCoordUnits,
332 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
333 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits = max_samplers;
334 if (brw->gen >= 6)
335 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = max_samplers;
336 else
337 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = 0;
338 if (_mesa_extension_override_enables.ARB_compute_shader) {
339 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = BRW_MAX_TEX_UNIT;
340 ctx->Const.MaxUniformBufferBindings += 12;
341 } else {
342 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = 0;
343 }
344 ctx->Const.MaxCombinedTextureImageUnits =
345 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits +
346 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits +
347 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits +
348 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
349
350 ctx->Const.MaxTextureLevels = 14; /* 8192 */
351 if (ctx->Const.MaxTextureLevels > MAX_TEXTURE_LEVELS)
352 ctx->Const.MaxTextureLevels = MAX_TEXTURE_LEVELS;
353 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
354 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
355 ctx->Const.MaxTextureMbytes = 1536;
356
357 if (brw->gen >= 7)
358 ctx->Const.MaxArrayTextureLayers = 2048;
359 else
360 ctx->Const.MaxArrayTextureLayers = 512;
361
362 ctx->Const.MaxTextureRectSize = 1 << 12;
363
364 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
365
366 ctx->Const.MaxRenderbufferSize = 8192;
367
368 /* Hardware only supports a limited number of transform feedback buffers.
369 * So we need to override the Mesa default (which is based only on software
370 * limits).
371 */
372 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
373
374 /* On Gen6, in the worst case, we use up one binding table entry per
375 * transform feedback component (see comments above the definition of
376 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
377 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
378 * BRW_MAX_SOL_BINDINGS.
379 *
380 * In "separate components" mode, we need to divide this value by
381 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
382 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
383 */
384 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
385 ctx->Const.MaxTransformFeedbackSeparateComponents =
386 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
387
388 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
389
390 int max_samples;
391 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
392 const int clamp_max_samples =
393 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
394
395 if (clamp_max_samples < 0) {
396 max_samples = msaa_modes[0];
397 } else {
398 /* Select the largest supported MSAA mode that does not exceed
399 * clamp_max_samples.
400 */
401 max_samples = 0;
402 for (int i = 0; msaa_modes[i] != 0; ++i) {
403 if (msaa_modes[i] <= clamp_max_samples) {
404 max_samples = msaa_modes[i];
405 break;
406 }
407 }
408 }
409
410 ctx->Const.MaxSamples = max_samples;
411 ctx->Const.MaxColorTextureSamples = max_samples;
412 ctx->Const.MaxDepthTextureSamples = max_samples;
413 ctx->Const.MaxIntegerSamples = max_samples;
414
415 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
416 * to map indices of rectangular grid to sample numbers within a pixel.
417 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
418 * extension implementation. For more details see the comment above
419 * gen6_set_sample_maps() definition.
420 */
421 gen6_set_sample_maps(ctx);
422
423 if (brw->gen >= 7)
424 ctx->Const.MaxProgramTextureGatherComponents = 4;
425 else if (brw->gen == 6)
426 ctx->Const.MaxProgramTextureGatherComponents = 1;
427
428 ctx->Const.MinLineWidth = 1.0;
429 ctx->Const.MinLineWidthAA = 1.0;
430 if (brw->gen >= 6) {
431 ctx->Const.MaxLineWidth = 7.375;
432 ctx->Const.MaxLineWidthAA = 7.375;
433 ctx->Const.LineWidthGranularity = 0.125;
434 } else {
435 ctx->Const.MaxLineWidth = 7.0;
436 ctx->Const.MaxLineWidthAA = 7.0;
437 ctx->Const.LineWidthGranularity = 0.5;
438 }
439
440 /* For non-antialiased lines, we have to round the line width to the
441 * nearest whole number. Make sure that we don't advertise a line
442 * width that, when rounded, will be beyond the actual hardware
443 * maximum.
444 */
445 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
446
447 ctx->Const.MinPointSize = 1.0;
448 ctx->Const.MinPointSizeAA = 1.0;
449 ctx->Const.MaxPointSize = 255.0;
450 ctx->Const.MaxPointSizeAA = 255.0;
451 ctx->Const.PointSizeGranularity = 1.0;
452
453 if (brw->gen >= 5 || brw->is_g4x)
454 ctx->Const.MaxClipPlanes = 8;
455
456 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
457 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
458 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
459 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
460 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
461 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
462 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
463 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
464 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
465 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
466 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
467 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
468 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
469 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
470
471 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
472 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
473 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
474 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
475 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
476 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
477 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
478 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
479 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
480 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
481 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
482
483 /* Fragment shaders use real, 32-bit twos-complement integers for all
484 * integer types.
485 */
486 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
487 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
488 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
489 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
490 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
491
492 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
493 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
494 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
495 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
496 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
497
498 if (brw->gen >= 7) {
499 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
500 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
501 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
502 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
503 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers = BRW_MAX_ABO;
504 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers = BRW_MAX_ABO;
505 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers = BRW_MAX_ABO;
506 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers = BRW_MAX_ABO;
507 ctx->Const.MaxCombinedAtomicBuffers = 3 * BRW_MAX_ABO;
508 }
509
510 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
511 * but we're not sure how it's actually done for vertex order,
512 * that affect provoking vertex decision. Always use last vertex
513 * convention for quad primitive which works as expected for now.
514 */
515 if (brw->gen >= 6)
516 ctx->Const.QuadsFollowProvokingVertexConvention = false;
517
518 ctx->Const.NativeIntegers = true;
519 ctx->Const.VertexID_is_zero_based = true;
520
521 /* Regarding the CMP instruction, the Ivybridge PRM says:
522 *
523 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
524 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
525 * 0xFFFFFFFF) is assigned to dst."
526 *
527 * but PRMs for earlier generations say
528 *
529 * "In dword format, one GRF may store up to 8 results. When the register
530 * is used later as a vector of Booleans, as only LSB at each channel
531 * contains meaning [sic] data, software should make sure all higher bits
532 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
533 *
534 * We select the representation of a true boolean uniform to be ~0, and fix
535 * the results of Gen <= 5 CMP instruction's with -(result & 1).
536 */
537 ctx->Const.UniformBooleanTrue = ~0;
538
539 /* From the gen4 PRM, volume 4 page 127:
540 *
541 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
542 * the base address of the first element of the surface, computed in
543 * software by adding the surface base address to the byte offset of
544 * the element in the buffer."
545 *
546 * However, unaligned accesses are slower, so enforce buffer alignment.
547 */
548 ctx->Const.UniformBufferOffsetAlignment = 16;
549 ctx->Const.TextureBufferOffsetAlignment = 16;
550 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
551
552 if (brw->gen >= 6) {
553 ctx->Const.MaxVarying = 32;
554 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
555 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
556 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
557 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
558 }
559
560 /* We want the GLSL compiler to emit code that uses condition codes */
561 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
562 ctx->Const.ShaderCompilerOptions[i] =
563 brw->intelScreen->compiler->glsl_compiler_options[i];
564 }
565
566 /* ARB_viewport_array */
567 if (brw->gen >= 6 && ctx->API == API_OPENGL_CORE) {
568 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
569 ctx->Const.ViewportSubpixelBits = 0;
570
571 /* Cast to float before negating because MaxViewportWidth is unsigned.
572 */
573 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
574 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
575 }
576
577 /* ARB_gpu_shader5 */
578 if (brw->gen >= 7)
579 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
580
581 /* ARB_framebuffer_no_attachments */
582 ctx->Const.MaxFramebufferWidth = ctx->Const.MaxViewportWidth;
583 ctx->Const.MaxFramebufferHeight = ctx->Const.MaxViewportHeight;
584 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
585 ctx->Const.MaxFramebufferSamples = max_samples;
586 }
587
588 static void
589 brw_adjust_cs_context_constants(struct brw_context *brw)
590 {
591 struct gl_context *ctx = &brw->ctx;
592
593 /* For ES, we set these constants based on SIMD8.
594 *
595 * TODO: Once we can always generate SIMD16, we should update this.
596 *
597 * For GL, we assume we can generate a SIMD16 program, but this currently
598 * is not always true. This allows us to run more test cases, and will be
599 * required based on desktop GL compute shader requirements.
600 */
601 const int simd_size = ctx->API == API_OPENGL_CORE ? 16 : 8;
602
603 const uint32_t max_invocations = simd_size * brw->max_cs_threads;
604 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
605 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
606 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
607 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
608 }
609
610 /**
611 * Process driconf (drirc) options, setting appropriate context flags.
612 *
613 * intelInitExtensions still pokes at optionCache directly, in order to
614 * avoid advertising various extensions. No flags are set, so it makes
615 * sense to continue doing that there.
616 */
617 static void
618 brw_process_driconf_options(struct brw_context *brw)
619 {
620 struct gl_context *ctx = &brw->ctx;
621
622 driOptionCache *options = &brw->optionCache;
623 driParseConfigFiles(options, &brw->intelScreen->optionCache,
624 brw->driContext->driScreenPriv->myNum, "i965");
625
626 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
627 switch (bo_reuse_mode) {
628 case DRI_CONF_BO_REUSE_DISABLED:
629 break;
630 case DRI_CONF_BO_REUSE_ALL:
631 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
632 break;
633 }
634
635 if (!driQueryOptionb(options, "hiz")) {
636 brw->has_hiz = false;
637 /* On gen6, you can only do separate stencil with HIZ. */
638 if (brw->gen == 6)
639 brw->has_separate_stencil = false;
640 }
641
642 if (driQueryOptionb(options, "always_flush_batch")) {
643 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
644 brw->always_flush_batch = true;
645 }
646
647 if (driQueryOptionb(options, "always_flush_cache")) {
648 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
649 brw->always_flush_cache = true;
650 }
651
652 if (driQueryOptionb(options, "disable_throttling")) {
653 fprintf(stderr, "disabling flush throttling\n");
654 brw->disable_throttling = true;
655 }
656
657 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
658
659 ctx->Const.ForceGLSLExtensionsWarn =
660 driQueryOptionb(options, "force_glsl_extensions_warn");
661
662 ctx->Const.DisableGLSLLineContinuations =
663 driQueryOptionb(options, "disable_glsl_line_continuations");
664
665 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
666 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
667 }
668
669 GLboolean
670 brwCreateContext(gl_api api,
671 const struct gl_config *mesaVis,
672 __DRIcontext *driContextPriv,
673 unsigned major_version,
674 unsigned minor_version,
675 uint32_t flags,
676 bool notify_reset,
677 unsigned *dri_ctx_error,
678 void *sharedContextPrivate)
679 {
680 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
681 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
682 struct intel_screen *screen = sPriv->driverPrivate;
683 const struct brw_device_info *devinfo = screen->devinfo;
684 struct dd_function_table functions;
685
686 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
687 * provides us with context reset notifications.
688 */
689 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
690 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
691
692 if (screen->has_context_reset_notification)
693 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
694
695 if (flags & ~allowed_flags) {
696 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
697 return false;
698 }
699
700 struct brw_context *brw = rzalloc(NULL, struct brw_context);
701 if (!brw) {
702 fprintf(stderr, "%s: failed to alloc context\n", __func__);
703 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
704 return false;
705 }
706
707 driContextPriv->driverPrivate = brw;
708 brw->driContext = driContextPriv;
709 brw->intelScreen = screen;
710 brw->bufmgr = screen->bufmgr;
711
712 brw->gen = devinfo->gen;
713 brw->gt = devinfo->gt;
714 brw->is_g4x = devinfo->is_g4x;
715 brw->is_baytrail = devinfo->is_baytrail;
716 brw->is_haswell = devinfo->is_haswell;
717 brw->is_cherryview = devinfo->is_cherryview;
718 brw->is_broxton = devinfo->is_broxton;
719 brw->has_llc = devinfo->has_llc;
720 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
721 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
722 brw->has_pln = devinfo->has_pln;
723 brw->has_compr4 = devinfo->has_compr4;
724 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
725 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
726 brw->needs_unlit_centroid_workaround =
727 devinfo->needs_unlit_centroid_workaround;
728
729 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
730 brw->has_swizzling = screen->hw_has_swizzling;
731
732 brw->vs.base.stage = MESA_SHADER_VERTEX;
733 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
734 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
735 if (brw->gen >= 8) {
736 gen8_init_vtable_surface_functions(brw);
737 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
738 } else if (brw->gen >= 7) {
739 gen7_init_vtable_surface_functions(brw);
740 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
741 } else if (brw->gen >= 6) {
742 gen6_init_vtable_surface_functions(brw);
743 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
744 } else {
745 gen4_init_vtable_surface_functions(brw);
746 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
747 }
748
749 brw_init_driver_functions(brw, &functions);
750
751 if (notify_reset)
752 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
753
754 struct gl_context *ctx = &brw->ctx;
755
756 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
757 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
758 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
759 intelDestroyContext(driContextPriv);
760 return false;
761 }
762
763 driContextSetFlags(ctx, flags);
764
765 /* Initialize the software rasterizer and helper modules.
766 *
767 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
768 * software fallbacks (which we have to support on legacy GL to do weird
769 * glDrawPixels(), glBitmap(), and other functions).
770 */
771 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
772 _swrast_CreateContext(ctx);
773 }
774
775 _vbo_CreateContext(ctx);
776 if (ctx->swrast_context) {
777 _tnl_CreateContext(ctx);
778 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
779 _swsetup_CreateContext(ctx);
780
781 /* Configure swrast to match hardware characteristics: */
782 _swrast_allow_pixel_fog(ctx, false);
783 _swrast_allow_vertex_fog(ctx, true);
784 }
785
786 _mesa_meta_init(ctx);
787
788 brw_process_driconf_options(brw);
789
790 if (INTEL_DEBUG & DEBUG_PERF)
791 brw->perf_debug = true;
792
793 brw_initialize_context_constants(brw);
794
795 ctx->Const.ResetStrategy = notify_reset
796 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
797
798 /* Reinitialize the context point state. It depends on ctx->Const values. */
799 _mesa_init_point(ctx);
800
801 intel_fbo_init(brw);
802
803 intel_batchbuffer_init(brw);
804
805 if (brw->gen >= 6) {
806 /* Create a new hardware context. Using a hardware context means that
807 * our GPU state will be saved/restored on context switch, allowing us
808 * to assume that the GPU is in the same state we left it in.
809 *
810 * This is required for transform feedback buffer offsets, query objects,
811 * and also allows us to reduce how much state we have to emit.
812 */
813 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
814
815 if (!brw->hw_ctx) {
816 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
817 intelDestroyContext(driContextPriv);
818 return false;
819 }
820 }
821
822 if (brw_init_pipe_control(brw, devinfo)) {
823 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
824 intelDestroyContext(driContextPriv);
825 return false;
826 }
827
828 brw_init_state(brw);
829
830 intelInitExtensions(ctx);
831
832 brw_init_surface_formats(brw);
833
834 brw->max_vs_threads = devinfo->max_vs_threads;
835 brw->max_hs_threads = devinfo->max_hs_threads;
836 brw->max_ds_threads = devinfo->max_ds_threads;
837 brw->max_gs_threads = devinfo->max_gs_threads;
838 brw->max_wm_threads = devinfo->max_wm_threads;
839 brw->max_cs_threads = devinfo->max_cs_threads;
840 brw->urb.size = devinfo->urb.size;
841 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
842 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
843 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
844 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
845 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
846
847 brw_adjust_cs_context_constants(brw);
848
849 /* Estimate the size of the mappable aperture into the GTT. There's an
850 * ioctl to get the whole GTT size, but not one to get the mappable subset.
851 * It turns out it's basically always 256MB, though some ancient hardware
852 * was smaller.
853 */
854 uint32_t gtt_size = 256 * 1024 * 1024;
855
856 /* We don't want to map two objects such that a memcpy between them would
857 * just fault one mapping in and then the other over and over forever. So
858 * we would need to divide the GTT size by 2. Additionally, some GTT is
859 * taken up by things like the framebuffer and the ringbuffer and such, so
860 * be more conservative.
861 */
862 brw->max_gtt_map_object_size = gtt_size / 4;
863
864 if (brw->gen == 6)
865 brw->urb.gs_present = false;
866
867 brw->prim_restart.in_progress = false;
868 brw->prim_restart.enable_cut_index = false;
869 brw->gs.enabled = false;
870 brw->sf.viewport_transform_enable = true;
871
872 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
873
874 brw->use_resource_streamer = screen->has_resource_streamer &&
875 (brw_env_var_as_boolean("INTEL_USE_HW_BT", false) ||
876 brw_env_var_as_boolean("INTEL_USE_GATHER", false));
877
878 ctx->VertexProgram._MaintainTnlProgram = true;
879 ctx->FragmentProgram._MaintainTexEnvProgram = true;
880
881 brw_draw_init( brw );
882
883 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
884 /* Turn on some extra GL_ARB_debug_output generation. */
885 brw->perf_debug = true;
886 }
887
888 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
889 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
890
891 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
892 brw_init_shader_time(brw);
893
894 _mesa_compute_version(ctx);
895
896 _mesa_initialize_dispatch_tables(ctx);
897 _mesa_initialize_vbo_vtxfmt(ctx);
898
899 if (ctx->Extensions.AMD_performance_monitor) {
900 brw_init_performance_monitors(brw);
901 }
902
903 vbo_use_buffer_objects(ctx);
904 vbo_always_unmap_buffers(ctx);
905
906 return true;
907 }
908
909 void
910 intelDestroyContext(__DRIcontext * driContextPriv)
911 {
912 struct brw_context *brw =
913 (struct brw_context *) driContextPriv->driverPrivate;
914 struct gl_context *ctx = &brw->ctx;
915
916 /* Dump a final BMP in case the application doesn't call SwapBuffers */
917 if (INTEL_DEBUG & DEBUG_AUB) {
918 intel_batchbuffer_flush(brw);
919 aub_dump_bmp(&brw->ctx);
920 }
921
922 _mesa_meta_free(&brw->ctx);
923 brw_meta_fast_clear_free(brw);
924
925 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
926 /* Force a report. */
927 brw->shader_time.report_time = 0;
928
929 brw_collect_and_report_shader_time(brw);
930 brw_destroy_shader_time(brw);
931 }
932
933 brw_destroy_state(brw);
934 brw_draw_destroy(brw);
935
936 drm_intel_bo_unreference(brw->curbe.curbe_bo);
937 if (brw->vs.base.scratch_bo)
938 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
939 if (brw->gs.base.scratch_bo)
940 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
941 if (brw->wm.base.scratch_bo)
942 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
943
944 drm_intel_gem_context_destroy(brw->hw_ctx);
945
946 if (ctx->swrast_context) {
947 _swsetup_DestroyContext(&brw->ctx);
948 _tnl_DestroyContext(&brw->ctx);
949 }
950 _vbo_DestroyContext(&brw->ctx);
951
952 if (ctx->swrast_context)
953 _swrast_DestroyContext(&brw->ctx);
954
955 brw_fini_pipe_control(brw);
956 intel_batchbuffer_free(brw);
957
958 drm_intel_bo_unreference(brw->throttle_batch[1]);
959 drm_intel_bo_unreference(brw->throttle_batch[0]);
960 brw->throttle_batch[1] = NULL;
961 brw->throttle_batch[0] = NULL;
962
963 driDestroyOptionCache(&brw->optionCache);
964
965 /* free the Mesa context */
966 _mesa_free_context_data(&brw->ctx);
967
968 ralloc_free(brw);
969 driContextPriv->driverPrivate = NULL;
970 }
971
972 GLboolean
973 intelUnbindContext(__DRIcontext * driContextPriv)
974 {
975 /* Unset current context and dispath table */
976 _mesa_make_current(NULL, NULL, NULL);
977
978 return true;
979 }
980
981 /**
982 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
983 * on window system framebuffers.
984 *
985 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
986 * your renderbuffer can do sRGB encode, and you can flip a switch that does
987 * sRGB encode if the renderbuffer can handle it. You can ask specifically
988 * for a visual where you're guaranteed to be capable, but it turns out that
989 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
990 * incapable ones, because there's no difference between the two in resources
991 * used. Applications thus get built that accidentally rely on the default
992 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
993 * great...
994 *
995 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
996 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
997 * So they removed the enable knob and made it "if the renderbuffer is sRGB
998 * capable, do sRGB encode". Then, for your window system renderbuffers, you
999 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1000 * and get no sRGB encode (assuming that both kinds of visual are available).
1001 * Thus our choice to support sRGB by default on our visuals for desktop would
1002 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1003 *
1004 * Unfortunately, renderbuffer setup happens before a context is created. So
1005 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1006 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1007 * yet), we go turn that back off before anyone finds out.
1008 */
1009 static void
1010 intel_gles3_srgb_workaround(struct brw_context *brw,
1011 struct gl_framebuffer *fb)
1012 {
1013 struct gl_context *ctx = &brw->ctx;
1014
1015 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1016 return;
1017
1018 /* Some day when we support the sRGB capable bit on visuals available for
1019 * GLES, we'll need to respect that and not disable things here.
1020 */
1021 fb->Visual.sRGBCapable = false;
1022 for (int i = 0; i < BUFFER_COUNT; i++) {
1023 if (fb->Attachment[i].Renderbuffer &&
1024 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
1025 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
1026 }
1027 }
1028 }
1029
1030 GLboolean
1031 intelMakeCurrent(__DRIcontext * driContextPriv,
1032 __DRIdrawable * driDrawPriv,
1033 __DRIdrawable * driReadPriv)
1034 {
1035 struct brw_context *brw;
1036 GET_CURRENT_CONTEXT(curCtx);
1037
1038 if (driContextPriv)
1039 brw = (struct brw_context *) driContextPriv->driverPrivate;
1040 else
1041 brw = NULL;
1042
1043 /* According to the glXMakeCurrent() man page: "Pending commands to
1044 * the previous context, if any, are flushed before it is released."
1045 * But only flush if we're actually changing contexts.
1046 */
1047 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1048 _mesa_flush(curCtx);
1049 }
1050
1051 if (driContextPriv) {
1052 struct gl_context *ctx = &brw->ctx;
1053 struct gl_framebuffer *fb, *readFb;
1054
1055 if (driDrawPriv == NULL) {
1056 fb = _mesa_get_incomplete_framebuffer();
1057 } else {
1058 fb = driDrawPriv->driverPrivate;
1059 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1060 }
1061
1062 if (driReadPriv == NULL) {
1063 readFb = _mesa_get_incomplete_framebuffer();
1064 } else {
1065 readFb = driReadPriv->driverPrivate;
1066 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1067 }
1068
1069 /* The sRGB workaround changes the renderbuffer's format. We must change
1070 * the format before the renderbuffer's miptree get's allocated, otherwise
1071 * the formats of the renderbuffer and its miptree will differ.
1072 */
1073 intel_gles3_srgb_workaround(brw, fb);
1074 intel_gles3_srgb_workaround(brw, readFb);
1075
1076 /* If the context viewport hasn't been initialized, force a call out to
1077 * the loader to get buffers so we have a drawable size for the initial
1078 * viewport. */
1079 if (!brw->ctx.ViewportInitialized)
1080 intel_prepare_render(brw);
1081
1082 _mesa_make_current(ctx, fb, readFb);
1083 } else {
1084 _mesa_make_current(NULL, NULL, NULL);
1085 }
1086
1087 return true;
1088 }
1089
1090 void
1091 intel_resolve_for_dri2_flush(struct brw_context *brw,
1092 __DRIdrawable *drawable)
1093 {
1094 if (brw->gen < 6) {
1095 /* MSAA and fast color clear are not supported, so don't waste time
1096 * checking whether a resolve is needed.
1097 */
1098 return;
1099 }
1100
1101 struct gl_framebuffer *fb = drawable->driverPrivate;
1102 struct intel_renderbuffer *rb;
1103
1104 /* Usually, only the back buffer will need to be downsampled. However,
1105 * the front buffer will also need it if the user has rendered into it.
1106 */
1107 static const gl_buffer_index buffers[2] = {
1108 BUFFER_BACK_LEFT,
1109 BUFFER_FRONT_LEFT,
1110 };
1111
1112 for (int i = 0; i < 2; ++i) {
1113 rb = intel_get_renderbuffer(fb, buffers[i]);
1114 if (rb == NULL || rb->mt == NULL)
1115 continue;
1116 if (rb->mt->num_samples <= 1)
1117 intel_miptree_resolve_color(brw, rb->mt);
1118 else
1119 intel_renderbuffer_downsample(brw, rb);
1120 }
1121 }
1122
1123 static unsigned
1124 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1125 {
1126 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1127 }
1128
1129 static void
1130 intel_query_dri2_buffers(struct brw_context *brw,
1131 __DRIdrawable *drawable,
1132 __DRIbuffer **buffers,
1133 int *count);
1134
1135 static void
1136 intel_process_dri2_buffer(struct brw_context *brw,
1137 __DRIdrawable *drawable,
1138 __DRIbuffer *buffer,
1139 struct intel_renderbuffer *rb,
1140 const char *buffer_name);
1141
1142 static void
1143 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1144
1145 static void
1146 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1147 {
1148 struct gl_framebuffer *fb = drawable->driverPrivate;
1149 struct intel_renderbuffer *rb;
1150 __DRIbuffer *buffers = NULL;
1151 int i, count;
1152 const char *region_name;
1153
1154 /* Set this up front, so that in case our buffers get invalidated
1155 * while we're getting new buffers, we don't clobber the stamp and
1156 * thus ignore the invalidate. */
1157 drawable->lastStamp = drawable->dri2.stamp;
1158
1159 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1160 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1161
1162 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1163
1164 if (buffers == NULL)
1165 return;
1166
1167 for (i = 0; i < count; i++) {
1168 switch (buffers[i].attachment) {
1169 case __DRI_BUFFER_FRONT_LEFT:
1170 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1171 region_name = "dri2 front buffer";
1172 break;
1173
1174 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1175 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1176 region_name = "dri2 fake front buffer";
1177 break;
1178
1179 case __DRI_BUFFER_BACK_LEFT:
1180 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1181 region_name = "dri2 back buffer";
1182 break;
1183
1184 case __DRI_BUFFER_DEPTH:
1185 case __DRI_BUFFER_HIZ:
1186 case __DRI_BUFFER_DEPTH_STENCIL:
1187 case __DRI_BUFFER_STENCIL:
1188 case __DRI_BUFFER_ACCUM:
1189 default:
1190 fprintf(stderr,
1191 "unhandled buffer attach event, attachment type %d\n",
1192 buffers[i].attachment);
1193 return;
1194 }
1195
1196 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1197 }
1198
1199 }
1200
1201 void
1202 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1203 {
1204 struct brw_context *brw = context->driverPrivate;
1205 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1206
1207 /* Set this up front, so that in case our buffers get invalidated
1208 * while we're getting new buffers, we don't clobber the stamp and
1209 * thus ignore the invalidate. */
1210 drawable->lastStamp = drawable->dri2.stamp;
1211
1212 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1213 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1214
1215 if (screen->image.loader)
1216 intel_update_image_buffers(brw, drawable);
1217 else
1218 intel_update_dri2_buffers(brw, drawable);
1219
1220 driUpdateFramebufferSize(&brw->ctx, drawable);
1221 }
1222
1223 /**
1224 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1225 * state is required.
1226 */
1227 void
1228 intel_prepare_render(struct brw_context *brw)
1229 {
1230 struct gl_context *ctx = &brw->ctx;
1231 __DRIcontext *driContext = brw->driContext;
1232 __DRIdrawable *drawable;
1233
1234 drawable = driContext->driDrawablePriv;
1235 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1236 if (drawable->lastStamp != drawable->dri2.stamp)
1237 intel_update_renderbuffers(driContext, drawable);
1238 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1239 }
1240
1241 drawable = driContext->driReadablePriv;
1242 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1243 if (drawable->lastStamp != drawable->dri2.stamp)
1244 intel_update_renderbuffers(driContext, drawable);
1245 driContext->dri2.read_stamp = drawable->dri2.stamp;
1246 }
1247
1248 /* If we're currently rendering to the front buffer, the rendering
1249 * that will happen next will probably dirty the front buffer. So
1250 * mark it as dirty here.
1251 */
1252 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
1253 brw->front_buffer_dirty = true;
1254 }
1255
1256 /**
1257 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1258 *
1259 * To determine which DRI buffers to request, examine the renderbuffers
1260 * attached to the drawable's framebuffer. Then request the buffers with
1261 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1262 *
1263 * This is called from intel_update_renderbuffers().
1264 *
1265 * \param drawable Drawable whose buffers are queried.
1266 * \param buffers [out] List of buffers returned by DRI2 query.
1267 * \param buffer_count [out] Number of buffers returned.
1268 *
1269 * \see intel_update_renderbuffers()
1270 * \see DRI2GetBuffers()
1271 * \see DRI2GetBuffersWithFormat()
1272 */
1273 static void
1274 intel_query_dri2_buffers(struct brw_context *brw,
1275 __DRIdrawable *drawable,
1276 __DRIbuffer **buffers,
1277 int *buffer_count)
1278 {
1279 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1280 struct gl_framebuffer *fb = drawable->driverPrivate;
1281 int i = 0;
1282 unsigned attachments[8];
1283
1284 struct intel_renderbuffer *front_rb;
1285 struct intel_renderbuffer *back_rb;
1286
1287 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1288 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1289
1290 memset(attachments, 0, sizeof(attachments));
1291 if ((brw_is_front_buffer_drawing(fb) ||
1292 brw_is_front_buffer_reading(fb) ||
1293 !back_rb) && front_rb) {
1294 /* If a fake front buffer is in use, then querying for
1295 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1296 * the real front buffer to the fake front buffer. So before doing the
1297 * query, we need to make sure all the pending drawing has landed in the
1298 * real front buffer.
1299 */
1300 intel_batchbuffer_flush(brw);
1301 intel_flush_front(&brw->ctx);
1302
1303 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1304 attachments[i++] = intel_bits_per_pixel(front_rb);
1305 } else if (front_rb && brw->front_buffer_dirty) {
1306 /* We have pending front buffer rendering, but we aren't querying for a
1307 * front buffer. If the front buffer we have is a fake front buffer,
1308 * the X server is going to throw it away when it processes the query.
1309 * So before doing the query, make sure all the pending drawing has
1310 * landed in the real front buffer.
1311 */
1312 intel_batchbuffer_flush(brw);
1313 intel_flush_front(&brw->ctx);
1314 }
1315
1316 if (back_rb) {
1317 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1318 attachments[i++] = intel_bits_per_pixel(back_rb);
1319 }
1320
1321 assert(i <= ARRAY_SIZE(attachments));
1322
1323 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1324 &drawable->w,
1325 &drawable->h,
1326 attachments, i / 2,
1327 buffer_count,
1328 drawable->loaderPrivate);
1329 }
1330
1331 /**
1332 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1333 *
1334 * This is called from intel_update_renderbuffers().
1335 *
1336 * \par Note:
1337 * DRI buffers whose attachment point is DRI2BufferStencil or
1338 * DRI2BufferDepthStencil are handled as special cases.
1339 *
1340 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1341 * that is passed to drm_intel_bo_gem_create_from_name().
1342 *
1343 * \see intel_update_renderbuffers()
1344 */
1345 static void
1346 intel_process_dri2_buffer(struct brw_context *brw,
1347 __DRIdrawable *drawable,
1348 __DRIbuffer *buffer,
1349 struct intel_renderbuffer *rb,
1350 const char *buffer_name)
1351 {
1352 struct gl_framebuffer *fb = drawable->driverPrivate;
1353 drm_intel_bo *bo;
1354
1355 if (!rb)
1356 return;
1357
1358 unsigned num_samples = rb->Base.Base.NumSamples;
1359
1360 /* We try to avoid closing and reopening the same BO name, because the first
1361 * use of a mapping of the buffer involves a bunch of page faulting which is
1362 * moderately expensive.
1363 */
1364 struct intel_mipmap_tree *last_mt;
1365 if (num_samples == 0)
1366 last_mt = rb->mt;
1367 else
1368 last_mt = rb->singlesample_mt;
1369
1370 uint32_t old_name = 0;
1371 if (last_mt) {
1372 /* The bo already has a name because the miptree was created by a
1373 * previous call to intel_process_dri2_buffer(). If a bo already has a
1374 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1375 * create a new name.
1376 */
1377 drm_intel_bo_flink(last_mt->bo, &old_name);
1378 }
1379
1380 if (old_name == buffer->name)
1381 return;
1382
1383 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1384 fprintf(stderr,
1385 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1386 buffer->name, buffer->attachment,
1387 buffer->cpp, buffer->pitch);
1388 }
1389
1390 intel_miptree_release(&rb->mt);
1391 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1392 buffer->name);
1393 if (!bo) {
1394 fprintf(stderr,
1395 "Failed to open BO for returned DRI2 buffer "
1396 "(%dx%d, %s, named %d).\n"
1397 "This is likely a bug in the X Server that will lead to a "
1398 "crash soon.\n",
1399 drawable->w, drawable->h, buffer_name, buffer->name);
1400 return;
1401 }
1402
1403 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1404 drawable->w, drawable->h,
1405 buffer->pitch);
1406
1407 if (brw_is_front_buffer_drawing(fb) &&
1408 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1409 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1410 rb->Base.Base.NumSamples > 1) {
1411 intel_renderbuffer_upsample(brw, rb);
1412 }
1413
1414 assert(rb->mt);
1415
1416 drm_intel_bo_unreference(bo);
1417 }
1418
1419 /**
1420 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1421 *
1422 * To determine which DRI buffers to request, examine the renderbuffers
1423 * attached to the drawable's framebuffer. Then request the buffers from
1424 * the image loader
1425 *
1426 * This is called from intel_update_renderbuffers().
1427 *
1428 * \param drawable Drawable whose buffers are queried.
1429 * \param buffers [out] List of buffers returned by DRI2 query.
1430 * \param buffer_count [out] Number of buffers returned.
1431 *
1432 * \see intel_update_renderbuffers()
1433 */
1434
1435 static void
1436 intel_update_image_buffer(struct brw_context *intel,
1437 __DRIdrawable *drawable,
1438 struct intel_renderbuffer *rb,
1439 __DRIimage *buffer,
1440 enum __DRIimageBufferMask buffer_type)
1441 {
1442 struct gl_framebuffer *fb = drawable->driverPrivate;
1443
1444 if (!rb || !buffer->bo)
1445 return;
1446
1447 unsigned num_samples = rb->Base.Base.NumSamples;
1448
1449 /* Check and see if we're already bound to the right
1450 * buffer object
1451 */
1452 struct intel_mipmap_tree *last_mt;
1453 if (num_samples == 0)
1454 last_mt = rb->mt;
1455 else
1456 last_mt = rb->singlesample_mt;
1457
1458 if (last_mt && last_mt->bo == buffer->bo)
1459 return;
1460
1461 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1462 buffer->width, buffer->height,
1463 buffer->pitch);
1464
1465 if (brw_is_front_buffer_drawing(fb) &&
1466 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1467 rb->Base.Base.NumSamples > 1) {
1468 intel_renderbuffer_upsample(intel, rb);
1469 }
1470 }
1471
1472 static void
1473 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1474 {
1475 struct gl_framebuffer *fb = drawable->driverPrivate;
1476 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1477 struct intel_renderbuffer *front_rb;
1478 struct intel_renderbuffer *back_rb;
1479 struct __DRIimageList images;
1480 unsigned int format;
1481 uint32_t buffer_mask = 0;
1482
1483 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1484 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1485
1486 if (back_rb)
1487 format = intel_rb_format(back_rb);
1488 else if (front_rb)
1489 format = intel_rb_format(front_rb);
1490 else
1491 return;
1492
1493 if (front_rb && (brw_is_front_buffer_drawing(fb) ||
1494 brw_is_front_buffer_reading(fb) || !back_rb)) {
1495 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1496 }
1497
1498 if (back_rb)
1499 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1500
1501 (*screen->image.loader->getBuffers) (drawable,
1502 driGLFormatToImageFormat(format),
1503 &drawable->dri2.stamp,
1504 drawable->loaderPrivate,
1505 buffer_mask,
1506 &images);
1507
1508 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1509 drawable->w = images.front->width;
1510 drawable->h = images.front->height;
1511 intel_update_image_buffer(brw,
1512 drawable,
1513 front_rb,
1514 images.front,
1515 __DRI_IMAGE_BUFFER_FRONT);
1516 }
1517 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1518 drawable->w = images.back->width;
1519 drawable->h = images.back->height;
1520 intel_update_image_buffer(brw,
1521 drawable,
1522 back_rb,
1523 images.back,
1524 __DRI_IMAGE_BUFFER_BACK);
1525 }
1526 }