i965/bxt: Add basic Broxton infrastructure
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44
45 #include "vbo/vbo_context.h"
46
47 #include "drivers/common/driverfuncs.h"
48 #include "drivers/common/meta.h"
49 #include "utils.h"
50
51 #include "brw_context.h"
52 #include "brw_defines.h"
53 #include "brw_shader.h"
54 #include "brw_draw.h"
55 #include "brw_state.h"
56
57 #include "intel_batchbuffer.h"
58 #include "intel_buffer_objects.h"
59 #include "intel_buffers.h"
60 #include "intel_fbo.h"
61 #include "intel_mipmap_tree.h"
62 #include "intel_pixel.h"
63 #include "intel_image.h"
64 #include "intel_tex.h"
65 #include "intel_tex_obj.h"
66
67 #include "swrast_setup/swrast_setup.h"
68 #include "tnl/tnl.h"
69 #include "tnl/t_pipeline.h"
70 #include "util/ralloc.h"
71
72 /***************************************
73 * Mesa's Driver Functions
74 ***************************************/
75
76 static size_t
77 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
78 GLenum internalFormat, int samples[16])
79 {
80 struct brw_context *brw = brw_context(ctx);
81
82 (void) target;
83
84 switch (brw->gen) {
85 case 9:
86 case 8:
87 samples[0] = 8;
88 samples[1] = 4;
89 samples[2] = 2;
90 return 3;
91
92 case 7:
93 samples[0] = 8;
94 samples[1] = 4;
95 return 2;
96
97 case 6:
98 samples[0] = 4;
99 return 1;
100
101 default:
102 assert(brw->gen < 6);
103 samples[0] = 1;
104 return 1;
105 }
106 }
107
108 const char *const brw_vendor_string = "Intel Open Source Technology Center";
109
110 const char *
111 brw_get_renderer_string(unsigned deviceID)
112 {
113 const char *chipset;
114 static char buffer[128];
115
116 switch (deviceID) {
117 #undef CHIPSET
118 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
119 #include "pci_ids/i965_pci_ids.h"
120 default:
121 chipset = "Unknown Intel Chipset";
122 break;
123 }
124
125 (void) driGetRendererString(buffer, chipset, 0);
126 return buffer;
127 }
128
129 static const GLubyte *
130 intel_get_string(struct gl_context * ctx, GLenum name)
131 {
132 const struct brw_context *const brw = brw_context(ctx);
133
134 switch (name) {
135 case GL_VENDOR:
136 return (GLubyte *) brw_vendor_string;
137
138 case GL_RENDERER:
139 return
140 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
141
142 default:
143 return NULL;
144 }
145 }
146
147 static void
148 intel_viewport(struct gl_context *ctx)
149 {
150 struct brw_context *brw = brw_context(ctx);
151 __DRIcontext *driContext = brw->driContext;
152
153 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
154 dri2InvalidateDrawable(driContext->driDrawablePriv);
155 dri2InvalidateDrawable(driContext->driReadablePriv);
156 }
157 }
158
159 static void
160 intel_update_state(struct gl_context * ctx, GLuint new_state)
161 {
162 struct brw_context *brw = brw_context(ctx);
163 struct intel_texture_object *tex_obj;
164 struct intel_renderbuffer *depth_irb;
165
166 if (ctx->swrast_context)
167 _swrast_InvalidateState(ctx, new_state);
168 _vbo_InvalidateState(ctx, new_state);
169
170 brw->NewGLState |= new_state;
171
172 _mesa_unlock_context_textures(ctx);
173
174 /* Resolve the depth buffer's HiZ buffer. */
175 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
176 if (depth_irb)
177 intel_renderbuffer_resolve_hiz(brw, depth_irb);
178
179 /* Resolve depth buffer and render cache of each enabled texture. */
180 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
181 for (int i = 0; i <= maxEnabledUnit; i++) {
182 if (!ctx->Texture.Unit[i]._Current)
183 continue;
184 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
185 if (!tex_obj || !tex_obj->mt)
186 continue;
187 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
188 intel_miptree_resolve_color(brw, tex_obj->mt);
189 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
190 }
191
192 _mesa_lock_context_textures(ctx);
193 }
194
195 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
196
197 static void
198 intel_flush_front(struct gl_context *ctx)
199 {
200 struct brw_context *brw = brw_context(ctx);
201 __DRIcontext *driContext = brw->driContext;
202 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
203 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
204
205 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
206 if (flushFront(screen) && driDrawable &&
207 driDrawable->loaderPrivate) {
208
209 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
210 *
211 * This potentially resolves both front and back buffer. It
212 * is unnecessary to resolve the back, but harms nothing except
213 * performance. And no one cares about front-buffer render
214 * performance.
215 */
216 intel_resolve_for_dri2_flush(brw, driDrawable);
217 intel_batchbuffer_flush(brw);
218
219 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
220
221 /* We set the dirty bit in intel_prepare_render() if we're
222 * front buffer rendering once we get there.
223 */
224 brw->front_buffer_dirty = false;
225 }
226 }
227 }
228
229 static void
230 intel_glFlush(struct gl_context *ctx)
231 {
232 struct brw_context *brw = brw_context(ctx);
233
234 intel_batchbuffer_flush(brw);
235 intel_flush_front(ctx);
236
237 brw->need_flush_throttle = true;
238 }
239
240 static void
241 intel_finish(struct gl_context * ctx)
242 {
243 struct brw_context *brw = brw_context(ctx);
244
245 intel_glFlush(ctx);
246
247 if (brw->batch.last_bo)
248 drm_intel_bo_wait_rendering(brw->batch.last_bo);
249 }
250
251 static void
252 brw_init_driver_functions(struct brw_context *brw,
253 struct dd_function_table *functions)
254 {
255 _mesa_init_driver_functions(functions);
256
257 /* GLX uses DRI2 invalidate events to handle window resizing.
258 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
259 * which doesn't provide a mechanism for snooping the event queues.
260 *
261 * So EGL still relies on viewport hacks to handle window resizing.
262 * This should go away with DRI3000.
263 */
264 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
265 functions->Viewport = intel_viewport;
266
267 functions->Flush = intel_glFlush;
268 functions->Finish = intel_finish;
269 functions->GetString = intel_get_string;
270 functions->UpdateState = intel_update_state;
271
272 intelInitTextureFuncs(functions);
273 intelInitTextureImageFuncs(functions);
274 intelInitTextureSubImageFuncs(functions);
275 intelInitTextureCopyImageFuncs(functions);
276 intelInitCopyImageFuncs(functions);
277 intelInitClearFuncs(functions);
278 intelInitBufferFuncs(functions);
279 intelInitPixelFuncs(functions);
280 intelInitBufferObjectFuncs(functions);
281 intel_init_syncobj_functions(functions);
282 brw_init_object_purgeable_functions(functions);
283
284 brwInitFragProgFuncs( functions );
285 brw_init_common_queryobj_functions(functions);
286 if (brw->gen >= 6)
287 gen6_init_queryobj_functions(functions);
288 else
289 gen4_init_queryobj_functions(functions);
290 brw_init_compute_functions(functions);
291 if (brw->gen >= 7)
292 brw_init_conditional_render_functions(functions);
293
294 functions->QuerySamplesForFormat = brw_query_samples_for_format;
295
296 functions->NewTransformFeedback = brw_new_transform_feedback;
297 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
298 functions->GetTransformFeedbackVertexCount =
299 brw_get_transform_feedback_vertex_count;
300 if (brw->gen >= 7) {
301 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
302 functions->EndTransformFeedback = gen7_end_transform_feedback;
303 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
304 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
305 } else {
306 functions->BeginTransformFeedback = brw_begin_transform_feedback;
307 functions->EndTransformFeedback = brw_end_transform_feedback;
308 }
309
310 if (brw->gen >= 6)
311 functions->GetSamplePosition = gen6_get_sample_position;
312 }
313
314 static void
315 brw_initialize_context_constants(struct brw_context *brw)
316 {
317 struct gl_context *ctx = &brw->ctx;
318
319 unsigned max_samplers =
320 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
321
322 ctx->Const.QueryCounterBits.Timestamp = 36;
323
324 ctx->Const.StripTextureBorder = true;
325
326 ctx->Const.MaxDualSourceDrawBuffers = 1;
327 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
328 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits = max_samplers;
329 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
330 ctx->Const.MaxTextureUnits =
331 MIN2(ctx->Const.MaxTextureCoordUnits,
332 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
333 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits = max_samplers;
334 if (brw->gen >= 6)
335 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = max_samplers;
336 else
337 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = 0;
338 if (_mesa_extension_override_enables.ARB_compute_shader) {
339 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = BRW_MAX_TEX_UNIT;
340 ctx->Const.MaxUniformBufferBindings += 12;
341 } else {
342 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = 0;
343 }
344 ctx->Const.MaxCombinedTextureImageUnits =
345 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits +
346 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits +
347 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits +
348 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
349
350 ctx->Const.MaxTextureLevels = 14; /* 8192 */
351 if (ctx->Const.MaxTextureLevels > MAX_TEXTURE_LEVELS)
352 ctx->Const.MaxTextureLevels = MAX_TEXTURE_LEVELS;
353 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
354 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
355 ctx->Const.MaxTextureMbytes = 1536;
356
357 if (brw->gen >= 7)
358 ctx->Const.MaxArrayTextureLayers = 2048;
359 else
360 ctx->Const.MaxArrayTextureLayers = 512;
361
362 ctx->Const.MaxTextureRectSize = 1 << 12;
363
364 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
365
366 ctx->Const.MaxRenderbufferSize = 8192;
367
368 /* Hardware only supports a limited number of transform feedback buffers.
369 * So we need to override the Mesa default (which is based only on software
370 * limits).
371 */
372 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
373
374 /* On Gen6, in the worst case, we use up one binding table entry per
375 * transform feedback component (see comments above the definition of
376 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
377 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
378 * BRW_MAX_SOL_BINDINGS.
379 *
380 * In "separate components" mode, we need to divide this value by
381 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
382 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
383 */
384 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
385 ctx->Const.MaxTransformFeedbackSeparateComponents =
386 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
387
388 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
389
390 int max_samples;
391 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
392 const int clamp_max_samples =
393 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
394
395 if (clamp_max_samples < 0) {
396 max_samples = msaa_modes[0];
397 } else {
398 /* Select the largest supported MSAA mode that does not exceed
399 * clamp_max_samples.
400 */
401 max_samples = 0;
402 for (int i = 0; msaa_modes[i] != 0; ++i) {
403 if (msaa_modes[i] <= clamp_max_samples) {
404 max_samples = msaa_modes[i];
405 break;
406 }
407 }
408 }
409
410 ctx->Const.MaxSamples = max_samples;
411 ctx->Const.MaxColorTextureSamples = max_samples;
412 ctx->Const.MaxDepthTextureSamples = max_samples;
413 ctx->Const.MaxIntegerSamples = max_samples;
414
415 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
416 * to map indices of rectangular grid to sample numbers within a pixel.
417 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
418 * extension implementation. For more details see the comment above
419 * gen6_set_sample_maps() definition.
420 */
421 gen6_set_sample_maps(ctx);
422
423 if (brw->gen >= 7)
424 ctx->Const.MaxProgramTextureGatherComponents = 4;
425 else if (brw->gen == 6)
426 ctx->Const.MaxProgramTextureGatherComponents = 1;
427
428 ctx->Const.MinLineWidth = 1.0;
429 ctx->Const.MinLineWidthAA = 1.0;
430 if (brw->gen >= 6) {
431 ctx->Const.MaxLineWidth = 7.375;
432 ctx->Const.MaxLineWidthAA = 7.375;
433 ctx->Const.LineWidthGranularity = 0.125;
434 } else {
435 ctx->Const.MaxLineWidth = 7.0;
436 ctx->Const.MaxLineWidthAA = 7.0;
437 ctx->Const.LineWidthGranularity = 0.5;
438 }
439
440 /* For non-antialiased lines, we have to round the line width to the
441 * nearest whole number. Make sure that we don't advertise a line
442 * width that, when rounded, will be beyond the actual hardware
443 * maximum.
444 */
445 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
446
447 ctx->Const.MinPointSize = 1.0;
448 ctx->Const.MinPointSizeAA = 1.0;
449 ctx->Const.MaxPointSize = 255.0;
450 ctx->Const.MaxPointSizeAA = 255.0;
451 ctx->Const.PointSizeGranularity = 1.0;
452
453 if (brw->gen >= 5 || brw->is_g4x)
454 ctx->Const.MaxClipPlanes = 8;
455
456 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
457 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
458 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
459 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
460 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
461 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
462 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
463 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
464 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
465 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
466 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
467 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
468 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
469 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
470
471 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
472 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
473 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
474 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
475 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
476 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
477 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
478 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
479 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
480 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
481 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
482
483 /* Fragment shaders use real, 32-bit twos-complement integers for all
484 * integer types.
485 */
486 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
487 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
488 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
489 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
490 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
491
492 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
493 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
494 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
495 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
496 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
497
498 if (brw->gen >= 7) {
499 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
500 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
501 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
502 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
503 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers = BRW_MAX_ABO;
504 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers = BRW_MAX_ABO;
505 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers = BRW_MAX_ABO;
506 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers = BRW_MAX_ABO;
507 ctx->Const.MaxCombinedAtomicBuffers = 3 * BRW_MAX_ABO;
508 }
509
510 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
511 * but we're not sure how it's actually done for vertex order,
512 * that affect provoking vertex decision. Always use last vertex
513 * convention for quad primitive which works as expected for now.
514 */
515 if (brw->gen >= 6)
516 ctx->Const.QuadsFollowProvokingVertexConvention = false;
517
518 ctx->Const.NativeIntegers = true;
519 ctx->Const.VertexID_is_zero_based = true;
520
521 /* Regarding the CMP instruction, the Ivybridge PRM says:
522 *
523 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
524 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
525 * 0xFFFFFFFF) is assigned to dst."
526 *
527 * but PRMs for earlier generations say
528 *
529 * "In dword format, one GRF may store up to 8 results. When the register
530 * is used later as a vector of Booleans, as only LSB at each channel
531 * contains meaning [sic] data, software should make sure all higher bits
532 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
533 *
534 * We select the representation of a true boolean uniform to be ~0, and fix
535 * the results of Gen <= 5 CMP instruction's with -(result & 1).
536 */
537 ctx->Const.UniformBooleanTrue = ~0;
538
539 /* From the gen4 PRM, volume 4 page 127:
540 *
541 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
542 * the base address of the first element of the surface, computed in
543 * software by adding the surface base address to the byte offset of
544 * the element in the buffer."
545 *
546 * However, unaligned accesses are slower, so enforce buffer alignment.
547 */
548 ctx->Const.UniformBufferOffsetAlignment = 16;
549 ctx->Const.TextureBufferOffsetAlignment = 16;
550 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
551
552 if (brw->gen >= 6) {
553 ctx->Const.MaxVarying = 32;
554 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
555 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
556 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
557 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
558 }
559
560 /* We want the GLSL compiler to emit code that uses condition codes */
561 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
562 ctx->Const.ShaderCompilerOptions[i] =
563 brw->intelScreen->compiler->glsl_compiler_options[i];
564 }
565
566 /* ARB_viewport_array */
567 if (brw->gen >= 6 && ctx->API == API_OPENGL_CORE) {
568 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
569 ctx->Const.ViewportSubpixelBits = 0;
570
571 /* Cast to float before negating because MaxViewportWidth is unsigned.
572 */
573 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
574 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
575 }
576
577 /* ARB_gpu_shader5 */
578 if (brw->gen >= 7)
579 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
580
581 /* ARB_framebuffer_no_attachments */
582 ctx->Const.MaxFramebufferWidth = ctx->Const.MaxViewportWidth;
583 ctx->Const.MaxFramebufferHeight = ctx->Const.MaxViewportHeight;
584 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
585 ctx->Const.MaxFramebufferSamples = max_samples;
586 }
587
588 static void
589 brw_adjust_cs_context_constants(struct brw_context *brw)
590 {
591 struct gl_context *ctx = &brw->ctx;
592
593 /* For ES, we set these constants based on SIMD8.
594 *
595 * TODO: Once we can always generate SIMD16, we should update this.
596 *
597 * For GL, we assume we can generate a SIMD16 program, but this currently
598 * is not always true. This allows us to run more test cases, and will be
599 * required based on desktop GL compute shader requirements.
600 */
601 const int simd_size = ctx->API == API_OPENGL_CORE ? 16 : 8;
602
603 const uint32_t max_invocations = simd_size * brw->max_cs_threads;
604 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
605 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
606 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
607 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
608 }
609
610 /**
611 * Process driconf (drirc) options, setting appropriate context flags.
612 *
613 * intelInitExtensions still pokes at optionCache directly, in order to
614 * avoid advertising various extensions. No flags are set, so it makes
615 * sense to continue doing that there.
616 */
617 static void
618 brw_process_driconf_options(struct brw_context *brw)
619 {
620 struct gl_context *ctx = &brw->ctx;
621
622 driOptionCache *options = &brw->optionCache;
623 driParseConfigFiles(options, &brw->intelScreen->optionCache,
624 brw->driContext->driScreenPriv->myNum, "i965");
625
626 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
627 switch (bo_reuse_mode) {
628 case DRI_CONF_BO_REUSE_DISABLED:
629 break;
630 case DRI_CONF_BO_REUSE_ALL:
631 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
632 break;
633 }
634
635 if (!driQueryOptionb(options, "hiz")) {
636 brw->has_hiz = false;
637 /* On gen6, you can only do separate stencil with HIZ. */
638 if (brw->gen == 6)
639 brw->has_separate_stencil = false;
640 }
641
642 if (driQueryOptionb(options, "always_flush_batch")) {
643 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
644 brw->always_flush_batch = true;
645 }
646
647 if (driQueryOptionb(options, "always_flush_cache")) {
648 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
649 brw->always_flush_cache = true;
650 }
651
652 if (driQueryOptionb(options, "disable_throttling")) {
653 fprintf(stderr, "disabling flush throttling\n");
654 brw->disable_throttling = true;
655 }
656
657 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
658
659 ctx->Const.ForceGLSLExtensionsWarn =
660 driQueryOptionb(options, "force_glsl_extensions_warn");
661
662 ctx->Const.DisableGLSLLineContinuations =
663 driQueryOptionb(options, "disable_glsl_line_continuations");
664
665 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
666 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
667 }
668
669 GLboolean
670 brwCreateContext(gl_api api,
671 const struct gl_config *mesaVis,
672 __DRIcontext *driContextPriv,
673 unsigned major_version,
674 unsigned minor_version,
675 uint32_t flags,
676 bool notify_reset,
677 unsigned *dri_ctx_error,
678 void *sharedContextPrivate)
679 {
680 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
681 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
682 struct intel_screen *screen = sPriv->driverPrivate;
683 const struct brw_device_info *devinfo = screen->devinfo;
684 struct dd_function_table functions;
685
686 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
687 * provides us with context reset notifications.
688 */
689 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
690 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
691
692 if (screen->has_context_reset_notification)
693 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
694
695 if (flags & ~allowed_flags) {
696 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
697 return false;
698 }
699
700 struct brw_context *brw = rzalloc(NULL, struct brw_context);
701 if (!brw) {
702 fprintf(stderr, "%s: failed to alloc context\n", __func__);
703 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
704 return false;
705 }
706
707 driContextPriv->driverPrivate = brw;
708 brw->driContext = driContextPriv;
709 brw->intelScreen = screen;
710 brw->bufmgr = screen->bufmgr;
711
712 brw->gen = devinfo->gen;
713 brw->gt = devinfo->gt;
714 brw->is_g4x = devinfo->is_g4x;
715 brw->is_baytrail = devinfo->is_baytrail;
716 brw->is_haswell = devinfo->is_haswell;
717 brw->is_cherryview = devinfo->is_cherryview;
718 brw->is_broxton = devinfo->is_broxton;
719 brw->has_llc = devinfo->has_llc;
720 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
721 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
722 brw->has_pln = devinfo->has_pln;
723 brw->has_compr4 = devinfo->has_compr4;
724 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
725 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
726 brw->needs_unlit_centroid_workaround =
727 devinfo->needs_unlit_centroid_workaround;
728
729 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
730 brw->has_swizzling = screen->hw_has_swizzling;
731
732 brw->vs.base.stage = MESA_SHADER_VERTEX;
733 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
734 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
735 if (brw->gen >= 8) {
736 gen8_init_vtable_surface_functions(brw);
737 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
738 } else if (brw->gen >= 7) {
739 gen7_init_vtable_surface_functions(brw);
740 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
741 } else if (brw->gen >= 6) {
742 gen6_init_vtable_surface_functions(brw);
743 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
744 } else {
745 gen4_init_vtable_surface_functions(brw);
746 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
747 }
748
749 brw_init_driver_functions(brw, &functions);
750
751 if (notify_reset)
752 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
753
754 struct gl_context *ctx = &brw->ctx;
755
756 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
757 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
758 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
759 intelDestroyContext(driContextPriv);
760 return false;
761 }
762
763 driContextSetFlags(ctx, flags);
764
765 /* Initialize the software rasterizer and helper modules.
766 *
767 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
768 * software fallbacks (which we have to support on legacy GL to do weird
769 * glDrawPixels(), glBitmap(), and other functions).
770 */
771 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
772 _swrast_CreateContext(ctx);
773 }
774
775 _vbo_CreateContext(ctx);
776 if (ctx->swrast_context) {
777 _tnl_CreateContext(ctx);
778 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
779 _swsetup_CreateContext(ctx);
780
781 /* Configure swrast to match hardware characteristics: */
782 _swrast_allow_pixel_fog(ctx, false);
783 _swrast_allow_vertex_fog(ctx, true);
784 }
785
786 _mesa_meta_init(ctx);
787
788 brw_process_driconf_options(brw);
789
790 if (INTEL_DEBUG & DEBUG_PERF)
791 brw->perf_debug = true;
792
793 brw_initialize_context_constants(brw);
794
795 ctx->Const.ResetStrategy = notify_reset
796 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
797
798 /* Reinitialize the context point state. It depends on ctx->Const values. */
799 _mesa_init_point(ctx);
800
801 intel_fbo_init(brw);
802
803 intel_batchbuffer_init(brw);
804
805 if (brw->gen >= 6) {
806 /* Create a new hardware context. Using a hardware context means that
807 * our GPU state will be saved/restored on context switch, allowing us
808 * to assume that the GPU is in the same state we left it in.
809 *
810 * This is required for transform feedback buffer offsets, query objects,
811 * and also allows us to reduce how much state we have to emit.
812 */
813 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
814
815 if (!brw->hw_ctx) {
816 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
817 intelDestroyContext(driContextPriv);
818 return false;
819 }
820 }
821
822 brw_init_state(brw);
823
824 intelInitExtensions(ctx);
825
826 brw_init_surface_formats(brw);
827
828 brw->max_vs_threads = devinfo->max_vs_threads;
829 brw->max_hs_threads = devinfo->max_hs_threads;
830 brw->max_ds_threads = devinfo->max_ds_threads;
831 brw->max_gs_threads = devinfo->max_gs_threads;
832 brw->max_wm_threads = devinfo->max_wm_threads;
833 brw->max_cs_threads = devinfo->max_cs_threads;
834 brw->urb.size = devinfo->urb.size;
835 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
836 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
837 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
838 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
839 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
840
841 brw_adjust_cs_context_constants(brw);
842
843 /* Estimate the size of the mappable aperture into the GTT. There's an
844 * ioctl to get the whole GTT size, but not one to get the mappable subset.
845 * It turns out it's basically always 256MB, though some ancient hardware
846 * was smaller.
847 */
848 uint32_t gtt_size = 256 * 1024 * 1024;
849
850 /* We don't want to map two objects such that a memcpy between them would
851 * just fault one mapping in and then the other over and over forever. So
852 * we would need to divide the GTT size by 2. Additionally, some GTT is
853 * taken up by things like the framebuffer and the ringbuffer and such, so
854 * be more conservative.
855 */
856 brw->max_gtt_map_object_size = gtt_size / 4;
857
858 if (brw->gen == 6)
859 brw->urb.gs_present = false;
860
861 brw->prim_restart.in_progress = false;
862 brw->prim_restart.enable_cut_index = false;
863 brw->gs.enabled = false;
864 brw->sf.viewport_transform_enable = true;
865
866 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
867
868 ctx->VertexProgram._MaintainTnlProgram = true;
869 ctx->FragmentProgram._MaintainTexEnvProgram = true;
870
871 brw_draw_init( brw );
872
873 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
874 /* Turn on some extra GL_ARB_debug_output generation. */
875 brw->perf_debug = true;
876 }
877
878 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
879 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
880
881 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
882 brw_init_shader_time(brw);
883
884 _mesa_compute_version(ctx);
885
886 _mesa_initialize_dispatch_tables(ctx);
887 _mesa_initialize_vbo_vtxfmt(ctx);
888
889 if (ctx->Extensions.AMD_performance_monitor) {
890 brw_init_performance_monitors(brw);
891 }
892
893 vbo_use_buffer_objects(ctx);
894 vbo_always_unmap_buffers(ctx);
895
896 return true;
897 }
898
899 void
900 intelDestroyContext(__DRIcontext * driContextPriv)
901 {
902 struct brw_context *brw =
903 (struct brw_context *) driContextPriv->driverPrivate;
904 struct gl_context *ctx = &brw->ctx;
905
906 /* Dump a final BMP in case the application doesn't call SwapBuffers */
907 if (INTEL_DEBUG & DEBUG_AUB) {
908 intel_batchbuffer_flush(brw);
909 aub_dump_bmp(&brw->ctx);
910 }
911
912 _mesa_meta_free(&brw->ctx);
913 brw_meta_fast_clear_free(brw);
914
915 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
916 /* Force a report. */
917 brw->shader_time.report_time = 0;
918
919 brw_collect_and_report_shader_time(brw);
920 brw_destroy_shader_time(brw);
921 }
922
923 brw_destroy_state(brw);
924 brw_draw_destroy(brw);
925
926 drm_intel_bo_unreference(brw->curbe.curbe_bo);
927 if (brw->vs.base.scratch_bo)
928 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
929 if (brw->gs.base.scratch_bo)
930 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
931 if (brw->wm.base.scratch_bo)
932 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
933
934 drm_intel_gem_context_destroy(brw->hw_ctx);
935
936 if (ctx->swrast_context) {
937 _swsetup_DestroyContext(&brw->ctx);
938 _tnl_DestroyContext(&brw->ctx);
939 }
940 _vbo_DestroyContext(&brw->ctx);
941
942 if (ctx->swrast_context)
943 _swrast_DestroyContext(&brw->ctx);
944
945 intel_batchbuffer_free(brw);
946
947 drm_intel_bo_unreference(brw->throttle_batch[1]);
948 drm_intel_bo_unreference(brw->throttle_batch[0]);
949 brw->throttle_batch[1] = NULL;
950 brw->throttle_batch[0] = NULL;
951
952 driDestroyOptionCache(&brw->optionCache);
953
954 /* free the Mesa context */
955 _mesa_free_context_data(&brw->ctx);
956
957 ralloc_free(brw);
958 driContextPriv->driverPrivate = NULL;
959 }
960
961 GLboolean
962 intelUnbindContext(__DRIcontext * driContextPriv)
963 {
964 /* Unset current context and dispath table */
965 _mesa_make_current(NULL, NULL, NULL);
966
967 return true;
968 }
969
970 /**
971 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
972 * on window system framebuffers.
973 *
974 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
975 * your renderbuffer can do sRGB encode, and you can flip a switch that does
976 * sRGB encode if the renderbuffer can handle it. You can ask specifically
977 * for a visual where you're guaranteed to be capable, but it turns out that
978 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
979 * incapable ones, because there's no difference between the two in resources
980 * used. Applications thus get built that accidentally rely on the default
981 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
982 * great...
983 *
984 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
985 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
986 * So they removed the enable knob and made it "if the renderbuffer is sRGB
987 * capable, do sRGB encode". Then, for your window system renderbuffers, you
988 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
989 * and get no sRGB encode (assuming that both kinds of visual are available).
990 * Thus our choice to support sRGB by default on our visuals for desktop would
991 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
992 *
993 * Unfortunately, renderbuffer setup happens before a context is created. So
994 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
995 * context (without an sRGB visual, though we don't have sRGB visuals exposed
996 * yet), we go turn that back off before anyone finds out.
997 */
998 static void
999 intel_gles3_srgb_workaround(struct brw_context *brw,
1000 struct gl_framebuffer *fb)
1001 {
1002 struct gl_context *ctx = &brw->ctx;
1003
1004 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1005 return;
1006
1007 /* Some day when we support the sRGB capable bit on visuals available for
1008 * GLES, we'll need to respect that and not disable things here.
1009 */
1010 fb->Visual.sRGBCapable = false;
1011 for (int i = 0; i < BUFFER_COUNT; i++) {
1012 if (fb->Attachment[i].Renderbuffer &&
1013 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
1014 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
1015 }
1016 }
1017 }
1018
1019 GLboolean
1020 intelMakeCurrent(__DRIcontext * driContextPriv,
1021 __DRIdrawable * driDrawPriv,
1022 __DRIdrawable * driReadPriv)
1023 {
1024 struct brw_context *brw;
1025 GET_CURRENT_CONTEXT(curCtx);
1026
1027 if (driContextPriv)
1028 brw = (struct brw_context *) driContextPriv->driverPrivate;
1029 else
1030 brw = NULL;
1031
1032 /* According to the glXMakeCurrent() man page: "Pending commands to
1033 * the previous context, if any, are flushed before it is released."
1034 * But only flush if we're actually changing contexts.
1035 */
1036 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1037 _mesa_flush(curCtx);
1038 }
1039
1040 if (driContextPriv) {
1041 struct gl_context *ctx = &brw->ctx;
1042 struct gl_framebuffer *fb, *readFb;
1043
1044 if (driDrawPriv == NULL) {
1045 fb = _mesa_get_incomplete_framebuffer();
1046 } else {
1047 fb = driDrawPriv->driverPrivate;
1048 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1049 }
1050
1051 if (driReadPriv == NULL) {
1052 readFb = _mesa_get_incomplete_framebuffer();
1053 } else {
1054 readFb = driReadPriv->driverPrivate;
1055 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1056 }
1057
1058 /* The sRGB workaround changes the renderbuffer's format. We must change
1059 * the format before the renderbuffer's miptree get's allocated, otherwise
1060 * the formats of the renderbuffer and its miptree will differ.
1061 */
1062 intel_gles3_srgb_workaround(brw, fb);
1063 intel_gles3_srgb_workaround(brw, readFb);
1064
1065 /* If the context viewport hasn't been initialized, force a call out to
1066 * the loader to get buffers so we have a drawable size for the initial
1067 * viewport. */
1068 if (!brw->ctx.ViewportInitialized)
1069 intel_prepare_render(brw);
1070
1071 _mesa_make_current(ctx, fb, readFb);
1072 } else {
1073 _mesa_make_current(NULL, NULL, NULL);
1074 }
1075
1076 return true;
1077 }
1078
1079 void
1080 intel_resolve_for_dri2_flush(struct brw_context *brw,
1081 __DRIdrawable *drawable)
1082 {
1083 if (brw->gen < 6) {
1084 /* MSAA and fast color clear are not supported, so don't waste time
1085 * checking whether a resolve is needed.
1086 */
1087 return;
1088 }
1089
1090 struct gl_framebuffer *fb = drawable->driverPrivate;
1091 struct intel_renderbuffer *rb;
1092
1093 /* Usually, only the back buffer will need to be downsampled. However,
1094 * the front buffer will also need it if the user has rendered into it.
1095 */
1096 static const gl_buffer_index buffers[2] = {
1097 BUFFER_BACK_LEFT,
1098 BUFFER_FRONT_LEFT,
1099 };
1100
1101 for (int i = 0; i < 2; ++i) {
1102 rb = intel_get_renderbuffer(fb, buffers[i]);
1103 if (rb == NULL || rb->mt == NULL)
1104 continue;
1105 if (rb->mt->num_samples <= 1)
1106 intel_miptree_resolve_color(brw, rb->mt);
1107 else
1108 intel_renderbuffer_downsample(brw, rb);
1109 }
1110 }
1111
1112 static unsigned
1113 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1114 {
1115 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1116 }
1117
1118 static void
1119 intel_query_dri2_buffers(struct brw_context *brw,
1120 __DRIdrawable *drawable,
1121 __DRIbuffer **buffers,
1122 int *count);
1123
1124 static void
1125 intel_process_dri2_buffer(struct brw_context *brw,
1126 __DRIdrawable *drawable,
1127 __DRIbuffer *buffer,
1128 struct intel_renderbuffer *rb,
1129 const char *buffer_name);
1130
1131 static void
1132 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1133
1134 static void
1135 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1136 {
1137 struct gl_framebuffer *fb = drawable->driverPrivate;
1138 struct intel_renderbuffer *rb;
1139 __DRIbuffer *buffers = NULL;
1140 int i, count;
1141 const char *region_name;
1142
1143 /* Set this up front, so that in case our buffers get invalidated
1144 * while we're getting new buffers, we don't clobber the stamp and
1145 * thus ignore the invalidate. */
1146 drawable->lastStamp = drawable->dri2.stamp;
1147
1148 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1149 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1150
1151 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1152
1153 if (buffers == NULL)
1154 return;
1155
1156 for (i = 0; i < count; i++) {
1157 switch (buffers[i].attachment) {
1158 case __DRI_BUFFER_FRONT_LEFT:
1159 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1160 region_name = "dri2 front buffer";
1161 break;
1162
1163 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1164 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1165 region_name = "dri2 fake front buffer";
1166 break;
1167
1168 case __DRI_BUFFER_BACK_LEFT:
1169 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1170 region_name = "dri2 back buffer";
1171 break;
1172
1173 case __DRI_BUFFER_DEPTH:
1174 case __DRI_BUFFER_HIZ:
1175 case __DRI_BUFFER_DEPTH_STENCIL:
1176 case __DRI_BUFFER_STENCIL:
1177 case __DRI_BUFFER_ACCUM:
1178 default:
1179 fprintf(stderr,
1180 "unhandled buffer attach event, attachment type %d\n",
1181 buffers[i].attachment);
1182 return;
1183 }
1184
1185 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1186 }
1187
1188 }
1189
1190 void
1191 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1192 {
1193 struct brw_context *brw = context->driverPrivate;
1194 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1195
1196 /* Set this up front, so that in case our buffers get invalidated
1197 * while we're getting new buffers, we don't clobber the stamp and
1198 * thus ignore the invalidate. */
1199 drawable->lastStamp = drawable->dri2.stamp;
1200
1201 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1202 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1203
1204 if (screen->image.loader)
1205 intel_update_image_buffers(brw, drawable);
1206 else
1207 intel_update_dri2_buffers(brw, drawable);
1208
1209 driUpdateFramebufferSize(&brw->ctx, drawable);
1210 }
1211
1212 /**
1213 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1214 * state is required.
1215 */
1216 void
1217 intel_prepare_render(struct brw_context *brw)
1218 {
1219 struct gl_context *ctx = &brw->ctx;
1220 __DRIcontext *driContext = brw->driContext;
1221 __DRIdrawable *drawable;
1222
1223 drawable = driContext->driDrawablePriv;
1224 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1225 if (drawable->lastStamp != drawable->dri2.stamp)
1226 intel_update_renderbuffers(driContext, drawable);
1227 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1228 }
1229
1230 drawable = driContext->driReadablePriv;
1231 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1232 if (drawable->lastStamp != drawable->dri2.stamp)
1233 intel_update_renderbuffers(driContext, drawable);
1234 driContext->dri2.read_stamp = drawable->dri2.stamp;
1235 }
1236
1237 /* If we're currently rendering to the front buffer, the rendering
1238 * that will happen next will probably dirty the front buffer. So
1239 * mark it as dirty here.
1240 */
1241 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
1242 brw->front_buffer_dirty = true;
1243 }
1244
1245 /**
1246 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1247 *
1248 * To determine which DRI buffers to request, examine the renderbuffers
1249 * attached to the drawable's framebuffer. Then request the buffers with
1250 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1251 *
1252 * This is called from intel_update_renderbuffers().
1253 *
1254 * \param drawable Drawable whose buffers are queried.
1255 * \param buffers [out] List of buffers returned by DRI2 query.
1256 * \param buffer_count [out] Number of buffers returned.
1257 *
1258 * \see intel_update_renderbuffers()
1259 * \see DRI2GetBuffers()
1260 * \see DRI2GetBuffersWithFormat()
1261 */
1262 static void
1263 intel_query_dri2_buffers(struct brw_context *brw,
1264 __DRIdrawable *drawable,
1265 __DRIbuffer **buffers,
1266 int *buffer_count)
1267 {
1268 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1269 struct gl_framebuffer *fb = drawable->driverPrivate;
1270 int i = 0;
1271 unsigned attachments[8];
1272
1273 struct intel_renderbuffer *front_rb;
1274 struct intel_renderbuffer *back_rb;
1275
1276 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1277 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1278
1279 memset(attachments, 0, sizeof(attachments));
1280 if ((brw_is_front_buffer_drawing(fb) ||
1281 brw_is_front_buffer_reading(fb) ||
1282 !back_rb) && front_rb) {
1283 /* If a fake front buffer is in use, then querying for
1284 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1285 * the real front buffer to the fake front buffer. So before doing the
1286 * query, we need to make sure all the pending drawing has landed in the
1287 * real front buffer.
1288 */
1289 intel_batchbuffer_flush(brw);
1290 intel_flush_front(&brw->ctx);
1291
1292 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1293 attachments[i++] = intel_bits_per_pixel(front_rb);
1294 } else if (front_rb && brw->front_buffer_dirty) {
1295 /* We have pending front buffer rendering, but we aren't querying for a
1296 * front buffer. If the front buffer we have is a fake front buffer,
1297 * the X server is going to throw it away when it processes the query.
1298 * So before doing the query, make sure all the pending drawing has
1299 * landed in the real front buffer.
1300 */
1301 intel_batchbuffer_flush(brw);
1302 intel_flush_front(&brw->ctx);
1303 }
1304
1305 if (back_rb) {
1306 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1307 attachments[i++] = intel_bits_per_pixel(back_rb);
1308 }
1309
1310 assert(i <= ARRAY_SIZE(attachments));
1311
1312 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1313 &drawable->w,
1314 &drawable->h,
1315 attachments, i / 2,
1316 buffer_count,
1317 drawable->loaderPrivate);
1318 }
1319
1320 /**
1321 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1322 *
1323 * This is called from intel_update_renderbuffers().
1324 *
1325 * \par Note:
1326 * DRI buffers whose attachment point is DRI2BufferStencil or
1327 * DRI2BufferDepthStencil are handled as special cases.
1328 *
1329 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1330 * that is passed to drm_intel_bo_gem_create_from_name().
1331 *
1332 * \see intel_update_renderbuffers()
1333 */
1334 static void
1335 intel_process_dri2_buffer(struct brw_context *brw,
1336 __DRIdrawable *drawable,
1337 __DRIbuffer *buffer,
1338 struct intel_renderbuffer *rb,
1339 const char *buffer_name)
1340 {
1341 struct gl_framebuffer *fb = drawable->driverPrivate;
1342 drm_intel_bo *bo;
1343
1344 if (!rb)
1345 return;
1346
1347 unsigned num_samples = rb->Base.Base.NumSamples;
1348
1349 /* We try to avoid closing and reopening the same BO name, because the first
1350 * use of a mapping of the buffer involves a bunch of page faulting which is
1351 * moderately expensive.
1352 */
1353 struct intel_mipmap_tree *last_mt;
1354 if (num_samples == 0)
1355 last_mt = rb->mt;
1356 else
1357 last_mt = rb->singlesample_mt;
1358
1359 uint32_t old_name = 0;
1360 if (last_mt) {
1361 /* The bo already has a name because the miptree was created by a
1362 * previous call to intel_process_dri2_buffer(). If a bo already has a
1363 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1364 * create a new name.
1365 */
1366 drm_intel_bo_flink(last_mt->bo, &old_name);
1367 }
1368
1369 if (old_name == buffer->name)
1370 return;
1371
1372 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1373 fprintf(stderr,
1374 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1375 buffer->name, buffer->attachment,
1376 buffer->cpp, buffer->pitch);
1377 }
1378
1379 intel_miptree_release(&rb->mt);
1380 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1381 buffer->name);
1382 if (!bo) {
1383 fprintf(stderr,
1384 "Failed to open BO for returned DRI2 buffer "
1385 "(%dx%d, %s, named %d).\n"
1386 "This is likely a bug in the X Server that will lead to a "
1387 "crash soon.\n",
1388 drawable->w, drawable->h, buffer_name, buffer->name);
1389 return;
1390 }
1391
1392 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1393 drawable->w, drawable->h,
1394 buffer->pitch);
1395
1396 if (brw_is_front_buffer_drawing(fb) &&
1397 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1398 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1399 rb->Base.Base.NumSamples > 1) {
1400 intel_renderbuffer_upsample(brw, rb);
1401 }
1402
1403 assert(rb->mt);
1404
1405 drm_intel_bo_unreference(bo);
1406 }
1407
1408 /**
1409 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1410 *
1411 * To determine which DRI buffers to request, examine the renderbuffers
1412 * attached to the drawable's framebuffer. Then request the buffers from
1413 * the image loader
1414 *
1415 * This is called from intel_update_renderbuffers().
1416 *
1417 * \param drawable Drawable whose buffers are queried.
1418 * \param buffers [out] List of buffers returned by DRI2 query.
1419 * \param buffer_count [out] Number of buffers returned.
1420 *
1421 * \see intel_update_renderbuffers()
1422 */
1423
1424 static void
1425 intel_update_image_buffer(struct brw_context *intel,
1426 __DRIdrawable *drawable,
1427 struct intel_renderbuffer *rb,
1428 __DRIimage *buffer,
1429 enum __DRIimageBufferMask buffer_type)
1430 {
1431 struct gl_framebuffer *fb = drawable->driverPrivate;
1432
1433 if (!rb || !buffer->bo)
1434 return;
1435
1436 unsigned num_samples = rb->Base.Base.NumSamples;
1437
1438 /* Check and see if we're already bound to the right
1439 * buffer object
1440 */
1441 struct intel_mipmap_tree *last_mt;
1442 if (num_samples == 0)
1443 last_mt = rb->mt;
1444 else
1445 last_mt = rb->singlesample_mt;
1446
1447 if (last_mt && last_mt->bo == buffer->bo)
1448 return;
1449
1450 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1451 buffer->width, buffer->height,
1452 buffer->pitch);
1453
1454 if (brw_is_front_buffer_drawing(fb) &&
1455 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1456 rb->Base.Base.NumSamples > 1) {
1457 intel_renderbuffer_upsample(intel, rb);
1458 }
1459 }
1460
1461 static void
1462 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1463 {
1464 struct gl_framebuffer *fb = drawable->driverPrivate;
1465 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1466 struct intel_renderbuffer *front_rb;
1467 struct intel_renderbuffer *back_rb;
1468 struct __DRIimageList images;
1469 unsigned int format;
1470 uint32_t buffer_mask = 0;
1471
1472 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1473 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1474
1475 if (back_rb)
1476 format = intel_rb_format(back_rb);
1477 else if (front_rb)
1478 format = intel_rb_format(front_rb);
1479 else
1480 return;
1481
1482 if (front_rb && (brw_is_front_buffer_drawing(fb) ||
1483 brw_is_front_buffer_reading(fb) || !back_rb)) {
1484 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1485 }
1486
1487 if (back_rb)
1488 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1489
1490 (*screen->image.loader->getBuffers) (drawable,
1491 driGLFormatToImageFormat(format),
1492 &drawable->dri2.stamp,
1493 drawable->loaderPrivate,
1494 buffer_mask,
1495 &images);
1496
1497 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1498 drawable->w = images.front->width;
1499 drawable->h = images.front->height;
1500 intel_update_image_buffer(brw,
1501 drawable,
1502 front_rb,
1503 images.front,
1504 __DRI_IMAGE_BUFFER_FRONT);
1505 }
1506 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1507 drawable->w = images.back->width;
1508 drawable->h = images.back->height;
1509 intel_update_image_buffer(brw,
1510 drawable,
1511 back_rb,
1512 images.back,
1513 __DRI_IMAGE_BUFFER_BACK);
1514 }
1515 }