i965/gen9: Configure rbc buffers as plain for non-rbc tex views
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44 #include "main/framebuffer.h"
45
46 #include "vbo/vbo_context.h"
47
48 #include "drivers/common/driverfuncs.h"
49 #include "drivers/common/meta.h"
50 #include "utils.h"
51
52 #include "brw_context.h"
53 #include "brw_defines.h"
54 #include "brw_compiler.h"
55 #include "brw_draw.h"
56 #include "brw_state.h"
57
58 #include "intel_batchbuffer.h"
59 #include "intel_buffer_objects.h"
60 #include "intel_buffers.h"
61 #include "intel_fbo.h"
62 #include "intel_mipmap_tree.h"
63 #include "intel_pixel.h"
64 #include "intel_image.h"
65 #include "intel_tex.h"
66 #include "intel_tex_obj.h"
67
68 #include "swrast_setup/swrast_setup.h"
69 #include "tnl/tnl.h"
70 #include "tnl/t_pipeline.h"
71 #include "util/ralloc.h"
72 #include "util/debug.h"
73 #include "isl/isl.h"
74
75 /***************************************
76 * Mesa's Driver Functions
77 ***************************************/
78
79 const char *const brw_vendor_string = "Intel Open Source Technology Center";
80
81 static const char *
82 get_bsw_model(const struct intel_screen *intelScreen)
83 {
84 switch (intelScreen->eu_total) {
85 case 16:
86 return "405";
87 case 12:
88 return "400";
89 default:
90 return " ";
91 }
92 }
93
94 const char *
95 brw_get_renderer_string(const struct intel_screen *intelScreen)
96 {
97 const char *chipset;
98 static char buffer[128];
99 char *bsw = NULL;
100
101 switch (intelScreen->deviceID) {
102 #undef CHIPSET
103 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
104 #include "pci_ids/i965_pci_ids.h"
105 default:
106 chipset = "Unknown Intel Chipset";
107 break;
108 }
109
110 /* Braswell branding is funny, so we have to fix it up here */
111 if (intelScreen->deviceID == 0x22B1) {
112 bsw = strdup(chipset);
113 char *needle = strstr(bsw, "XXX");
114 if (needle) {
115 memcpy(needle, get_bsw_model(intelScreen), 3);
116 chipset = bsw;
117 }
118 }
119
120 (void) driGetRendererString(buffer, chipset, 0);
121 free(bsw);
122 return buffer;
123 }
124
125 static const GLubyte *
126 intel_get_string(struct gl_context * ctx, GLenum name)
127 {
128 const struct brw_context *const brw = brw_context(ctx);
129
130 switch (name) {
131 case GL_VENDOR:
132 return (GLubyte *) brw_vendor_string;
133
134 case GL_RENDERER:
135 return
136 (GLubyte *) brw_get_renderer_string(brw->intelScreen);
137
138 default:
139 return NULL;
140 }
141 }
142
143 static void
144 intel_viewport(struct gl_context *ctx)
145 {
146 struct brw_context *brw = brw_context(ctx);
147 __DRIcontext *driContext = brw->driContext;
148
149 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
150 if (driContext->driDrawablePriv)
151 dri2InvalidateDrawable(driContext->driDrawablePriv);
152 if (driContext->driReadablePriv)
153 dri2InvalidateDrawable(driContext->driReadablePriv);
154 }
155 }
156
157 static void
158 intel_update_framebuffer(struct gl_context *ctx,
159 struct gl_framebuffer *fb)
160 {
161 struct brw_context *brw = brw_context(ctx);
162
163 /* Quantize the derived default number of samples
164 */
165 fb->DefaultGeometry._NumSamples =
166 intel_quantize_num_samples(brw->intelScreen,
167 fb->DefaultGeometry.NumSamples);
168 }
169
170 /* On Gen9 color buffers may be compressed by the hardware (lossless
171 * compression). There are, however, format restrictions and care needs to be
172 * taken that the sampler engine is capable for re-interpreting a buffer with
173 * format different the buffer was originally written with.
174 *
175 * For example, SRGB formats are not compressible and the sampler engine isn't
176 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
177 * color buffer needs to be resolved so that the sampling surface can be
178 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
179 * set).
180 */
181 static bool
182 intel_texture_view_requires_resolve(struct brw_context *brw,
183 struct intel_texture_object *intel_tex)
184 {
185 if (brw->gen < 9 ||
186 !intel_miptree_is_lossless_compressed(brw, intel_tex->mt))
187 return false;
188
189 const uint32_t brw_format = brw_format_for_mesa_format(intel_tex->_Format);
190
191 if (isl_format_supports_lossless_compression(brw->intelScreen->devinfo,
192 brw_format))
193 return false;
194
195 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
196 _mesa_get_format_name(intel_tex->_Format),
197 _mesa_get_format_name(intel_tex->mt->format));
198
199 return true;
200 }
201
202 static void
203 intel_update_state(struct gl_context * ctx, GLuint new_state)
204 {
205 struct brw_context *brw = brw_context(ctx);
206 struct intel_texture_object *tex_obj;
207 struct intel_renderbuffer *depth_irb;
208
209 if (ctx->swrast_context)
210 _swrast_InvalidateState(ctx, new_state);
211 _vbo_InvalidateState(ctx, new_state);
212
213 brw->NewGLState |= new_state;
214
215 _mesa_unlock_context_textures(ctx);
216
217 /* Resolve the depth buffer's HiZ buffer. */
218 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
219 if (depth_irb)
220 intel_renderbuffer_resolve_hiz(brw, depth_irb);
221
222 /* Resolve depth buffer and render cache of each enabled texture. */
223 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
224 for (int i = 0; i <= maxEnabledUnit; i++) {
225 if (!ctx->Texture.Unit[i]._Current)
226 continue;
227 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
228 if (!tex_obj || !tex_obj->mt)
229 continue;
230 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
231 /* Sampling engine understands lossless compression and resolving
232 * those surfaces should be skipped for performance reasons.
233 */
234 const int flags = intel_texture_view_requires_resolve(brw, tex_obj) ?
235 0 : INTEL_MIPTREE_IGNORE_CCS_E;
236 intel_miptree_resolve_color(brw, tex_obj->mt, flags);
237 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
238 }
239
240 /* Resolve color for each active shader image. */
241 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
242 const struct gl_shader *shader = ctx->_Shader->CurrentProgram[i] ?
243 ctx->_Shader->CurrentProgram[i]->_LinkedShaders[i] : NULL;
244
245 if (unlikely(shader && shader->NumImages)) {
246 for (unsigned j = 0; j < shader->NumImages; j++) {
247 struct gl_image_unit *u = &ctx->ImageUnits[shader->ImageUnits[j]];
248 tex_obj = intel_texture_object(u->TexObj);
249
250 if (tex_obj && tex_obj->mt) {
251 /* Access to images is implemented using indirect messages
252 * against data port. Normal render target write understands
253 * lossless compression but unfortunately the typed/untyped
254 * read/write interface doesn't. Therefore the compressed
255 * surfaces need to be resolved prior to accessing them.
256 */
257 intel_miptree_resolve_color(brw, tex_obj->mt, 0);
258 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
259 }
260 }
261 }
262 }
263
264 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of the
265 * single-sampled color renderbuffers because the CCS buffer isn't
266 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
267 * enabled because otherwise the surface state will be programmed with the
268 * linear equivalent format anyway.
269 */
270 if (brw->gen >= 9 && ctx->Color.sRGBEnabled) {
271 struct gl_framebuffer *fb = ctx->DrawBuffer;
272 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
273 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[i];
274
275 if (rb == NULL)
276 continue;
277
278 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
279 struct intel_mipmap_tree *mt = irb->mt;
280
281 if (mt == NULL ||
282 mt->num_samples > 1 ||
283 _mesa_get_srgb_format_linear(mt->format) == mt->format)
284 continue;
285
286 /* Lossless compression is not supported for SRGB formats, it
287 * should be impossible to get here with such surfaces.
288 */
289 assert(!intel_miptree_is_lossless_compressed(brw, mt));
290 intel_miptree_resolve_color(brw, mt, 0);
291 brw_render_cache_set_check_flush(brw, mt->bo);
292 }
293 }
294
295 _mesa_lock_context_textures(ctx);
296
297 if (new_state & _NEW_BUFFERS) {
298 intel_update_framebuffer(ctx, ctx->DrawBuffer);
299 if (ctx->DrawBuffer != ctx->ReadBuffer)
300 intel_update_framebuffer(ctx, ctx->ReadBuffer);
301 }
302 }
303
304 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
305
306 static void
307 intel_flush_front(struct gl_context *ctx)
308 {
309 struct brw_context *brw = brw_context(ctx);
310 __DRIcontext *driContext = brw->driContext;
311 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
312 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
313
314 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
315 if (flushFront(screen) && driDrawable &&
316 driDrawable->loaderPrivate) {
317
318 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
319 *
320 * This potentially resolves both front and back buffer. It
321 * is unnecessary to resolve the back, but harms nothing except
322 * performance. And no one cares about front-buffer render
323 * performance.
324 */
325 intel_resolve_for_dri2_flush(brw, driDrawable);
326 intel_batchbuffer_flush(brw);
327
328 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
329
330 /* We set the dirty bit in intel_prepare_render() if we're
331 * front buffer rendering once we get there.
332 */
333 brw->front_buffer_dirty = false;
334 }
335 }
336 }
337
338 static void
339 intel_glFlush(struct gl_context *ctx)
340 {
341 struct brw_context *brw = brw_context(ctx);
342
343 intel_batchbuffer_flush(brw);
344 intel_flush_front(ctx);
345
346 brw->need_flush_throttle = true;
347 }
348
349 static void
350 intel_finish(struct gl_context * ctx)
351 {
352 struct brw_context *brw = brw_context(ctx);
353
354 intel_glFlush(ctx);
355
356 if (brw->batch.last_bo)
357 drm_intel_bo_wait_rendering(brw->batch.last_bo);
358 }
359
360 static void
361 brw_init_driver_functions(struct brw_context *brw,
362 struct dd_function_table *functions)
363 {
364 _mesa_init_driver_functions(functions);
365
366 /* GLX uses DRI2 invalidate events to handle window resizing.
367 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
368 * which doesn't provide a mechanism for snooping the event queues.
369 *
370 * So EGL still relies on viewport hacks to handle window resizing.
371 * This should go away with DRI3000.
372 */
373 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
374 functions->Viewport = intel_viewport;
375
376 functions->Flush = intel_glFlush;
377 functions->Finish = intel_finish;
378 functions->GetString = intel_get_string;
379 functions->UpdateState = intel_update_state;
380
381 intelInitTextureFuncs(functions);
382 intelInitTextureImageFuncs(functions);
383 intelInitTextureSubImageFuncs(functions);
384 intelInitTextureCopyImageFuncs(functions);
385 intelInitCopyImageFuncs(functions);
386 intelInitClearFuncs(functions);
387 intelInitBufferFuncs(functions);
388 intelInitPixelFuncs(functions);
389 intelInitBufferObjectFuncs(functions);
390 intel_init_syncobj_functions(functions);
391 brw_init_object_purgeable_functions(functions);
392
393 brwInitFragProgFuncs( functions );
394 brw_init_common_queryobj_functions(functions);
395 if (brw->gen >= 8 || brw->is_haswell)
396 hsw_init_queryobj_functions(functions);
397 else if (brw->gen >= 6)
398 gen6_init_queryobj_functions(functions);
399 else
400 gen4_init_queryobj_functions(functions);
401 brw_init_compute_functions(functions);
402 if (brw->gen >= 7)
403 brw_init_conditional_render_functions(functions);
404
405 functions->QueryInternalFormat = brw_query_internal_format;
406
407 functions->NewTransformFeedback = brw_new_transform_feedback;
408 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
409 if (brw->intelScreen->has_mi_math_and_lrr) {
410 functions->BeginTransformFeedback = hsw_begin_transform_feedback;
411 functions->EndTransformFeedback = hsw_end_transform_feedback;
412 functions->PauseTransformFeedback = hsw_pause_transform_feedback;
413 functions->ResumeTransformFeedback = hsw_resume_transform_feedback;
414 } else if (brw->gen >= 7) {
415 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
416 functions->EndTransformFeedback = gen7_end_transform_feedback;
417 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
418 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
419 functions->GetTransformFeedbackVertexCount =
420 brw_get_transform_feedback_vertex_count;
421 } else {
422 functions->BeginTransformFeedback = brw_begin_transform_feedback;
423 functions->EndTransformFeedback = brw_end_transform_feedback;
424 }
425
426 if (brw->gen >= 6)
427 functions->GetSamplePosition = gen6_get_sample_position;
428 }
429
430 static void
431 brw_initialize_context_constants(struct brw_context *brw)
432 {
433 struct gl_context *ctx = &brw->ctx;
434 const struct brw_compiler *compiler = brw->intelScreen->compiler;
435
436 const bool stage_exists[MESA_SHADER_STAGES] = {
437 [MESA_SHADER_VERTEX] = true,
438 [MESA_SHADER_TESS_CTRL] = brw->gen >= 7,
439 [MESA_SHADER_TESS_EVAL] = brw->gen >= 7,
440 [MESA_SHADER_GEOMETRY] = brw->gen >= 6,
441 [MESA_SHADER_FRAGMENT] = true,
442 [MESA_SHADER_COMPUTE] =
443 (ctx->API == API_OPENGL_CORE &&
444 ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
445 (ctx->API == API_OPENGLES2 &&
446 ctx->Const.MaxComputeWorkGroupSize[0] >= 128) ||
447 _mesa_extension_override_enables.ARB_compute_shader,
448 };
449
450 unsigned num_stages = 0;
451 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
452 if (stage_exists[i])
453 num_stages++;
454 }
455
456 unsigned max_samplers =
457 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
458
459 ctx->Const.MaxDualSourceDrawBuffers = 1;
460 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
461 ctx->Const.MaxCombinedShaderOutputResources =
462 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
463
464 ctx->Const.QueryCounterBits.Timestamp = 36;
465
466 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
467 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
468 ctx->Const.MaxRenderbufferSize = 8192;
469 ctx->Const.MaxTextureLevels = MIN2(14 /* 8192 */, MAX_TEXTURE_LEVELS);
470 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
471 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
472 ctx->Const.MaxArrayTextureLayers = brw->gen >= 7 ? 2048 : 512;
473 ctx->Const.MaxTextureMbytes = 1536;
474 ctx->Const.MaxTextureRectSize = 1 << 12;
475 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
476 ctx->Const.StripTextureBorder = true;
477 if (brw->gen >= 7)
478 ctx->Const.MaxProgramTextureGatherComponents = 4;
479 else if (brw->gen == 6)
480 ctx->Const.MaxProgramTextureGatherComponents = 1;
481
482 ctx->Const.MaxUniformBlockSize = 65536;
483
484 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
485 struct gl_program_constants *prog = &ctx->Const.Program[i];
486
487 if (!stage_exists[i])
488 continue;
489
490 prog->MaxTextureImageUnits = max_samplers;
491
492 prog->MaxUniformBlocks = BRW_MAX_UBO;
493 prog->MaxCombinedUniformComponents =
494 prog->MaxUniformComponents +
495 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
496
497 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
498 prog->MaxAtomicBuffers = BRW_MAX_ABO;
499 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
500 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
501 }
502
503 ctx->Const.MaxTextureUnits =
504 MIN2(ctx->Const.MaxTextureCoordUnits,
505 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
506
507 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
508 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
509 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
510 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
511 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
512 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
513 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
514
515
516 /* Hardware only supports a limited number of transform feedback buffers.
517 * So we need to override the Mesa default (which is based only on software
518 * limits).
519 */
520 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
521
522 /* On Gen6, in the worst case, we use up one binding table entry per
523 * transform feedback component (see comments above the definition of
524 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
525 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
526 * BRW_MAX_SOL_BINDINGS.
527 *
528 * In "separate components" mode, we need to divide this value by
529 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
530 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
531 */
532 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
533 ctx->Const.MaxTransformFeedbackSeparateComponents =
534 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
535
536 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount =
537 !brw->intelScreen->has_mi_math_and_lrr;
538
539 int max_samples;
540 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
541 const int clamp_max_samples =
542 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
543
544 if (clamp_max_samples < 0) {
545 max_samples = msaa_modes[0];
546 } else {
547 /* Select the largest supported MSAA mode that does not exceed
548 * clamp_max_samples.
549 */
550 max_samples = 0;
551 for (int i = 0; msaa_modes[i] != 0; ++i) {
552 if (msaa_modes[i] <= clamp_max_samples) {
553 max_samples = msaa_modes[i];
554 break;
555 }
556 }
557 }
558
559 ctx->Const.MaxSamples = max_samples;
560 ctx->Const.MaxColorTextureSamples = max_samples;
561 ctx->Const.MaxDepthTextureSamples = max_samples;
562 ctx->Const.MaxIntegerSamples = max_samples;
563 ctx->Const.MaxImageSamples = 0;
564
565 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
566 * to map indices of rectangular grid to sample numbers within a pixel.
567 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
568 * extension implementation. For more details see the comment above
569 * gen6_set_sample_maps() definition.
570 */
571 gen6_set_sample_maps(ctx);
572
573 ctx->Const.MinLineWidth = 1.0;
574 ctx->Const.MinLineWidthAA = 1.0;
575 if (brw->gen >= 6) {
576 ctx->Const.MaxLineWidth = 7.375;
577 ctx->Const.MaxLineWidthAA = 7.375;
578 ctx->Const.LineWidthGranularity = 0.125;
579 } else {
580 ctx->Const.MaxLineWidth = 7.0;
581 ctx->Const.MaxLineWidthAA = 7.0;
582 ctx->Const.LineWidthGranularity = 0.5;
583 }
584
585 /* For non-antialiased lines, we have to round the line width to the
586 * nearest whole number. Make sure that we don't advertise a line
587 * width that, when rounded, will be beyond the actual hardware
588 * maximum.
589 */
590 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
591
592 ctx->Const.MinPointSize = 1.0;
593 ctx->Const.MinPointSizeAA = 1.0;
594 ctx->Const.MaxPointSize = 255.0;
595 ctx->Const.MaxPointSizeAA = 255.0;
596 ctx->Const.PointSizeGranularity = 1.0;
597
598 if (brw->gen >= 5 || brw->is_g4x)
599 ctx->Const.MaxClipPlanes = 8;
600
601 ctx->Const.LowerTessLevel = true;
602 ctx->Const.PrimitiveRestartForPatches = true;
603
604 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
605 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
606 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
607 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
608 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
609 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
610 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
611 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
612 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
613 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
614 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
615 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
616 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
617 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
618
619 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
620 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
621 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
622 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
623 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
624 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
625 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
626 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
627 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
628 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
629 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
630
631 /* Fragment shaders use real, 32-bit twos-complement integers for all
632 * integer types.
633 */
634 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
635 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
636 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
637 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
638 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
639
640 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
641 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
642 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
643 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
644 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
645
646 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
647 * but we're not sure how it's actually done for vertex order,
648 * that affect provoking vertex decision. Always use last vertex
649 * convention for quad primitive which works as expected for now.
650 */
651 if (brw->gen >= 6)
652 ctx->Const.QuadsFollowProvokingVertexConvention = false;
653
654 ctx->Const.NativeIntegers = true;
655 ctx->Const.VertexID_is_zero_based = true;
656
657 /* Regarding the CMP instruction, the Ivybridge PRM says:
658 *
659 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
660 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
661 * 0xFFFFFFFF) is assigned to dst."
662 *
663 * but PRMs for earlier generations say
664 *
665 * "In dword format, one GRF may store up to 8 results. When the register
666 * is used later as a vector of Booleans, as only LSB at each channel
667 * contains meaning [sic] data, software should make sure all higher bits
668 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
669 *
670 * We select the representation of a true boolean uniform to be ~0, and fix
671 * the results of Gen <= 5 CMP instruction's with -(result & 1).
672 */
673 ctx->Const.UniformBooleanTrue = ~0;
674
675 /* From the gen4 PRM, volume 4 page 127:
676 *
677 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
678 * the base address of the first element of the surface, computed in
679 * software by adding the surface base address to the byte offset of
680 * the element in the buffer."
681 *
682 * However, unaligned accesses are slower, so enforce buffer alignment.
683 */
684 ctx->Const.UniformBufferOffsetAlignment = 16;
685
686 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
687 * that we can safely have the CPU and GPU writing the same SSBO on
688 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
689 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
690 * be updating disjoint regions of the buffer simultaneously and that will
691 * break if the regions overlap the same cacheline.
692 */
693 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
694 ctx->Const.TextureBufferOffsetAlignment = 16;
695 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
696
697 if (brw->gen >= 6) {
698 ctx->Const.MaxVarying = 32;
699 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
700 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
701 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
702 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
703 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
704 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
705 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
706 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
707 }
708
709 /* We want the GLSL compiler to emit code that uses condition codes */
710 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
711 ctx->Const.ShaderCompilerOptions[i] =
712 brw->intelScreen->compiler->glsl_compiler_options[i];
713 }
714
715 if (brw->gen >= 7) {
716 ctx->Const.MaxViewportWidth = 32768;
717 ctx->Const.MaxViewportHeight = 32768;
718 }
719
720 /* ARB_viewport_array */
721 if (brw->gen >= 6 && ctx->API == API_OPENGL_CORE) {
722 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
723 ctx->Const.ViewportSubpixelBits = 0;
724
725 /* Cast to float before negating because MaxViewportWidth is unsigned.
726 */
727 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
728 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
729 }
730
731 /* ARB_gpu_shader5 */
732 if (brw->gen >= 7)
733 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
734
735 /* ARB_framebuffer_no_attachments */
736 ctx->Const.MaxFramebufferWidth = 16384;
737 ctx->Const.MaxFramebufferHeight = 16384;
738 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
739 ctx->Const.MaxFramebufferSamples = max_samples;
740 }
741
742 static void
743 brw_initialize_cs_context_constants(struct brw_context *brw, unsigned max_threads)
744 {
745 struct gl_context *ctx = &brw->ctx;
746 /* Maximum number of scalar compute shader invocations that can be run in
747 * parallel in the same subslice assuming SIMD32 dispatch.
748 */
749 const uint32_t max_invocations = 32 * max_threads;
750 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
751 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
752 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
753 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
754 ctx->Const.MaxComputeSharedMemorySize = 64 * 1024;
755 }
756
757 /**
758 * Process driconf (drirc) options, setting appropriate context flags.
759 *
760 * intelInitExtensions still pokes at optionCache directly, in order to
761 * avoid advertising various extensions. No flags are set, so it makes
762 * sense to continue doing that there.
763 */
764 static void
765 brw_process_driconf_options(struct brw_context *brw)
766 {
767 struct gl_context *ctx = &brw->ctx;
768
769 driOptionCache *options = &brw->optionCache;
770 driParseConfigFiles(options, &brw->intelScreen->optionCache,
771 brw->driContext->driScreenPriv->myNum, "i965");
772
773 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
774 switch (bo_reuse_mode) {
775 case DRI_CONF_BO_REUSE_DISABLED:
776 break;
777 case DRI_CONF_BO_REUSE_ALL:
778 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
779 break;
780 }
781
782 if (!driQueryOptionb(options, "hiz")) {
783 brw->has_hiz = false;
784 /* On gen6, you can only do separate stencil with HIZ. */
785 if (brw->gen == 6)
786 brw->has_separate_stencil = false;
787 }
788
789 if (driQueryOptionb(options, "always_flush_batch")) {
790 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
791 brw->always_flush_batch = true;
792 }
793
794 if (driQueryOptionb(options, "always_flush_cache")) {
795 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
796 brw->always_flush_cache = true;
797 }
798
799 if (driQueryOptionb(options, "disable_throttling")) {
800 fprintf(stderr, "disabling flush throttling\n");
801 brw->disable_throttling = true;
802 }
803
804 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
805
806 ctx->Const.ForceGLSLExtensionsWarn =
807 driQueryOptionb(options, "force_glsl_extensions_warn");
808
809 ctx->Const.DisableGLSLLineContinuations =
810 driQueryOptionb(options, "disable_glsl_line_continuations");
811
812 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
813 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
814
815 brw->dual_color_blend_by_location =
816 driQueryOptionb(options, "dual_color_blend_by_location");
817 }
818
819 GLboolean
820 brwCreateContext(gl_api api,
821 const struct gl_config *mesaVis,
822 __DRIcontext *driContextPriv,
823 unsigned major_version,
824 unsigned minor_version,
825 uint32_t flags,
826 bool notify_reset,
827 unsigned *dri_ctx_error,
828 void *sharedContextPrivate)
829 {
830 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
831 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
832 struct intel_screen *screen = sPriv->driverPrivate;
833 const struct brw_device_info *devinfo = screen->devinfo;
834 struct dd_function_table functions;
835
836 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
837 * provides us with context reset notifications.
838 */
839 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
840 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
841
842 if (screen->has_context_reset_notification)
843 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
844
845 if (flags & ~allowed_flags) {
846 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
847 return false;
848 }
849
850 struct brw_context *brw = rzalloc(NULL, struct brw_context);
851 if (!brw) {
852 fprintf(stderr, "%s: failed to alloc context\n", __func__);
853 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
854 return false;
855 }
856
857 driContextPriv->driverPrivate = brw;
858 brw->driContext = driContextPriv;
859 brw->intelScreen = screen;
860 brw->bufmgr = screen->bufmgr;
861
862 brw->gen = devinfo->gen;
863 brw->gt = devinfo->gt;
864 brw->is_g4x = devinfo->is_g4x;
865 brw->is_baytrail = devinfo->is_baytrail;
866 brw->is_haswell = devinfo->is_haswell;
867 brw->is_cherryview = devinfo->is_cherryview;
868 brw->is_broxton = devinfo->is_broxton;
869 brw->has_llc = devinfo->has_llc;
870 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
871 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
872 brw->has_pln = devinfo->has_pln;
873 brw->has_compr4 = devinfo->has_compr4;
874 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
875 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
876 brw->needs_unlit_centroid_workaround =
877 devinfo->needs_unlit_centroid_workaround;
878
879 brw->must_use_separate_stencil = devinfo->must_use_separate_stencil;
880 brw->has_swizzling = screen->hw_has_swizzling;
881
882 brw->vs.base.stage = MESA_SHADER_VERTEX;
883 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
884 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
885 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
886 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
887 if (brw->gen >= 8) {
888 gen8_init_vtable_surface_functions(brw);
889 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
890 } else if (brw->gen >= 7) {
891 gen7_init_vtable_surface_functions(brw);
892 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
893 } else if (brw->gen >= 6) {
894 gen6_init_vtable_surface_functions(brw);
895 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
896 } else {
897 gen4_init_vtable_surface_functions(brw);
898 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
899 }
900
901 brw_init_driver_functions(brw, &functions);
902
903 if (notify_reset)
904 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
905
906 struct gl_context *ctx = &brw->ctx;
907
908 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
909 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
910 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
911 intelDestroyContext(driContextPriv);
912 return false;
913 }
914
915 driContextSetFlags(ctx, flags);
916
917 /* Initialize the software rasterizer and helper modules.
918 *
919 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
920 * software fallbacks (which we have to support on legacy GL to do weird
921 * glDrawPixels(), glBitmap(), and other functions).
922 */
923 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
924 _swrast_CreateContext(ctx);
925 }
926
927 _vbo_CreateContext(ctx);
928 if (ctx->swrast_context) {
929 _tnl_CreateContext(ctx);
930 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
931 _swsetup_CreateContext(ctx);
932
933 /* Configure swrast to match hardware characteristics: */
934 _swrast_allow_pixel_fog(ctx, false);
935 _swrast_allow_vertex_fog(ctx, true);
936 }
937
938 _mesa_meta_init(ctx);
939
940 brw_process_driconf_options(brw);
941
942 if (INTEL_DEBUG & DEBUG_PERF)
943 brw->perf_debug = true;
944
945 brw_initialize_cs_context_constants(brw, devinfo->max_cs_threads);
946 brw_initialize_context_constants(brw);
947
948 ctx->Const.ResetStrategy = notify_reset
949 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
950
951 /* Reinitialize the context point state. It depends on ctx->Const values. */
952 _mesa_init_point(ctx);
953
954 intel_fbo_init(brw);
955
956 intel_batchbuffer_init(brw);
957
958 if (brw->gen >= 6) {
959 /* Create a new hardware context. Using a hardware context means that
960 * our GPU state will be saved/restored on context switch, allowing us
961 * to assume that the GPU is in the same state we left it in.
962 *
963 * This is required for transform feedback buffer offsets, query objects,
964 * and also allows us to reduce how much state we have to emit.
965 */
966 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
967
968 if (!brw->hw_ctx) {
969 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
970 intelDestroyContext(driContextPriv);
971 return false;
972 }
973 }
974
975 if (brw_init_pipe_control(brw, devinfo)) {
976 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
977 intelDestroyContext(driContextPriv);
978 return false;
979 }
980
981 brw_init_state(brw);
982
983 intelInitExtensions(ctx);
984
985 brw_init_surface_formats(brw);
986
987 brw->max_vs_threads = devinfo->max_vs_threads;
988 brw->max_hs_threads = devinfo->max_hs_threads;
989 brw->max_ds_threads = devinfo->max_ds_threads;
990 brw->max_gs_threads = devinfo->max_gs_threads;
991 brw->max_wm_threads = devinfo->max_wm_threads;
992 /* FINISHME: Do this for all platforms that the kernel supports */
993 if (brw->is_cherryview &&
994 screen->subslice_total > 0 && screen->eu_total > 0) {
995 /* Logical CS threads = EUs per subslice * 7 threads per EU */
996 brw->max_cs_threads = screen->eu_total / screen->subslice_total * 7;
997
998 /* Fuse configurations may give more threads than expected, never less. */
999 if (brw->max_cs_threads < devinfo->max_cs_threads)
1000 brw->max_cs_threads = devinfo->max_cs_threads;
1001 } else {
1002 brw->max_cs_threads = devinfo->max_cs_threads;
1003 }
1004 brw->urb.size = devinfo->urb.size;
1005 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
1006 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
1007 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
1008 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
1009 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
1010
1011 /* Estimate the size of the mappable aperture into the GTT. There's an
1012 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1013 * It turns out it's basically always 256MB, though some ancient hardware
1014 * was smaller.
1015 */
1016 uint32_t gtt_size = 256 * 1024 * 1024;
1017
1018 /* We don't want to map two objects such that a memcpy between them would
1019 * just fault one mapping in and then the other over and over forever. So
1020 * we would need to divide the GTT size by 2. Additionally, some GTT is
1021 * taken up by things like the framebuffer and the ringbuffer and such, so
1022 * be more conservative.
1023 */
1024 brw->max_gtt_map_object_size = gtt_size / 4;
1025
1026 if (brw->gen == 6)
1027 brw->urb.gs_present = false;
1028
1029 brw->prim_restart.in_progress = false;
1030 brw->prim_restart.enable_cut_index = false;
1031 brw->gs.enabled = false;
1032 brw->sf.viewport_transform_enable = true;
1033
1034 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
1035
1036 brw->use_resource_streamer = screen->has_resource_streamer &&
1037 (env_var_as_boolean("INTEL_USE_HW_BT", false) ||
1038 env_var_as_boolean("INTEL_USE_GATHER", false));
1039
1040 ctx->VertexProgram._MaintainTnlProgram = true;
1041 ctx->FragmentProgram._MaintainTexEnvProgram = true;
1042
1043 brw_draw_init( brw );
1044
1045 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
1046 /* Turn on some extra GL_ARB_debug_output generation. */
1047 brw->perf_debug = true;
1048 }
1049
1050 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
1051 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
1052
1053 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1054 brw_init_shader_time(brw);
1055
1056 _mesa_compute_version(ctx);
1057
1058 _mesa_initialize_dispatch_tables(ctx);
1059 _mesa_initialize_vbo_vtxfmt(ctx);
1060
1061 if (ctx->Extensions.AMD_performance_monitor) {
1062 brw_init_performance_monitors(brw);
1063 }
1064
1065 vbo_use_buffer_objects(ctx);
1066 vbo_always_unmap_buffers(ctx);
1067
1068 return true;
1069 }
1070
1071 void
1072 intelDestroyContext(__DRIcontext * driContextPriv)
1073 {
1074 struct brw_context *brw =
1075 (struct brw_context *) driContextPriv->driverPrivate;
1076 struct gl_context *ctx = &brw->ctx;
1077
1078 /* Dump a final BMP in case the application doesn't call SwapBuffers */
1079 if (INTEL_DEBUG & DEBUG_AUB) {
1080 intel_batchbuffer_flush(brw);
1081 aub_dump_bmp(&brw->ctx);
1082 }
1083
1084 _mesa_meta_free(&brw->ctx);
1085
1086 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1087 /* Force a report. */
1088 brw->shader_time.report_time = 0;
1089
1090 brw_collect_and_report_shader_time(brw);
1091 brw_destroy_shader_time(brw);
1092 }
1093
1094 brw_destroy_state(brw);
1095 brw_draw_destroy(brw);
1096
1097 drm_intel_bo_unreference(brw->curbe.curbe_bo);
1098 if (brw->vs.base.scratch_bo)
1099 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
1100 if (brw->gs.base.scratch_bo)
1101 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
1102 if (brw->wm.base.scratch_bo)
1103 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
1104
1105 gen7_reset_hw_bt_pool_offsets(brw);
1106 drm_intel_bo_unreference(brw->hw_bt_pool.bo);
1107 brw->hw_bt_pool.bo = NULL;
1108
1109 drm_intel_gem_context_destroy(brw->hw_ctx);
1110
1111 if (ctx->swrast_context) {
1112 _swsetup_DestroyContext(&brw->ctx);
1113 _tnl_DestroyContext(&brw->ctx);
1114 }
1115 _vbo_DestroyContext(&brw->ctx);
1116
1117 if (ctx->swrast_context)
1118 _swrast_DestroyContext(&brw->ctx);
1119
1120 brw_fini_pipe_control(brw);
1121 intel_batchbuffer_free(brw);
1122
1123 drm_intel_bo_unreference(brw->throttle_batch[1]);
1124 drm_intel_bo_unreference(brw->throttle_batch[0]);
1125 brw->throttle_batch[1] = NULL;
1126 brw->throttle_batch[0] = NULL;
1127
1128 driDestroyOptionCache(&brw->optionCache);
1129
1130 /* free the Mesa context */
1131 _mesa_free_context_data(&brw->ctx);
1132
1133 ralloc_free(brw);
1134 driContextPriv->driverPrivate = NULL;
1135 }
1136
1137 GLboolean
1138 intelUnbindContext(__DRIcontext * driContextPriv)
1139 {
1140 /* Unset current context and dispath table */
1141 _mesa_make_current(NULL, NULL, NULL);
1142
1143 return true;
1144 }
1145
1146 /**
1147 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1148 * on window system framebuffers.
1149 *
1150 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1151 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1152 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1153 * for a visual where you're guaranteed to be capable, but it turns out that
1154 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1155 * incapable ones, because there's no difference between the two in resources
1156 * used. Applications thus get built that accidentally rely on the default
1157 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1158 * great...
1159 *
1160 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1161 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1162 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1163 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1164 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1165 * and get no sRGB encode (assuming that both kinds of visual are available).
1166 * Thus our choice to support sRGB by default on our visuals for desktop would
1167 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1168 *
1169 * Unfortunately, renderbuffer setup happens before a context is created. So
1170 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1171 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1172 * yet), we go turn that back off before anyone finds out.
1173 */
1174 static void
1175 intel_gles3_srgb_workaround(struct brw_context *brw,
1176 struct gl_framebuffer *fb)
1177 {
1178 struct gl_context *ctx = &brw->ctx;
1179
1180 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1181 return;
1182
1183 /* Some day when we support the sRGB capable bit on visuals available for
1184 * GLES, we'll need to respect that and not disable things here.
1185 */
1186 fb->Visual.sRGBCapable = false;
1187 for (int i = 0; i < BUFFER_COUNT; i++) {
1188 struct gl_renderbuffer *rb = fb->Attachment[i].Renderbuffer;
1189 if (rb)
1190 rb->Format = _mesa_get_srgb_format_linear(rb->Format);
1191 }
1192 }
1193
1194 GLboolean
1195 intelMakeCurrent(__DRIcontext * driContextPriv,
1196 __DRIdrawable * driDrawPriv,
1197 __DRIdrawable * driReadPriv)
1198 {
1199 struct brw_context *brw;
1200 GET_CURRENT_CONTEXT(curCtx);
1201
1202 if (driContextPriv)
1203 brw = (struct brw_context *) driContextPriv->driverPrivate;
1204 else
1205 brw = NULL;
1206
1207 /* According to the glXMakeCurrent() man page: "Pending commands to
1208 * the previous context, if any, are flushed before it is released."
1209 * But only flush if we're actually changing contexts.
1210 */
1211 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1212 _mesa_flush(curCtx);
1213 }
1214
1215 if (driContextPriv) {
1216 struct gl_context *ctx = &brw->ctx;
1217 struct gl_framebuffer *fb, *readFb;
1218
1219 if (driDrawPriv == NULL) {
1220 fb = _mesa_get_incomplete_framebuffer();
1221 } else {
1222 fb = driDrawPriv->driverPrivate;
1223 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1224 }
1225
1226 if (driReadPriv == NULL) {
1227 readFb = _mesa_get_incomplete_framebuffer();
1228 } else {
1229 readFb = driReadPriv->driverPrivate;
1230 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1231 }
1232
1233 /* The sRGB workaround changes the renderbuffer's format. We must change
1234 * the format before the renderbuffer's miptree get's allocated, otherwise
1235 * the formats of the renderbuffer and its miptree will differ.
1236 */
1237 intel_gles3_srgb_workaround(brw, fb);
1238 intel_gles3_srgb_workaround(brw, readFb);
1239
1240 /* If the context viewport hasn't been initialized, force a call out to
1241 * the loader to get buffers so we have a drawable size for the initial
1242 * viewport. */
1243 if (!brw->ctx.ViewportInitialized)
1244 intel_prepare_render(brw);
1245
1246 _mesa_make_current(ctx, fb, readFb);
1247 } else {
1248 _mesa_make_current(NULL, NULL, NULL);
1249 }
1250
1251 return true;
1252 }
1253
1254 void
1255 intel_resolve_for_dri2_flush(struct brw_context *brw,
1256 __DRIdrawable *drawable)
1257 {
1258 if (brw->gen < 6) {
1259 /* MSAA and fast color clear are not supported, so don't waste time
1260 * checking whether a resolve is needed.
1261 */
1262 return;
1263 }
1264
1265 struct gl_framebuffer *fb = drawable->driverPrivate;
1266 struct intel_renderbuffer *rb;
1267
1268 /* Usually, only the back buffer will need to be downsampled. However,
1269 * the front buffer will also need it if the user has rendered into it.
1270 */
1271 static const gl_buffer_index buffers[2] = {
1272 BUFFER_BACK_LEFT,
1273 BUFFER_FRONT_LEFT,
1274 };
1275
1276 for (int i = 0; i < 2; ++i) {
1277 rb = intel_get_renderbuffer(fb, buffers[i]);
1278 if (rb == NULL || rb->mt == NULL)
1279 continue;
1280 if (rb->mt->num_samples <= 1)
1281 intel_miptree_resolve_color(brw, rb->mt, 0);
1282 else
1283 intel_renderbuffer_downsample(brw, rb);
1284 }
1285 }
1286
1287 static unsigned
1288 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1289 {
1290 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1291 }
1292
1293 static void
1294 intel_query_dri2_buffers(struct brw_context *brw,
1295 __DRIdrawable *drawable,
1296 __DRIbuffer **buffers,
1297 int *count);
1298
1299 static void
1300 intel_process_dri2_buffer(struct brw_context *brw,
1301 __DRIdrawable *drawable,
1302 __DRIbuffer *buffer,
1303 struct intel_renderbuffer *rb,
1304 const char *buffer_name);
1305
1306 static void
1307 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1308
1309 static void
1310 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1311 {
1312 struct gl_framebuffer *fb = drawable->driverPrivate;
1313 struct intel_renderbuffer *rb;
1314 __DRIbuffer *buffers = NULL;
1315 int i, count;
1316 const char *region_name;
1317
1318 /* Set this up front, so that in case our buffers get invalidated
1319 * while we're getting new buffers, we don't clobber the stamp and
1320 * thus ignore the invalidate. */
1321 drawable->lastStamp = drawable->dri2.stamp;
1322
1323 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1324 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1325
1326 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1327
1328 if (buffers == NULL)
1329 return;
1330
1331 for (i = 0; i < count; i++) {
1332 switch (buffers[i].attachment) {
1333 case __DRI_BUFFER_FRONT_LEFT:
1334 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1335 region_name = "dri2 front buffer";
1336 break;
1337
1338 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1339 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1340 region_name = "dri2 fake front buffer";
1341 break;
1342
1343 case __DRI_BUFFER_BACK_LEFT:
1344 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1345 region_name = "dri2 back buffer";
1346 break;
1347
1348 case __DRI_BUFFER_DEPTH:
1349 case __DRI_BUFFER_HIZ:
1350 case __DRI_BUFFER_DEPTH_STENCIL:
1351 case __DRI_BUFFER_STENCIL:
1352 case __DRI_BUFFER_ACCUM:
1353 default:
1354 fprintf(stderr,
1355 "unhandled buffer attach event, attachment type %d\n",
1356 buffers[i].attachment);
1357 return;
1358 }
1359
1360 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1361 }
1362
1363 }
1364
1365 void
1366 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1367 {
1368 struct brw_context *brw = context->driverPrivate;
1369 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1370
1371 /* Set this up front, so that in case our buffers get invalidated
1372 * while we're getting new buffers, we don't clobber the stamp and
1373 * thus ignore the invalidate. */
1374 drawable->lastStamp = drawable->dri2.stamp;
1375
1376 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1377 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1378
1379 if (screen->image.loader)
1380 intel_update_image_buffers(brw, drawable);
1381 else
1382 intel_update_dri2_buffers(brw, drawable);
1383
1384 driUpdateFramebufferSize(&brw->ctx, drawable);
1385 }
1386
1387 /**
1388 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1389 * state is required.
1390 */
1391 void
1392 intel_prepare_render(struct brw_context *brw)
1393 {
1394 struct gl_context *ctx = &brw->ctx;
1395 __DRIcontext *driContext = brw->driContext;
1396 __DRIdrawable *drawable;
1397
1398 drawable = driContext->driDrawablePriv;
1399 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1400 if (drawable->lastStamp != drawable->dri2.stamp)
1401 intel_update_renderbuffers(driContext, drawable);
1402 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1403 }
1404
1405 drawable = driContext->driReadablePriv;
1406 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1407 if (drawable->lastStamp != drawable->dri2.stamp)
1408 intel_update_renderbuffers(driContext, drawable);
1409 driContext->dri2.read_stamp = drawable->dri2.stamp;
1410 }
1411
1412 /* If we're currently rendering to the front buffer, the rendering
1413 * that will happen next will probably dirty the front buffer. So
1414 * mark it as dirty here.
1415 */
1416 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer))
1417 brw->front_buffer_dirty = true;
1418 }
1419
1420 /**
1421 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1422 *
1423 * To determine which DRI buffers to request, examine the renderbuffers
1424 * attached to the drawable's framebuffer. Then request the buffers with
1425 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1426 *
1427 * This is called from intel_update_renderbuffers().
1428 *
1429 * \param drawable Drawable whose buffers are queried.
1430 * \param buffers [out] List of buffers returned by DRI2 query.
1431 * \param buffer_count [out] Number of buffers returned.
1432 *
1433 * \see intel_update_renderbuffers()
1434 * \see DRI2GetBuffers()
1435 * \see DRI2GetBuffersWithFormat()
1436 */
1437 static void
1438 intel_query_dri2_buffers(struct brw_context *brw,
1439 __DRIdrawable *drawable,
1440 __DRIbuffer **buffers,
1441 int *buffer_count)
1442 {
1443 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1444 struct gl_framebuffer *fb = drawable->driverPrivate;
1445 int i = 0;
1446 unsigned attachments[8];
1447
1448 struct intel_renderbuffer *front_rb;
1449 struct intel_renderbuffer *back_rb;
1450
1451 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1452 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1453
1454 memset(attachments, 0, sizeof(attachments));
1455 if ((_mesa_is_front_buffer_drawing(fb) ||
1456 _mesa_is_front_buffer_reading(fb) ||
1457 !back_rb) && front_rb) {
1458 /* If a fake front buffer is in use, then querying for
1459 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1460 * the real front buffer to the fake front buffer. So before doing the
1461 * query, we need to make sure all the pending drawing has landed in the
1462 * real front buffer.
1463 */
1464 intel_batchbuffer_flush(brw);
1465 intel_flush_front(&brw->ctx);
1466
1467 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1468 attachments[i++] = intel_bits_per_pixel(front_rb);
1469 } else if (front_rb && brw->front_buffer_dirty) {
1470 /* We have pending front buffer rendering, but we aren't querying for a
1471 * front buffer. If the front buffer we have is a fake front buffer,
1472 * the X server is going to throw it away when it processes the query.
1473 * So before doing the query, make sure all the pending drawing has
1474 * landed in the real front buffer.
1475 */
1476 intel_batchbuffer_flush(brw);
1477 intel_flush_front(&brw->ctx);
1478 }
1479
1480 if (back_rb) {
1481 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1482 attachments[i++] = intel_bits_per_pixel(back_rb);
1483 }
1484
1485 assert(i <= ARRAY_SIZE(attachments));
1486
1487 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1488 &drawable->w,
1489 &drawable->h,
1490 attachments, i / 2,
1491 buffer_count,
1492 drawable->loaderPrivate);
1493 }
1494
1495 /**
1496 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1497 *
1498 * This is called from intel_update_renderbuffers().
1499 *
1500 * \par Note:
1501 * DRI buffers whose attachment point is DRI2BufferStencil or
1502 * DRI2BufferDepthStencil are handled as special cases.
1503 *
1504 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1505 * that is passed to drm_intel_bo_gem_create_from_name().
1506 *
1507 * \see intel_update_renderbuffers()
1508 */
1509 static void
1510 intel_process_dri2_buffer(struct brw_context *brw,
1511 __DRIdrawable *drawable,
1512 __DRIbuffer *buffer,
1513 struct intel_renderbuffer *rb,
1514 const char *buffer_name)
1515 {
1516 struct gl_framebuffer *fb = drawable->driverPrivate;
1517 drm_intel_bo *bo;
1518
1519 if (!rb)
1520 return;
1521
1522 unsigned num_samples = rb->Base.Base.NumSamples;
1523
1524 /* We try to avoid closing and reopening the same BO name, because the first
1525 * use of a mapping of the buffer involves a bunch of page faulting which is
1526 * moderately expensive.
1527 */
1528 struct intel_mipmap_tree *last_mt;
1529 if (num_samples == 0)
1530 last_mt = rb->mt;
1531 else
1532 last_mt = rb->singlesample_mt;
1533
1534 uint32_t old_name = 0;
1535 if (last_mt) {
1536 /* The bo already has a name because the miptree was created by a
1537 * previous call to intel_process_dri2_buffer(). If a bo already has a
1538 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1539 * create a new name.
1540 */
1541 drm_intel_bo_flink(last_mt->bo, &old_name);
1542 }
1543
1544 if (old_name == buffer->name)
1545 return;
1546
1547 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1548 fprintf(stderr,
1549 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1550 buffer->name, buffer->attachment,
1551 buffer->cpp, buffer->pitch);
1552 }
1553
1554 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1555 buffer->name);
1556 if (!bo) {
1557 fprintf(stderr,
1558 "Failed to open BO for returned DRI2 buffer "
1559 "(%dx%d, %s, named %d).\n"
1560 "This is likely a bug in the X Server that will lead to a "
1561 "crash soon.\n",
1562 drawable->w, drawable->h, buffer_name, buffer->name);
1563 return;
1564 }
1565
1566 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1567 drawable->w, drawable->h,
1568 buffer->pitch);
1569
1570 if (_mesa_is_front_buffer_drawing(fb) &&
1571 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1572 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1573 rb->Base.Base.NumSamples > 1) {
1574 intel_renderbuffer_upsample(brw, rb);
1575 }
1576
1577 assert(rb->mt);
1578
1579 drm_intel_bo_unreference(bo);
1580 }
1581
1582 /**
1583 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1584 *
1585 * To determine which DRI buffers to request, examine the renderbuffers
1586 * attached to the drawable's framebuffer. Then request the buffers from
1587 * the image loader
1588 *
1589 * This is called from intel_update_renderbuffers().
1590 *
1591 * \param drawable Drawable whose buffers are queried.
1592 * \param buffers [out] List of buffers returned by DRI2 query.
1593 * \param buffer_count [out] Number of buffers returned.
1594 *
1595 * \see intel_update_renderbuffers()
1596 */
1597
1598 static void
1599 intel_update_image_buffer(struct brw_context *intel,
1600 __DRIdrawable *drawable,
1601 struct intel_renderbuffer *rb,
1602 __DRIimage *buffer,
1603 enum __DRIimageBufferMask buffer_type)
1604 {
1605 struct gl_framebuffer *fb = drawable->driverPrivate;
1606
1607 if (!rb || !buffer->bo)
1608 return;
1609
1610 unsigned num_samples = rb->Base.Base.NumSamples;
1611
1612 /* Check and see if we're already bound to the right
1613 * buffer object
1614 */
1615 struct intel_mipmap_tree *last_mt;
1616 if (num_samples == 0)
1617 last_mt = rb->mt;
1618 else
1619 last_mt = rb->singlesample_mt;
1620
1621 if (last_mt && last_mt->bo == buffer->bo)
1622 return;
1623
1624 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1625 buffer->width, buffer->height,
1626 buffer->pitch);
1627
1628 if (_mesa_is_front_buffer_drawing(fb) &&
1629 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1630 rb->Base.Base.NumSamples > 1) {
1631 intel_renderbuffer_upsample(intel, rb);
1632 }
1633 }
1634
1635 static void
1636 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1637 {
1638 struct gl_framebuffer *fb = drawable->driverPrivate;
1639 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1640 struct intel_renderbuffer *front_rb;
1641 struct intel_renderbuffer *back_rb;
1642 struct __DRIimageList images;
1643 unsigned int format;
1644 uint32_t buffer_mask = 0;
1645
1646 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1647 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1648
1649 if (back_rb)
1650 format = intel_rb_format(back_rb);
1651 else if (front_rb)
1652 format = intel_rb_format(front_rb);
1653 else
1654 return;
1655
1656 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1657 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1658 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1659 }
1660
1661 if (back_rb)
1662 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1663
1664 (*screen->image.loader->getBuffers) (drawable,
1665 driGLFormatToImageFormat(format),
1666 &drawable->dri2.stamp,
1667 drawable->loaderPrivate,
1668 buffer_mask,
1669 &images);
1670
1671 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1672 drawable->w = images.front->width;
1673 drawable->h = images.front->height;
1674 intel_update_image_buffer(brw,
1675 drawable,
1676 front_rb,
1677 images.front,
1678 __DRI_IMAGE_BUFFER_FRONT);
1679 }
1680 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1681 drawable->w = images.back->width;
1682 drawable->h = images.back->height;
1683 intel_update_image_buffer(brw,
1684 drawable,
1685 back_rb,
1686 images.back,
1687 __DRI_IMAGE_BUFFER_BACK);
1688 }
1689 }