i965/gen9: Resolve SRGB color buffers when GL_FRAMEBUFFER_SRGB enabled
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44 #include "main/framebuffer.h"
45
46 #include "vbo/vbo_context.h"
47
48 #include "drivers/common/driverfuncs.h"
49 #include "drivers/common/meta.h"
50 #include "utils.h"
51
52 #include "brw_context.h"
53 #include "brw_defines.h"
54 #include "brw_compiler.h"
55 #include "brw_draw.h"
56 #include "brw_state.h"
57
58 #include "intel_batchbuffer.h"
59 #include "intel_buffer_objects.h"
60 #include "intel_buffers.h"
61 #include "intel_fbo.h"
62 #include "intel_mipmap_tree.h"
63 #include "intel_pixel.h"
64 #include "intel_image.h"
65 #include "intel_tex.h"
66 #include "intel_tex_obj.h"
67
68 #include "swrast_setup/swrast_setup.h"
69 #include "tnl/tnl.h"
70 #include "tnl/t_pipeline.h"
71 #include "util/ralloc.h"
72 #include "util/debug.h"
73
74 /***************************************
75 * Mesa's Driver Functions
76 ***************************************/
77
78 static size_t
79 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
80 GLenum internalFormat, int samples[16])
81 {
82 struct brw_context *brw = brw_context(ctx);
83
84 (void) target;
85
86 switch (brw->gen) {
87 case 9:
88 samples[0] = 16;
89 samples[1] = 8;
90 samples[2] = 4;
91 samples[3] = 2;
92 return 4;
93
94 case 8:
95 samples[0] = 8;
96 samples[1] = 4;
97 samples[2] = 2;
98 return 3;
99
100 case 7:
101 samples[0] = 8;
102 samples[1] = 4;
103 return 2;
104
105 case 6:
106 samples[0] = 4;
107 return 1;
108
109 default:
110 assert(brw->gen < 6);
111 samples[0] = 1;
112 return 1;
113 }
114 }
115
116 const char *const brw_vendor_string = "Intel Open Source Technology Center";
117
118 const char *
119 brw_get_renderer_string(unsigned deviceID)
120 {
121 const char *chipset;
122 static char buffer[128];
123
124 switch (deviceID) {
125 #undef CHIPSET
126 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
127 #include "pci_ids/i965_pci_ids.h"
128 default:
129 chipset = "Unknown Intel Chipset";
130 break;
131 }
132
133 (void) driGetRendererString(buffer, chipset, 0);
134 return buffer;
135 }
136
137 static const GLubyte *
138 intel_get_string(struct gl_context * ctx, GLenum name)
139 {
140 const struct brw_context *const brw = brw_context(ctx);
141
142 switch (name) {
143 case GL_VENDOR:
144 return (GLubyte *) brw_vendor_string;
145
146 case GL_RENDERER:
147 return
148 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
149
150 default:
151 return NULL;
152 }
153 }
154
155 static void
156 intel_viewport(struct gl_context *ctx)
157 {
158 struct brw_context *brw = brw_context(ctx);
159 __DRIcontext *driContext = brw->driContext;
160
161 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
162 dri2InvalidateDrawable(driContext->driDrawablePriv);
163 dri2InvalidateDrawable(driContext->driReadablePriv);
164 }
165 }
166
167 static void
168 intel_update_state(struct gl_context * ctx, GLuint new_state)
169 {
170 struct brw_context *brw = brw_context(ctx);
171 struct intel_texture_object *tex_obj;
172 struct intel_renderbuffer *depth_irb;
173
174 if (ctx->swrast_context)
175 _swrast_InvalidateState(ctx, new_state);
176 _vbo_InvalidateState(ctx, new_state);
177
178 brw->NewGLState |= new_state;
179
180 _mesa_unlock_context_textures(ctx);
181
182 /* Resolve the depth buffer's HiZ buffer. */
183 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
184 if (depth_irb)
185 intel_renderbuffer_resolve_hiz(brw, depth_irb);
186
187 /* Resolve depth buffer and render cache of each enabled texture. */
188 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
189 for (int i = 0; i <= maxEnabledUnit; i++) {
190 if (!ctx->Texture.Unit[i]._Current)
191 continue;
192 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
193 if (!tex_obj || !tex_obj->mt)
194 continue;
195 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
196 intel_miptree_resolve_color(brw, tex_obj->mt);
197 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
198 }
199
200 /* Resolve color for each active shader image. */
201 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
202 const struct gl_shader *shader = ctx->_Shader->CurrentProgram[i] ?
203 ctx->_Shader->CurrentProgram[i]->_LinkedShaders[i] : NULL;
204
205 if (unlikely(shader && shader->NumImages)) {
206 for (unsigned j = 0; j < shader->NumImages; j++) {
207 struct gl_image_unit *u = &ctx->ImageUnits[shader->ImageUnits[j]];
208 tex_obj = intel_texture_object(u->TexObj);
209
210 if (tex_obj && tex_obj->mt) {
211 intel_miptree_resolve_color(brw, tex_obj->mt);
212 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
213 }
214 }
215 }
216 }
217
218 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of the
219 * single-sampled color renderbuffers because the CCS buffer isn't
220 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
221 * enabled because otherwise the surface state will be programmed with the
222 * linear equivalent format anyway.
223 */
224 if (brw->gen >= 9 && ctx->Color.sRGBEnabled) {
225 struct gl_framebuffer *fb = ctx->DrawBuffer;
226 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
227 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[i];
228
229 if (rb == NULL)
230 continue;
231
232 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
233 struct intel_mipmap_tree *mt = irb->mt;
234
235 if (mt == NULL ||
236 mt->num_samples > 1 ||
237 _mesa_get_srgb_format_linear(mt->format) == mt->format)
238 continue;
239
240 intel_miptree_resolve_color(brw, mt);
241 brw_render_cache_set_check_flush(brw, mt->bo);
242 }
243 }
244
245 _mesa_lock_context_textures(ctx);
246 }
247
248 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
249
250 static void
251 intel_flush_front(struct gl_context *ctx)
252 {
253 struct brw_context *brw = brw_context(ctx);
254 __DRIcontext *driContext = brw->driContext;
255 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
256 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
257
258 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
259 if (flushFront(screen) && driDrawable &&
260 driDrawable->loaderPrivate) {
261
262 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
263 *
264 * This potentially resolves both front and back buffer. It
265 * is unnecessary to resolve the back, but harms nothing except
266 * performance. And no one cares about front-buffer render
267 * performance.
268 */
269 intel_resolve_for_dri2_flush(brw, driDrawable);
270 intel_batchbuffer_flush(brw);
271
272 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
273
274 /* We set the dirty bit in intel_prepare_render() if we're
275 * front buffer rendering once we get there.
276 */
277 brw->front_buffer_dirty = false;
278 }
279 }
280 }
281
282 static void
283 intel_glFlush(struct gl_context *ctx)
284 {
285 struct brw_context *brw = brw_context(ctx);
286
287 intel_batchbuffer_flush(brw);
288 intel_flush_front(ctx);
289
290 brw->need_flush_throttle = true;
291 }
292
293 static void
294 intel_finish(struct gl_context * ctx)
295 {
296 struct brw_context *brw = brw_context(ctx);
297
298 intel_glFlush(ctx);
299
300 if (brw->batch.last_bo)
301 drm_intel_bo_wait_rendering(brw->batch.last_bo);
302 }
303
304 static void
305 brw_init_driver_functions(struct brw_context *brw,
306 struct dd_function_table *functions)
307 {
308 _mesa_init_driver_functions(functions);
309
310 /* GLX uses DRI2 invalidate events to handle window resizing.
311 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
312 * which doesn't provide a mechanism for snooping the event queues.
313 *
314 * So EGL still relies on viewport hacks to handle window resizing.
315 * This should go away with DRI3000.
316 */
317 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
318 functions->Viewport = intel_viewport;
319
320 functions->Flush = intel_glFlush;
321 functions->Finish = intel_finish;
322 functions->GetString = intel_get_string;
323 functions->UpdateState = intel_update_state;
324
325 intelInitTextureFuncs(functions);
326 intelInitTextureImageFuncs(functions);
327 intelInitTextureSubImageFuncs(functions);
328 intelInitTextureCopyImageFuncs(functions);
329 intelInitCopyImageFuncs(functions);
330 intelInitClearFuncs(functions);
331 intelInitBufferFuncs(functions);
332 intelInitPixelFuncs(functions);
333 intelInitBufferObjectFuncs(functions);
334 intel_init_syncobj_functions(functions);
335 brw_init_object_purgeable_functions(functions);
336
337 brwInitFragProgFuncs( functions );
338 brw_init_common_queryobj_functions(functions);
339 if (brw->gen >= 6)
340 gen6_init_queryobj_functions(functions);
341 else
342 gen4_init_queryobj_functions(functions);
343 brw_init_compute_functions(functions);
344 if (brw->gen >= 7)
345 brw_init_conditional_render_functions(functions);
346
347 functions->QuerySamplesForFormat = brw_query_samples_for_format;
348
349 functions->NewTransformFeedback = brw_new_transform_feedback;
350 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
351 functions->GetTransformFeedbackVertexCount =
352 brw_get_transform_feedback_vertex_count;
353 if (brw->gen >= 7) {
354 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
355 functions->EndTransformFeedback = gen7_end_transform_feedback;
356 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
357 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
358 } else {
359 functions->BeginTransformFeedback = brw_begin_transform_feedback;
360 functions->EndTransformFeedback = brw_end_transform_feedback;
361 }
362
363 if (brw->gen >= 6)
364 functions->GetSamplePosition = gen6_get_sample_position;
365 }
366
367 static void
368 brw_initialize_context_constants(struct brw_context *brw)
369 {
370 struct gl_context *ctx = &brw->ctx;
371 const struct brw_compiler *compiler = brw->intelScreen->compiler;
372
373 const bool stage_exists[MESA_SHADER_STAGES] = {
374 [MESA_SHADER_VERTEX] = true,
375 [MESA_SHADER_TESS_CTRL] = brw->gen >= 8,
376 [MESA_SHADER_TESS_EVAL] = brw->gen >= 8,
377 [MESA_SHADER_GEOMETRY] = brw->gen >= 6,
378 [MESA_SHADER_FRAGMENT] = true,
379 [MESA_SHADER_COMPUTE] =
380 (ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
381 _mesa_extension_override_enables.ARB_compute_shader,
382 };
383
384 unsigned num_stages = 0;
385 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
386 if (stage_exists[i])
387 num_stages++;
388 }
389
390 unsigned max_samplers =
391 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
392
393 ctx->Const.MaxDualSourceDrawBuffers = 1;
394 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
395 ctx->Const.MaxCombinedShaderOutputResources =
396 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
397
398 ctx->Const.QueryCounterBits.Timestamp = 36;
399
400 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
401 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
402 ctx->Const.MaxRenderbufferSize = 8192;
403 ctx->Const.MaxTextureLevels = MIN2(14 /* 8192 */, MAX_TEXTURE_LEVELS);
404 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
405 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
406 ctx->Const.MaxArrayTextureLayers = brw->gen >= 7 ? 2048 : 512;
407 ctx->Const.MaxTextureMbytes = 1536;
408 ctx->Const.MaxTextureRectSize = 1 << 12;
409 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
410 ctx->Const.StripTextureBorder = true;
411 if (brw->gen >= 7)
412 ctx->Const.MaxProgramTextureGatherComponents = 4;
413 else if (brw->gen == 6)
414 ctx->Const.MaxProgramTextureGatherComponents = 1;
415
416 ctx->Const.MaxUniformBlockSize = 65536;
417
418 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
419 struct gl_program_constants *prog = &ctx->Const.Program[i];
420
421 if (!stage_exists[i])
422 continue;
423
424 prog->MaxTextureImageUnits = max_samplers;
425
426 prog->MaxUniformBlocks = BRW_MAX_UBO;
427 prog->MaxCombinedUniformComponents =
428 prog->MaxUniformComponents +
429 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
430
431 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
432 prog->MaxAtomicBuffers = BRW_MAX_ABO;
433 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
434 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
435 }
436
437 ctx->Const.MaxTextureUnits =
438 MIN2(ctx->Const.MaxTextureCoordUnits,
439 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
440
441 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
442 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
443 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
444 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
445 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
446 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
447 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
448
449
450 /* Hardware only supports a limited number of transform feedback buffers.
451 * So we need to override the Mesa default (which is based only on software
452 * limits).
453 */
454 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
455
456 /* On Gen6, in the worst case, we use up one binding table entry per
457 * transform feedback component (see comments above the definition of
458 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
459 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
460 * BRW_MAX_SOL_BINDINGS.
461 *
462 * In "separate components" mode, we need to divide this value by
463 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
464 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
465 */
466 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
467 ctx->Const.MaxTransformFeedbackSeparateComponents =
468 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
469
470 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
471
472 int max_samples;
473 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
474 const int clamp_max_samples =
475 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
476
477 if (clamp_max_samples < 0) {
478 max_samples = msaa_modes[0];
479 } else {
480 /* Select the largest supported MSAA mode that does not exceed
481 * clamp_max_samples.
482 */
483 max_samples = 0;
484 for (int i = 0; msaa_modes[i] != 0; ++i) {
485 if (msaa_modes[i] <= clamp_max_samples) {
486 max_samples = msaa_modes[i];
487 break;
488 }
489 }
490 }
491
492 ctx->Const.MaxSamples = max_samples;
493 ctx->Const.MaxColorTextureSamples = max_samples;
494 ctx->Const.MaxDepthTextureSamples = max_samples;
495 ctx->Const.MaxIntegerSamples = max_samples;
496 ctx->Const.MaxImageSamples = 0;
497
498 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
499 * to map indices of rectangular grid to sample numbers within a pixel.
500 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
501 * extension implementation. For more details see the comment above
502 * gen6_set_sample_maps() definition.
503 */
504 gen6_set_sample_maps(ctx);
505
506 ctx->Const.MinLineWidth = 1.0;
507 ctx->Const.MinLineWidthAA = 1.0;
508 if (brw->gen >= 6) {
509 ctx->Const.MaxLineWidth = 7.375;
510 ctx->Const.MaxLineWidthAA = 7.375;
511 ctx->Const.LineWidthGranularity = 0.125;
512 } else {
513 ctx->Const.MaxLineWidth = 7.0;
514 ctx->Const.MaxLineWidthAA = 7.0;
515 ctx->Const.LineWidthGranularity = 0.5;
516 }
517
518 /* For non-antialiased lines, we have to round the line width to the
519 * nearest whole number. Make sure that we don't advertise a line
520 * width that, when rounded, will be beyond the actual hardware
521 * maximum.
522 */
523 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
524
525 ctx->Const.MinPointSize = 1.0;
526 ctx->Const.MinPointSizeAA = 1.0;
527 ctx->Const.MaxPointSize = 255.0;
528 ctx->Const.MaxPointSizeAA = 255.0;
529 ctx->Const.PointSizeGranularity = 1.0;
530
531 if (brw->gen >= 5 || brw->is_g4x)
532 ctx->Const.MaxClipPlanes = 8;
533
534 ctx->Const.LowerTessLevel = true;
535
536 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
537 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
538 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
539 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
540 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
541 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
542 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
543 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
544 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
545 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
546 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
547 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
548 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
549 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
550
551 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
552 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
553 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
554 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
555 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
556 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
557 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
558 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
559 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
560 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
561 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
562
563 /* Fragment shaders use real, 32-bit twos-complement integers for all
564 * integer types.
565 */
566 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
567 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
568 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
569 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
570 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
571
572 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
573 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
574 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
575 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
576 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
577
578 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
579 * but we're not sure how it's actually done for vertex order,
580 * that affect provoking vertex decision. Always use last vertex
581 * convention for quad primitive which works as expected for now.
582 */
583 if (brw->gen >= 6)
584 ctx->Const.QuadsFollowProvokingVertexConvention = false;
585
586 ctx->Const.NativeIntegers = true;
587 ctx->Const.VertexID_is_zero_based = true;
588
589 /* Regarding the CMP instruction, the Ivybridge PRM says:
590 *
591 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
592 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
593 * 0xFFFFFFFF) is assigned to dst."
594 *
595 * but PRMs for earlier generations say
596 *
597 * "In dword format, one GRF may store up to 8 results. When the register
598 * is used later as a vector of Booleans, as only LSB at each channel
599 * contains meaning [sic] data, software should make sure all higher bits
600 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
601 *
602 * We select the representation of a true boolean uniform to be ~0, and fix
603 * the results of Gen <= 5 CMP instruction's with -(result & 1).
604 */
605 ctx->Const.UniformBooleanTrue = ~0;
606
607 /* From the gen4 PRM, volume 4 page 127:
608 *
609 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
610 * the base address of the first element of the surface, computed in
611 * software by adding the surface base address to the byte offset of
612 * the element in the buffer."
613 *
614 * However, unaligned accesses are slower, so enforce buffer alignment.
615 */
616 ctx->Const.UniformBufferOffsetAlignment = 16;
617
618 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
619 * that we can safely have the CPU and GPU writing the same SSBO on
620 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
621 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
622 * be updating disjoint regions of the buffer simultaneously and that will
623 * break if the regions overlap the same cacheline.
624 */
625 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
626 ctx->Const.TextureBufferOffsetAlignment = 16;
627 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
628
629 if (brw->gen >= 6) {
630 ctx->Const.MaxVarying = 32;
631 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
632 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
633 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
634 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
635 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
636 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
637 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
638 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
639 }
640
641 /* We want the GLSL compiler to emit code that uses condition codes */
642 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
643 ctx->Const.ShaderCompilerOptions[i] =
644 brw->intelScreen->compiler->glsl_compiler_options[i];
645 }
646
647 /* ARB_viewport_array */
648 if (brw->gen >= 6 && ctx->API == API_OPENGL_CORE) {
649 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
650 ctx->Const.ViewportSubpixelBits = 0;
651
652 /* Cast to float before negating because MaxViewportWidth is unsigned.
653 */
654 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
655 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
656 }
657
658 /* ARB_gpu_shader5 */
659 if (brw->gen >= 7)
660 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
661
662 /* ARB_framebuffer_no_attachments */
663 ctx->Const.MaxFramebufferWidth = ctx->Const.MaxViewportWidth;
664 ctx->Const.MaxFramebufferHeight = ctx->Const.MaxViewportHeight;
665 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
666 ctx->Const.MaxFramebufferSamples = max_samples;
667 }
668
669 static void
670 brw_initialize_cs_context_constants(struct brw_context *brw, unsigned max_threads)
671 {
672 struct gl_context *ctx = &brw->ctx;
673
674 /* For ES, we set these constants based on SIMD8.
675 *
676 * TODO: Once we can always generate SIMD16, we should update this.
677 *
678 * For GL, we assume we can generate a SIMD16 program, but this currently
679 * is not always true. This allows us to run more test cases, and will be
680 * required based on desktop GL compute shader requirements.
681 */
682 const int simd_size = ctx->API == API_OPENGL_CORE ? 16 : 8;
683
684 const uint32_t max_invocations = simd_size * max_threads;
685 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
686 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
687 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
688 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
689 }
690
691 /**
692 * Process driconf (drirc) options, setting appropriate context flags.
693 *
694 * intelInitExtensions still pokes at optionCache directly, in order to
695 * avoid advertising various extensions. No flags are set, so it makes
696 * sense to continue doing that there.
697 */
698 static void
699 brw_process_driconf_options(struct brw_context *brw)
700 {
701 struct gl_context *ctx = &brw->ctx;
702
703 driOptionCache *options = &brw->optionCache;
704 driParseConfigFiles(options, &brw->intelScreen->optionCache,
705 brw->driContext->driScreenPriv->myNum, "i965");
706
707 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
708 switch (bo_reuse_mode) {
709 case DRI_CONF_BO_REUSE_DISABLED:
710 break;
711 case DRI_CONF_BO_REUSE_ALL:
712 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
713 break;
714 }
715
716 if (!driQueryOptionb(options, "hiz")) {
717 brw->has_hiz = false;
718 /* On gen6, you can only do separate stencil with HIZ. */
719 if (brw->gen == 6)
720 brw->has_separate_stencil = false;
721 }
722
723 if (driQueryOptionb(options, "always_flush_batch")) {
724 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
725 brw->always_flush_batch = true;
726 }
727
728 if (driQueryOptionb(options, "always_flush_cache")) {
729 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
730 brw->always_flush_cache = true;
731 }
732
733 if (driQueryOptionb(options, "disable_throttling")) {
734 fprintf(stderr, "disabling flush throttling\n");
735 brw->disable_throttling = true;
736 }
737
738 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
739
740 ctx->Const.ForceGLSLExtensionsWarn =
741 driQueryOptionb(options, "force_glsl_extensions_warn");
742
743 ctx->Const.DisableGLSLLineContinuations =
744 driQueryOptionb(options, "disable_glsl_line_continuations");
745
746 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
747 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
748 }
749
750 GLboolean
751 brwCreateContext(gl_api api,
752 const struct gl_config *mesaVis,
753 __DRIcontext *driContextPriv,
754 unsigned major_version,
755 unsigned minor_version,
756 uint32_t flags,
757 bool notify_reset,
758 unsigned *dri_ctx_error,
759 void *sharedContextPrivate)
760 {
761 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
762 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
763 struct intel_screen *screen = sPriv->driverPrivate;
764 const struct brw_device_info *devinfo = screen->devinfo;
765 struct dd_function_table functions;
766
767 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
768 * provides us with context reset notifications.
769 */
770 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
771 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
772
773 if (screen->has_context_reset_notification)
774 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
775
776 if (flags & ~allowed_flags) {
777 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
778 return false;
779 }
780
781 struct brw_context *brw = rzalloc(NULL, struct brw_context);
782 if (!brw) {
783 fprintf(stderr, "%s: failed to alloc context\n", __func__);
784 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
785 return false;
786 }
787
788 driContextPriv->driverPrivate = brw;
789 brw->driContext = driContextPriv;
790 brw->intelScreen = screen;
791 brw->bufmgr = screen->bufmgr;
792
793 brw->gen = devinfo->gen;
794 brw->gt = devinfo->gt;
795 brw->is_g4x = devinfo->is_g4x;
796 brw->is_baytrail = devinfo->is_baytrail;
797 brw->is_haswell = devinfo->is_haswell;
798 brw->is_cherryview = devinfo->is_cherryview;
799 brw->is_broxton = devinfo->is_broxton;
800 brw->has_llc = devinfo->has_llc;
801 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
802 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
803 brw->has_pln = devinfo->has_pln;
804 brw->has_compr4 = devinfo->has_compr4;
805 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
806 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
807 brw->needs_unlit_centroid_workaround =
808 devinfo->needs_unlit_centroid_workaround;
809
810 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
811 brw->has_swizzling = screen->hw_has_swizzling;
812
813 brw->vs.base.stage = MESA_SHADER_VERTEX;
814 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
815 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
816 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
817 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
818 if (brw->gen >= 8) {
819 gen8_init_vtable_surface_functions(brw);
820 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
821 } else if (brw->gen >= 7) {
822 gen7_init_vtable_surface_functions(brw);
823 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
824 } else if (brw->gen >= 6) {
825 gen6_init_vtable_surface_functions(brw);
826 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
827 } else {
828 gen4_init_vtable_surface_functions(brw);
829 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
830 }
831
832 brw_init_driver_functions(brw, &functions);
833
834 if (notify_reset)
835 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
836
837 struct gl_context *ctx = &brw->ctx;
838
839 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
840 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
841 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
842 intelDestroyContext(driContextPriv);
843 return false;
844 }
845
846 driContextSetFlags(ctx, flags);
847
848 /* Initialize the software rasterizer and helper modules.
849 *
850 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
851 * software fallbacks (which we have to support on legacy GL to do weird
852 * glDrawPixels(), glBitmap(), and other functions).
853 */
854 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
855 _swrast_CreateContext(ctx);
856 }
857
858 _vbo_CreateContext(ctx);
859 if (ctx->swrast_context) {
860 _tnl_CreateContext(ctx);
861 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
862 _swsetup_CreateContext(ctx);
863
864 /* Configure swrast to match hardware characteristics: */
865 _swrast_allow_pixel_fog(ctx, false);
866 _swrast_allow_vertex_fog(ctx, true);
867 }
868
869 _mesa_meta_init(ctx);
870
871 brw_process_driconf_options(brw);
872
873 if (INTEL_DEBUG & DEBUG_PERF)
874 brw->perf_debug = true;
875
876 brw_initialize_cs_context_constants(brw, devinfo->max_cs_threads);
877 brw_initialize_context_constants(brw);
878
879 ctx->Const.ResetStrategy = notify_reset
880 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
881
882 /* Reinitialize the context point state. It depends on ctx->Const values. */
883 _mesa_init_point(ctx);
884
885 intel_fbo_init(brw);
886
887 intel_batchbuffer_init(brw);
888
889 if (brw->gen >= 6) {
890 /* Create a new hardware context. Using a hardware context means that
891 * our GPU state will be saved/restored on context switch, allowing us
892 * to assume that the GPU is in the same state we left it in.
893 *
894 * This is required for transform feedback buffer offsets, query objects,
895 * and also allows us to reduce how much state we have to emit.
896 */
897 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
898
899 if (!brw->hw_ctx) {
900 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
901 intelDestroyContext(driContextPriv);
902 return false;
903 }
904 }
905
906 if (brw_init_pipe_control(brw, devinfo)) {
907 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
908 intelDestroyContext(driContextPriv);
909 return false;
910 }
911
912 brw_init_state(brw);
913
914 intelInitExtensions(ctx);
915
916 brw_init_surface_formats(brw);
917
918 brw->max_vs_threads = devinfo->max_vs_threads;
919 brw->max_hs_threads = devinfo->max_hs_threads;
920 brw->max_ds_threads = devinfo->max_ds_threads;
921 brw->max_gs_threads = devinfo->max_gs_threads;
922 brw->max_wm_threads = devinfo->max_wm_threads;
923 brw->max_cs_threads = devinfo->max_cs_threads;
924 brw->urb.size = devinfo->urb.size;
925 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
926 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
927 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
928 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
929 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
930
931 /* Estimate the size of the mappable aperture into the GTT. There's an
932 * ioctl to get the whole GTT size, but not one to get the mappable subset.
933 * It turns out it's basically always 256MB, though some ancient hardware
934 * was smaller.
935 */
936 uint32_t gtt_size = 256 * 1024 * 1024;
937
938 /* We don't want to map two objects such that a memcpy between them would
939 * just fault one mapping in and then the other over and over forever. So
940 * we would need to divide the GTT size by 2. Additionally, some GTT is
941 * taken up by things like the framebuffer and the ringbuffer and such, so
942 * be more conservative.
943 */
944 brw->max_gtt_map_object_size = gtt_size / 4;
945
946 if (brw->gen == 6)
947 brw->urb.gs_present = false;
948
949 brw->prim_restart.in_progress = false;
950 brw->prim_restart.enable_cut_index = false;
951 brw->gs.enabled = false;
952 brw->sf.viewport_transform_enable = true;
953
954 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
955
956 brw->use_resource_streamer = screen->has_resource_streamer &&
957 (env_var_as_boolean("INTEL_USE_HW_BT", false) ||
958 env_var_as_boolean("INTEL_USE_GATHER", false));
959
960 ctx->VertexProgram._MaintainTnlProgram = true;
961 ctx->FragmentProgram._MaintainTexEnvProgram = true;
962
963 brw_draw_init( brw );
964
965 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
966 /* Turn on some extra GL_ARB_debug_output generation. */
967 brw->perf_debug = true;
968 }
969
970 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
971 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
972
973 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
974 brw_init_shader_time(brw);
975
976 _mesa_compute_version(ctx);
977
978 _mesa_initialize_dispatch_tables(ctx);
979 _mesa_initialize_vbo_vtxfmt(ctx);
980
981 if (ctx->Extensions.AMD_performance_monitor) {
982 brw_init_performance_monitors(brw);
983 }
984
985 vbo_use_buffer_objects(ctx);
986 vbo_always_unmap_buffers(ctx);
987
988 return true;
989 }
990
991 void
992 intelDestroyContext(__DRIcontext * driContextPriv)
993 {
994 struct brw_context *brw =
995 (struct brw_context *) driContextPriv->driverPrivate;
996 struct gl_context *ctx = &brw->ctx;
997
998 /* Dump a final BMP in case the application doesn't call SwapBuffers */
999 if (INTEL_DEBUG & DEBUG_AUB) {
1000 intel_batchbuffer_flush(brw);
1001 aub_dump_bmp(&brw->ctx);
1002 }
1003
1004 _mesa_meta_free(&brw->ctx);
1005 brw_meta_fast_clear_free(brw);
1006
1007 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1008 /* Force a report. */
1009 brw->shader_time.report_time = 0;
1010
1011 brw_collect_and_report_shader_time(brw);
1012 brw_destroy_shader_time(brw);
1013 }
1014
1015 brw_destroy_state(brw);
1016 brw_draw_destroy(brw);
1017
1018 drm_intel_bo_unreference(brw->curbe.curbe_bo);
1019 if (brw->vs.base.scratch_bo)
1020 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
1021 if (brw->gs.base.scratch_bo)
1022 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
1023 if (brw->wm.base.scratch_bo)
1024 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
1025
1026 gen7_reset_hw_bt_pool_offsets(brw);
1027 drm_intel_bo_unreference(brw->hw_bt_pool.bo);
1028 brw->hw_bt_pool.bo = NULL;
1029
1030 drm_intel_gem_context_destroy(brw->hw_ctx);
1031
1032 if (ctx->swrast_context) {
1033 _swsetup_DestroyContext(&brw->ctx);
1034 _tnl_DestroyContext(&brw->ctx);
1035 }
1036 _vbo_DestroyContext(&brw->ctx);
1037
1038 if (ctx->swrast_context)
1039 _swrast_DestroyContext(&brw->ctx);
1040
1041 brw_fini_pipe_control(brw);
1042 intel_batchbuffer_free(brw);
1043
1044 drm_intel_bo_unreference(brw->throttle_batch[1]);
1045 drm_intel_bo_unreference(brw->throttle_batch[0]);
1046 brw->throttle_batch[1] = NULL;
1047 brw->throttle_batch[0] = NULL;
1048
1049 driDestroyOptionCache(&brw->optionCache);
1050
1051 /* free the Mesa context */
1052 _mesa_free_context_data(&brw->ctx);
1053
1054 ralloc_free(brw);
1055 driContextPriv->driverPrivate = NULL;
1056 }
1057
1058 GLboolean
1059 intelUnbindContext(__DRIcontext * driContextPriv)
1060 {
1061 /* Unset current context and dispath table */
1062 _mesa_make_current(NULL, NULL, NULL);
1063
1064 return true;
1065 }
1066
1067 /**
1068 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1069 * on window system framebuffers.
1070 *
1071 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1072 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1073 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1074 * for a visual where you're guaranteed to be capable, but it turns out that
1075 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1076 * incapable ones, because there's no difference between the two in resources
1077 * used. Applications thus get built that accidentally rely on the default
1078 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1079 * great...
1080 *
1081 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1082 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1083 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1084 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1085 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1086 * and get no sRGB encode (assuming that both kinds of visual are available).
1087 * Thus our choice to support sRGB by default on our visuals for desktop would
1088 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1089 *
1090 * Unfortunately, renderbuffer setup happens before a context is created. So
1091 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1092 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1093 * yet), we go turn that back off before anyone finds out.
1094 */
1095 static void
1096 intel_gles3_srgb_workaround(struct brw_context *brw,
1097 struct gl_framebuffer *fb)
1098 {
1099 struct gl_context *ctx = &brw->ctx;
1100
1101 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1102 return;
1103
1104 /* Some day when we support the sRGB capable bit on visuals available for
1105 * GLES, we'll need to respect that and not disable things here.
1106 */
1107 fb->Visual.sRGBCapable = false;
1108 for (int i = 0; i < BUFFER_COUNT; i++) {
1109 if (fb->Attachment[i].Renderbuffer &&
1110 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
1111 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
1112 }
1113 }
1114 }
1115
1116 GLboolean
1117 intelMakeCurrent(__DRIcontext * driContextPriv,
1118 __DRIdrawable * driDrawPriv,
1119 __DRIdrawable * driReadPriv)
1120 {
1121 struct brw_context *brw;
1122 GET_CURRENT_CONTEXT(curCtx);
1123
1124 if (driContextPriv)
1125 brw = (struct brw_context *) driContextPriv->driverPrivate;
1126 else
1127 brw = NULL;
1128
1129 /* According to the glXMakeCurrent() man page: "Pending commands to
1130 * the previous context, if any, are flushed before it is released."
1131 * But only flush if we're actually changing contexts.
1132 */
1133 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1134 _mesa_flush(curCtx);
1135 }
1136
1137 if (driContextPriv) {
1138 struct gl_context *ctx = &brw->ctx;
1139 struct gl_framebuffer *fb, *readFb;
1140
1141 if (driDrawPriv == NULL) {
1142 fb = _mesa_get_incomplete_framebuffer();
1143 } else {
1144 fb = driDrawPriv->driverPrivate;
1145 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1146 }
1147
1148 if (driReadPriv == NULL) {
1149 readFb = _mesa_get_incomplete_framebuffer();
1150 } else {
1151 readFb = driReadPriv->driverPrivate;
1152 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1153 }
1154
1155 /* The sRGB workaround changes the renderbuffer's format. We must change
1156 * the format before the renderbuffer's miptree get's allocated, otherwise
1157 * the formats of the renderbuffer and its miptree will differ.
1158 */
1159 intel_gles3_srgb_workaround(brw, fb);
1160 intel_gles3_srgb_workaround(brw, readFb);
1161
1162 /* If the context viewport hasn't been initialized, force a call out to
1163 * the loader to get buffers so we have a drawable size for the initial
1164 * viewport. */
1165 if (!brw->ctx.ViewportInitialized)
1166 intel_prepare_render(brw);
1167
1168 _mesa_make_current(ctx, fb, readFb);
1169 } else {
1170 _mesa_make_current(NULL, NULL, NULL);
1171 }
1172
1173 return true;
1174 }
1175
1176 void
1177 intel_resolve_for_dri2_flush(struct brw_context *brw,
1178 __DRIdrawable *drawable)
1179 {
1180 if (brw->gen < 6) {
1181 /* MSAA and fast color clear are not supported, so don't waste time
1182 * checking whether a resolve is needed.
1183 */
1184 return;
1185 }
1186
1187 struct gl_framebuffer *fb = drawable->driverPrivate;
1188 struct intel_renderbuffer *rb;
1189
1190 /* Usually, only the back buffer will need to be downsampled. However,
1191 * the front buffer will also need it if the user has rendered into it.
1192 */
1193 static const gl_buffer_index buffers[2] = {
1194 BUFFER_BACK_LEFT,
1195 BUFFER_FRONT_LEFT,
1196 };
1197
1198 for (int i = 0; i < 2; ++i) {
1199 rb = intel_get_renderbuffer(fb, buffers[i]);
1200 if (rb == NULL || rb->mt == NULL)
1201 continue;
1202 if (rb->mt->num_samples <= 1)
1203 intel_miptree_resolve_color(brw, rb->mt);
1204 else
1205 intel_renderbuffer_downsample(brw, rb);
1206 }
1207 }
1208
1209 static unsigned
1210 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1211 {
1212 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1213 }
1214
1215 static void
1216 intel_query_dri2_buffers(struct brw_context *brw,
1217 __DRIdrawable *drawable,
1218 __DRIbuffer **buffers,
1219 int *count);
1220
1221 static void
1222 intel_process_dri2_buffer(struct brw_context *brw,
1223 __DRIdrawable *drawable,
1224 __DRIbuffer *buffer,
1225 struct intel_renderbuffer *rb,
1226 const char *buffer_name);
1227
1228 static void
1229 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1230
1231 static void
1232 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1233 {
1234 struct gl_framebuffer *fb = drawable->driverPrivate;
1235 struct intel_renderbuffer *rb;
1236 __DRIbuffer *buffers = NULL;
1237 int i, count;
1238 const char *region_name;
1239
1240 /* Set this up front, so that in case our buffers get invalidated
1241 * while we're getting new buffers, we don't clobber the stamp and
1242 * thus ignore the invalidate. */
1243 drawable->lastStamp = drawable->dri2.stamp;
1244
1245 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1246 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1247
1248 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1249
1250 if (buffers == NULL)
1251 return;
1252
1253 for (i = 0; i < count; i++) {
1254 switch (buffers[i].attachment) {
1255 case __DRI_BUFFER_FRONT_LEFT:
1256 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1257 region_name = "dri2 front buffer";
1258 break;
1259
1260 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1261 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1262 region_name = "dri2 fake front buffer";
1263 break;
1264
1265 case __DRI_BUFFER_BACK_LEFT:
1266 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1267 region_name = "dri2 back buffer";
1268 break;
1269
1270 case __DRI_BUFFER_DEPTH:
1271 case __DRI_BUFFER_HIZ:
1272 case __DRI_BUFFER_DEPTH_STENCIL:
1273 case __DRI_BUFFER_STENCIL:
1274 case __DRI_BUFFER_ACCUM:
1275 default:
1276 fprintf(stderr,
1277 "unhandled buffer attach event, attachment type %d\n",
1278 buffers[i].attachment);
1279 return;
1280 }
1281
1282 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1283 }
1284
1285 }
1286
1287 void
1288 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1289 {
1290 struct brw_context *brw = context->driverPrivate;
1291 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1292
1293 /* Set this up front, so that in case our buffers get invalidated
1294 * while we're getting new buffers, we don't clobber the stamp and
1295 * thus ignore the invalidate. */
1296 drawable->lastStamp = drawable->dri2.stamp;
1297
1298 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1299 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1300
1301 if (screen->image.loader)
1302 intel_update_image_buffers(brw, drawable);
1303 else
1304 intel_update_dri2_buffers(brw, drawable);
1305
1306 driUpdateFramebufferSize(&brw->ctx, drawable);
1307 }
1308
1309 /**
1310 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1311 * state is required.
1312 */
1313 void
1314 intel_prepare_render(struct brw_context *brw)
1315 {
1316 struct gl_context *ctx = &brw->ctx;
1317 __DRIcontext *driContext = brw->driContext;
1318 __DRIdrawable *drawable;
1319
1320 drawable = driContext->driDrawablePriv;
1321 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1322 if (drawable->lastStamp != drawable->dri2.stamp)
1323 intel_update_renderbuffers(driContext, drawable);
1324 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1325 }
1326
1327 drawable = driContext->driReadablePriv;
1328 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1329 if (drawable->lastStamp != drawable->dri2.stamp)
1330 intel_update_renderbuffers(driContext, drawable);
1331 driContext->dri2.read_stamp = drawable->dri2.stamp;
1332 }
1333
1334 /* If we're currently rendering to the front buffer, the rendering
1335 * that will happen next will probably dirty the front buffer. So
1336 * mark it as dirty here.
1337 */
1338 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer))
1339 brw->front_buffer_dirty = true;
1340 }
1341
1342 /**
1343 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1344 *
1345 * To determine which DRI buffers to request, examine the renderbuffers
1346 * attached to the drawable's framebuffer. Then request the buffers with
1347 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1348 *
1349 * This is called from intel_update_renderbuffers().
1350 *
1351 * \param drawable Drawable whose buffers are queried.
1352 * \param buffers [out] List of buffers returned by DRI2 query.
1353 * \param buffer_count [out] Number of buffers returned.
1354 *
1355 * \see intel_update_renderbuffers()
1356 * \see DRI2GetBuffers()
1357 * \see DRI2GetBuffersWithFormat()
1358 */
1359 static void
1360 intel_query_dri2_buffers(struct brw_context *brw,
1361 __DRIdrawable *drawable,
1362 __DRIbuffer **buffers,
1363 int *buffer_count)
1364 {
1365 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1366 struct gl_framebuffer *fb = drawable->driverPrivate;
1367 int i = 0;
1368 unsigned attachments[8];
1369
1370 struct intel_renderbuffer *front_rb;
1371 struct intel_renderbuffer *back_rb;
1372
1373 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1374 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1375
1376 memset(attachments, 0, sizeof(attachments));
1377 if ((_mesa_is_front_buffer_drawing(fb) ||
1378 _mesa_is_front_buffer_reading(fb) ||
1379 !back_rb) && front_rb) {
1380 /* If a fake front buffer is in use, then querying for
1381 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1382 * the real front buffer to the fake front buffer. So before doing the
1383 * query, we need to make sure all the pending drawing has landed in the
1384 * real front buffer.
1385 */
1386 intel_batchbuffer_flush(brw);
1387 intel_flush_front(&brw->ctx);
1388
1389 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1390 attachments[i++] = intel_bits_per_pixel(front_rb);
1391 } else if (front_rb && brw->front_buffer_dirty) {
1392 /* We have pending front buffer rendering, but we aren't querying for a
1393 * front buffer. If the front buffer we have is a fake front buffer,
1394 * the X server is going to throw it away when it processes the query.
1395 * So before doing the query, make sure all the pending drawing has
1396 * landed in the real front buffer.
1397 */
1398 intel_batchbuffer_flush(brw);
1399 intel_flush_front(&brw->ctx);
1400 }
1401
1402 if (back_rb) {
1403 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1404 attachments[i++] = intel_bits_per_pixel(back_rb);
1405 }
1406
1407 assert(i <= ARRAY_SIZE(attachments));
1408
1409 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1410 &drawable->w,
1411 &drawable->h,
1412 attachments, i / 2,
1413 buffer_count,
1414 drawable->loaderPrivate);
1415 }
1416
1417 /**
1418 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1419 *
1420 * This is called from intel_update_renderbuffers().
1421 *
1422 * \par Note:
1423 * DRI buffers whose attachment point is DRI2BufferStencil or
1424 * DRI2BufferDepthStencil are handled as special cases.
1425 *
1426 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1427 * that is passed to drm_intel_bo_gem_create_from_name().
1428 *
1429 * \see intel_update_renderbuffers()
1430 */
1431 static void
1432 intel_process_dri2_buffer(struct brw_context *brw,
1433 __DRIdrawable *drawable,
1434 __DRIbuffer *buffer,
1435 struct intel_renderbuffer *rb,
1436 const char *buffer_name)
1437 {
1438 struct gl_framebuffer *fb = drawable->driverPrivate;
1439 drm_intel_bo *bo;
1440
1441 if (!rb)
1442 return;
1443
1444 unsigned num_samples = rb->Base.Base.NumSamples;
1445
1446 /* We try to avoid closing and reopening the same BO name, because the first
1447 * use of a mapping of the buffer involves a bunch of page faulting which is
1448 * moderately expensive.
1449 */
1450 struct intel_mipmap_tree *last_mt;
1451 if (num_samples == 0)
1452 last_mt = rb->mt;
1453 else
1454 last_mt = rb->singlesample_mt;
1455
1456 uint32_t old_name = 0;
1457 if (last_mt) {
1458 /* The bo already has a name because the miptree was created by a
1459 * previous call to intel_process_dri2_buffer(). If a bo already has a
1460 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1461 * create a new name.
1462 */
1463 drm_intel_bo_flink(last_mt->bo, &old_name);
1464 }
1465
1466 if (old_name == buffer->name)
1467 return;
1468
1469 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1470 fprintf(stderr,
1471 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1472 buffer->name, buffer->attachment,
1473 buffer->cpp, buffer->pitch);
1474 }
1475
1476 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1477 buffer->name);
1478 if (!bo) {
1479 fprintf(stderr,
1480 "Failed to open BO for returned DRI2 buffer "
1481 "(%dx%d, %s, named %d).\n"
1482 "This is likely a bug in the X Server that will lead to a "
1483 "crash soon.\n",
1484 drawable->w, drawable->h, buffer_name, buffer->name);
1485 return;
1486 }
1487
1488 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1489 drawable->w, drawable->h,
1490 buffer->pitch);
1491
1492 if (_mesa_is_front_buffer_drawing(fb) &&
1493 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1494 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1495 rb->Base.Base.NumSamples > 1) {
1496 intel_renderbuffer_upsample(brw, rb);
1497 }
1498
1499 assert(rb->mt);
1500
1501 drm_intel_bo_unreference(bo);
1502 }
1503
1504 /**
1505 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1506 *
1507 * To determine which DRI buffers to request, examine the renderbuffers
1508 * attached to the drawable's framebuffer. Then request the buffers from
1509 * the image loader
1510 *
1511 * This is called from intel_update_renderbuffers().
1512 *
1513 * \param drawable Drawable whose buffers are queried.
1514 * \param buffers [out] List of buffers returned by DRI2 query.
1515 * \param buffer_count [out] Number of buffers returned.
1516 *
1517 * \see intel_update_renderbuffers()
1518 */
1519
1520 static void
1521 intel_update_image_buffer(struct brw_context *intel,
1522 __DRIdrawable *drawable,
1523 struct intel_renderbuffer *rb,
1524 __DRIimage *buffer,
1525 enum __DRIimageBufferMask buffer_type)
1526 {
1527 struct gl_framebuffer *fb = drawable->driverPrivate;
1528
1529 if (!rb || !buffer->bo)
1530 return;
1531
1532 unsigned num_samples = rb->Base.Base.NumSamples;
1533
1534 /* Check and see if we're already bound to the right
1535 * buffer object
1536 */
1537 struct intel_mipmap_tree *last_mt;
1538 if (num_samples == 0)
1539 last_mt = rb->mt;
1540 else
1541 last_mt = rb->singlesample_mt;
1542
1543 if (last_mt && last_mt->bo == buffer->bo)
1544 return;
1545
1546 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1547 buffer->width, buffer->height,
1548 buffer->pitch);
1549
1550 if (_mesa_is_front_buffer_drawing(fb) &&
1551 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1552 rb->Base.Base.NumSamples > 1) {
1553 intel_renderbuffer_upsample(intel, rb);
1554 }
1555 }
1556
1557 static void
1558 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1559 {
1560 struct gl_framebuffer *fb = drawable->driverPrivate;
1561 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1562 struct intel_renderbuffer *front_rb;
1563 struct intel_renderbuffer *back_rb;
1564 struct __DRIimageList images;
1565 unsigned int format;
1566 uint32_t buffer_mask = 0;
1567
1568 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1569 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1570
1571 if (back_rb)
1572 format = intel_rb_format(back_rb);
1573 else if (front_rb)
1574 format = intel_rb_format(front_rb);
1575 else
1576 return;
1577
1578 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1579 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1580 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1581 }
1582
1583 if (back_rb)
1584 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1585
1586 (*screen->image.loader->getBuffers) (drawable,
1587 driGLFormatToImageFormat(format),
1588 &drawable->dri2.stamp,
1589 drawable->loaderPrivate,
1590 buffer_mask,
1591 &images);
1592
1593 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1594 drawable->w = images.front->width;
1595 drawable->h = images.front->height;
1596 intel_update_image_buffer(brw,
1597 drawable,
1598 front_rb,
1599 images.front,
1600 __DRI_IMAGE_BUFFER_FRONT);
1601 }
1602 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1603 drawable->w = images.back->width;
1604 drawable->h = images.back->height;
1605 intel_update_image_buffer(brw,
1606 drawable,
1607 back_rb,
1608 images.back,
1609 __DRI_IMAGE_BUFFER_BACK);
1610 }
1611 }