i965: Generalize computation of VUE map in preparation for GS.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 BRW_STATE_VUE_MAP_GEOM_OUT,
153 };
154
155 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
156 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
157 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
158 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
159 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
160 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
161 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
162 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
163 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
164 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
165 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
166 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
167 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
168 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
169 /**
170 * Used for any batch entry with a relocated pointer that will be used
171 * by any 3D rendering.
172 */
173 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
174 /** \see brw.state.depth_region */
175 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
176 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
177 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
178 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
179 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
180 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
181
182 struct brw_state_flags {
183 /** State update flags signalled by mesa internals */
184 GLuint mesa;
185 /**
186 * State update flags signalled as the result of brw_tracked_state updates
187 */
188 GLuint brw;
189 /** State update flags signalled by brw_state_cache.c searches */
190 GLuint cache;
191 };
192
193 #define AUB_TRACE_TYPE_MASK 0x0000ff00
194 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
195 #define AUB_TRACE_TYPE_BATCH (1 << 8)
196 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
197 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
198 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
199 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
200 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
201 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
202 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
203 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
204 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
205 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
206
207 /**
208 * state_struct_type enum values are encoded with the top 16 bits representing
209 * the type to be delivered to the .aub file, and the bottom 16 bits
210 * representing the subtype. This macro performs the encoding.
211 */
212 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
213
214 enum state_struct_type {
215 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
216 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
217 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
218 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
219 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
220 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
221 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
222 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
223 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
224 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
225 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
226 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
227 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
228
229 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
230 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
231 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
232
233 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
234 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
235 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
236 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
237 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
238 };
239
240 /**
241 * Decode a state_struct_type value to determine the type that should be
242 * stored in the .aub file.
243 */
244 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
245 {
246 return (ss_type & 0xFFFF0000) >> 16;
247 }
248
249 /**
250 * Decode a state_struct_type value to determine the subtype that should be
251 * stored in the .aub file.
252 */
253 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
254 {
255 return ss_type & 0xFFFF;
256 }
257
258 /** Subclass of Mesa vertex program */
259 struct brw_vertex_program {
260 struct gl_vertex_program program;
261 GLuint id;
262 };
263
264
265 /** Subclass of Mesa fragment program */
266 struct brw_fragment_program {
267 struct gl_fragment_program program;
268 GLuint id; /**< serial no. to identify frag progs, never re-used */
269 };
270
271 struct brw_shader {
272 struct gl_shader base;
273
274 bool compiled_once;
275
276 /** Shader IR transformed for native compile, at link time. */
277 struct exec_list *ir;
278 };
279
280 /* Data about a particular attempt to compile a program. Note that
281 * there can be many of these, each in a different GL state
282 * corresponding to a different brw_wm_prog_key struct, with different
283 * compiled programs.
284 *
285 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
286 * struct!
287 */
288 struct brw_wm_prog_data {
289 GLuint curb_read_length;
290 GLuint urb_read_length;
291
292 GLuint first_curbe_grf;
293 GLuint first_curbe_grf_16;
294 GLuint reg_blocks;
295 GLuint reg_blocks_16;
296 GLuint total_scratch;
297
298 GLuint nr_params; /**< number of float params/constants */
299 GLuint nr_pull_params;
300 bool dual_src_blend;
301 int dispatch_width;
302 uint32_t prog_offset_16;
303
304 /**
305 * Mask of which interpolation modes are required by the fragment shader.
306 * Used in hardware setup on gen6+.
307 */
308 uint32_t barycentric_interp_modes;
309
310 /* Pointers to tracked values (only valid once
311 * _mesa_load_state_parameters has been called at runtime).
312 *
313 * These must be the last fields of the struct (see
314 * brw_wm_prog_data_compare()).
315 */
316 const float **param;
317 const float **pull_param;
318 };
319
320 /**
321 * Enum representing the i965-specific vertex results that don't correspond
322 * exactly to any element of gl_varying_slot. The values of this enum are
323 * assigned such that they don't conflict with gl_varying_slot.
324 */
325 typedef enum
326 {
327 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
328 BRW_VARYING_SLOT_POS_DUPLICATE,
329 BRW_VARYING_SLOT_PAD,
330 /**
331 * Technically this is not a varying but just a placeholder that
332 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
333 * builtin variable to be compiled correctly. see compile_sf_prog() for
334 * more info.
335 */
336 BRW_VARYING_SLOT_PNTC,
337 BRW_VARYING_SLOT_COUNT
338 } brw_varying_slot;
339
340
341 /**
342 * Data structure recording the relationship between the gl_varying_slot enum
343 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
344 * single octaword within the VUE (128 bits).
345 *
346 * Note that each BRW register contains 256 bits (2 octawords), so when
347 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
348 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
349 * in a vertex shader), each register corresponds to a single VUE slot, since
350 * it contains data for two separate vertices.
351 */
352 struct brw_vue_map {
353 /**
354 * Bitfield representing all varying slots that are (a) stored in this VUE
355 * map, and (b) actually written by the shader. Does not include any of
356 * the additional varying slots defined in brw_varying_slot.
357 */
358 GLbitfield64 slots_valid;
359
360 /**
361 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
362 * not stored in a slot (because they are not written, or because
363 * additional processing is applied before storing them in the VUE), the
364 * value is -1.
365 */
366 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
367
368 /**
369 * Map from VUE slot to gl_varying_slot value. For slots that do not
370 * directly correspond to a gl_varying_slot, the value comes from
371 * brw_varying_slot.
372 *
373 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
374 * simplifies code that uses the value stored in slot_to_varying to
375 * create a bit mask).
376 */
377 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
378
379 /**
380 * Total number of VUE slots in use
381 */
382 int num_slots;
383 };
384
385 /**
386 * Convert a VUE slot number into a byte offset within the VUE.
387 */
388 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
389 {
390 return 16*slot;
391 }
392
393 /**
394 * Convert a vertex output (brw_varying_slot) into a byte offset within the
395 * VUE.
396 */
397 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
398 GLuint varying)
399 {
400 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
401 }
402
403 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
404 GLbitfield64 slots_valid, bool userclip_active);
405
406
407 struct brw_sf_prog_data {
408 GLuint urb_read_length;
409 GLuint total_grf;
410
411 /* Each vertex may have upto 12 attributes, 4 components each,
412 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
413 * rows.
414 *
415 * Actually we use 4 for each, so call it 12 rows.
416 */
417 GLuint urb_entry_size;
418 };
419
420 struct brw_clip_prog_data {
421 GLuint curb_read_length; /* user planes? */
422 GLuint clip_mode;
423 GLuint urb_read_length;
424 GLuint total_grf;
425 };
426
427 struct brw_gs_prog_data {
428 GLuint urb_read_length;
429 GLuint total_grf;
430
431 /**
432 * Gen6 transform feedback: Amount by which the streaming vertex buffer
433 * indices should be incremented each time the GS is invoked.
434 */
435 unsigned svbi_postincrement_value;
436 };
437
438 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
439 * struct!
440 */
441 struct brw_vs_prog_data {
442 struct brw_vue_map vue_map;
443
444 GLuint curb_read_length;
445 GLuint urb_read_length;
446 GLuint total_grf;
447 GLuint nr_params; /**< number of float params/constants */
448 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
449 GLuint total_scratch;
450
451 GLbitfield64 inputs_read;
452
453 /* Used for calculating urb partitions:
454 */
455 GLuint urb_entry_size;
456
457 bool uses_vertexid;
458
459 int num_surfaces;
460
461 /* These pointers must appear last. See brw_vs_prog_data_compare(). */
462 const float **param;
463 const float **pull_param;
464 };
465
466 /** Number of texture sampler units */
467 #define BRW_MAX_TEX_UNIT 16
468
469 /** Max number of render targets in a shader */
470 #define BRW_MAX_DRAW_BUFFERS 8
471
472 /**
473 * Max number of binding table entries used for stream output.
474 *
475 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
476 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
477 *
478 * On Gen6, the size of transform feedback data is limited not by the number
479 * of components but by the number of binding table entries we set aside. We
480 * use one binding table entry for a float, one entry for a vector, and one
481 * entry per matrix column. Since the only way we can communicate our
482 * transform feedback capabilities to the client is via
483 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
484 * worst case, in which all the varyings are floats, so we use up one binding
485 * table entry per component. Therefore we need to set aside at least 64
486 * binding table entries for use by transform feedback.
487 *
488 * Note: since we don't currently pack varyings, it is currently impossible
489 * for the client to actually use up all of these binding table entries--if
490 * all of their varyings were floats, they would run out of varying slots and
491 * fail to link. But that's a bug, so it seems prudent to go ahead and
492 * allocate the number of binding table entries we will need once the bug is
493 * fixed.
494 */
495 #define BRW_MAX_SOL_BINDINGS 64
496
497 /** Maximum number of actual buffers used for stream output */
498 #define BRW_MAX_SOL_BUFFERS 4
499
500 #define BRW_MAX_WM_UBOS 12
501 #define BRW_MAX_VS_UBOS 12
502
503 /**
504 * Helpers to create Surface Binding Table indexes for draw buffers,
505 * textures, and constant buffers.
506 *
507 * Shader threads access surfaces via numeric handles, rather than directly
508 * using pointers. The binding table maps these numeric handles to the
509 * address of the actual buffer.
510 *
511 * For example, a shader might ask to sample from "surface 7." In this case,
512 * bind[7] would contain a pointer to a texture.
513 *
514 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
515 *
516 * +-------------------------------+
517 * | 0 | Draw buffer 0 |
518 * | . | . |
519 * | : | : |
520 * | 7 | Draw buffer 7 |
521 * |-----|-------------------------|
522 * | 8 | WM Pull Constant Buffer |
523 * |-----|-------------------------|
524 * | 9 | Texture 0 |
525 * | . | . |
526 * | : | : |
527 * | 24 | Texture 15 |
528 * |-----|-------------------------|
529 * | 25 | UBO 0 |
530 * | . | . |
531 * | : | : |
532 * | 36 | UBO 11 |
533 * +-------------------------------+
534 *
535 * Our VS binding tables are programmed as follows:
536 *
537 * +-----+-------------------------+
538 * | 0 | VS Pull Constant Buffer |
539 * +-----+-------------------------+
540 * | 1 | Texture 0 |
541 * | . | . |
542 * | : | : |
543 * | 16 | Texture 15 |
544 * +-----+-------------------------+
545 * | 17 | UBO 0 |
546 * | . | . |
547 * | : | : |
548 * | 28 | UBO 11 |
549 * +-------------------------------+
550 *
551 * Our (gen6) GS binding tables are programmed as follows:
552 *
553 * +-----+-------------------------+
554 * | 0 | SOL Binding 0 |
555 * | . | . |
556 * | : | : |
557 * | 63 | SOL Binding 63 |
558 * +-----+-------------------------+
559 *
560 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
561 * the identity function or things will break. We do want to keep draw buffers
562 * first so we can use headerless render target writes for RT 0.
563 */
564 #define SURF_INDEX_DRAW(d) (d)
565 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
566 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
567 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
568 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
569 /** Maximum size of the binding table. */
570 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
571
572 #define SURF_INDEX_VERT_CONST_BUFFER (0)
573 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
574 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
575 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
576 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
577
578 #define SURF_INDEX_SOL_BINDING(t) ((t))
579 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
580
581 /**
582 * Stride in bytes between shader_time entries.
583 *
584 * We separate entries by a cacheline to reduce traffic between EUs writing to
585 * different entries.
586 */
587 #define SHADER_TIME_STRIDE 64
588
589 enum brw_cache_id {
590 BRW_BLEND_STATE,
591 BRW_DEPTH_STENCIL_STATE,
592 BRW_COLOR_CALC_STATE,
593 BRW_CC_VP,
594 BRW_CC_UNIT,
595 BRW_WM_PROG,
596 BRW_BLORP_BLIT_PROG,
597 BRW_SAMPLER,
598 BRW_WM_UNIT,
599 BRW_SF_PROG,
600 BRW_SF_VP,
601 BRW_SF_UNIT, /* scissor state on gen6 */
602 BRW_VS_UNIT,
603 BRW_VS_PROG,
604 BRW_GS_UNIT,
605 BRW_GS_PROG,
606 BRW_CLIP_VP,
607 BRW_CLIP_UNIT,
608 BRW_CLIP_PROG,
609
610 BRW_MAX_CACHE
611 };
612
613 struct brw_cache_item {
614 /**
615 * Effectively part of the key, cache_id identifies what kind of state
616 * buffer is involved, and also which brw->state.dirty.cache flag should
617 * be set when this cache item is chosen.
618 */
619 enum brw_cache_id cache_id;
620 /** 32-bit hash of the key data */
621 GLuint hash;
622 GLuint key_size; /* for variable-sized keys */
623 GLuint aux_size;
624 const void *key;
625
626 uint32_t offset;
627 uint32_t size;
628
629 struct brw_cache_item *next;
630 };
631
632
633 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
634 int aux_size, const void *key);
635 typedef void (*cache_aux_free_func)(const void *aux);
636
637 struct brw_cache {
638 struct brw_context *brw;
639
640 struct brw_cache_item **items;
641 drm_intel_bo *bo;
642 GLuint size, n_items;
643
644 uint32_t next_offset;
645 bool bo_used_by_gpu;
646
647 /**
648 * Optional functions used in determining whether the prog_data for a new
649 * cache item matches an existing cache item (in case there's relevant data
650 * outside of the prog_data). If NULL, a plain memcmp is done.
651 */
652 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
653 /** Optional functions for freeing other pointers attached to a prog_data. */
654 cache_aux_free_func aux_free[BRW_MAX_CACHE];
655 };
656
657
658 /* Considered adding a member to this struct to document which flags
659 * an update might raise so that ordering of the state atoms can be
660 * checked or derived at runtime. Dropped the idea in favor of having
661 * a debug mode where the state is monitored for flags which are
662 * raised that have already been tested against.
663 */
664 struct brw_tracked_state {
665 struct brw_state_flags dirty;
666 void (*emit)( struct brw_context *brw );
667 };
668
669 enum shader_time_shader_type {
670 ST_NONE,
671 ST_VS,
672 ST_VS_WRITTEN,
673 ST_VS_RESET,
674 ST_FS8,
675 ST_FS8_WRITTEN,
676 ST_FS8_RESET,
677 ST_FS16,
678 ST_FS16_WRITTEN,
679 ST_FS16_RESET,
680 };
681
682 /* Flags for brw->state.cache.
683 */
684 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
685 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
686 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
687 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
688 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
689 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
690 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
691 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
692 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
693 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
694 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
695 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
696 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
697 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
698 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
699 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
700 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
701 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
702
703 struct brw_cached_batch_item {
704 struct header *header;
705 GLuint sz;
706 struct brw_cached_batch_item *next;
707 };
708
709
710
711 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
712 * be easier if C allowed arrays of packed elements?
713 */
714 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
715
716 struct brw_vertex_buffer {
717 /** Buffer object containing the uploaded vertex data */
718 drm_intel_bo *bo;
719 uint32_t offset;
720 /** Byte stride between elements in the uploaded array */
721 GLuint stride;
722 GLuint step_rate;
723 };
724 struct brw_vertex_element {
725 const struct gl_client_array *glarray;
726
727 int buffer;
728
729 /** The corresponding Mesa vertex attribute */
730 gl_vert_attrib attrib;
731 /** Offset of the first element within the buffer object */
732 unsigned int offset;
733 };
734
735 struct brw_query_object {
736 struct gl_query_object Base;
737
738 /** Last query BO associated with this query. */
739 drm_intel_bo *bo;
740
741 /** Last index in bo with query data for this object. */
742 int last_index;
743 };
744
745
746 /**
747 * brw_context is derived from intel_context.
748 */
749 struct brw_context
750 {
751 struct intel_context intel; /**< base class, must be first field */
752 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
753
754 bool emit_state_always;
755 bool has_surface_tile_offset;
756 bool has_compr4;
757 bool has_negative_rhw_bug;
758 bool has_aa_line_parameters;
759 bool has_pln;
760 bool precompile;
761
762 /**
763 * Some versions of Gen hardware don't do centroid interpolation correctly
764 * on unlit pixels, causing incorrect values for derivatives near triangle
765 * edges. Enabling this flag causes the fragment shader to use
766 * non-centroid interpolation for unlit pixels, at the expense of two extra
767 * fragment shader instructions.
768 */
769 bool needs_unlit_centroid_workaround;
770
771 struct {
772 struct brw_state_flags dirty;
773 } state;
774
775 struct brw_cache cache;
776 struct brw_cached_batch_item *cached_batch_items;
777
778 struct {
779 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
780 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
781
782 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
783 GLuint nr_enabled;
784 GLuint nr_buffers;
785
786 /* Summary of size and varying of active arrays, so we can check
787 * for changes to this state:
788 */
789 unsigned int min_index, max_index;
790
791 /* Offset from start of vertex buffer so we can avoid redefining
792 * the same VB packed over and over again.
793 */
794 unsigned int start_vertex_bias;
795 } vb;
796
797 struct {
798 /**
799 * Index buffer for this draw_prims call.
800 *
801 * Updates are signaled by BRW_NEW_INDICES.
802 */
803 const struct _mesa_index_buffer *ib;
804
805 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
806 drm_intel_bo *bo;
807 GLuint type;
808
809 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
810 * avoid re-uploading the IB packet over and over if we're actually
811 * referencing the same index buffer.
812 */
813 unsigned int start_vertex_offset;
814 } ib;
815
816 /* Active vertex program:
817 */
818 const struct gl_vertex_program *vertex_program;
819 const struct gl_fragment_program *fragment_program;
820
821 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
822 uint32_t CMD_VF_STATISTICS;
823 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
824 uint32_t CMD_PIPELINE_SELECT;
825
826 /**
827 * Platform specific constants containing the maximum number of threads
828 * for each pipeline stage.
829 */
830 int max_vs_threads;
831 int max_gs_threads;
832 int max_wm_threads;
833
834 /* BRW_NEW_URB_ALLOCATIONS:
835 */
836 struct {
837 GLuint vsize; /* vertex size plus header in urb registers */
838 GLuint csize; /* constant buffer size in urb registers */
839 GLuint sfsize; /* setup data size in urb registers */
840
841 bool constrained;
842
843 GLuint max_vs_entries; /* Maximum number of VS entries */
844 GLuint max_gs_entries; /* Maximum number of GS entries */
845
846 GLuint nr_vs_entries;
847 GLuint nr_gs_entries;
848 GLuint nr_clip_entries;
849 GLuint nr_sf_entries;
850 GLuint nr_cs_entries;
851
852 GLuint vs_start;
853 GLuint gs_start;
854 GLuint clip_start;
855 GLuint sf_start;
856 GLuint cs_start;
857 GLuint size; /* Hardware URB size, in KB. */
858
859 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
860 * URB space for the GS.
861 */
862 bool gen6_gs_previously_active;
863 } urb;
864
865
866 /* BRW_NEW_CURBE_OFFSETS:
867 */
868 struct {
869 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
870 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
871 GLuint clip_start;
872 GLuint clip_size;
873 GLuint vs_start;
874 GLuint vs_size;
875 GLuint total_size;
876
877 drm_intel_bo *curbe_bo;
878 /** Offset within curbe_bo of space for current curbe entry */
879 GLuint curbe_offset;
880 /** Offset within curbe_bo of space for next curbe entry */
881 GLuint curbe_next_offset;
882
883 /**
884 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
885 * in brw_curbe.c with the same set of constant data to be uploaded,
886 * so we'd rather not upload new constants in that case (it can cause
887 * a pipeline bubble since only up to 4 can be pipelined at a time).
888 */
889 GLfloat *last_buf;
890 /**
891 * Allocation for where to calculate the next set of CURBEs.
892 * It's a hot enough path that malloc/free of that data matters.
893 */
894 GLfloat *next_buf;
895 GLuint last_bufsz;
896 } curbe;
897
898 /** SAMPLER_STATE count and offset */
899 struct {
900 GLuint count;
901 uint32_t offset;
902 } sampler;
903
904 /**
905 * Layout of vertex data exiting the geometry portion of the pipleine.
906 * This comes from the geometry shader if one exists, otherwise from the
907 * vertex shader.
908 *
909 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
910 */
911 struct brw_vue_map vue_map_geom_out;
912
913 struct {
914 struct brw_vs_prog_data *prog_data;
915
916 drm_intel_bo *scratch_bo;
917 drm_intel_bo *const_bo;
918 /** Offset in the program cache to the VS program */
919 uint32_t prog_offset;
920 uint32_t state_offset;
921
922 uint32_t push_const_offset; /* Offset in the batchbuffer */
923 int push_const_size; /* in 256-bit register increments */
924
925 /** @{ register allocator */
926
927 struct ra_regs *regs;
928
929 /**
930 * Array of the ra classes for the unaligned contiguous register
931 * block sizes used.
932 */
933 int *classes;
934
935 /**
936 * Mapping for register-allocated objects in *regs to the first
937 * GRF for that object.
938 */
939 uint8_t *ra_reg_to_grf;
940 /** @} */
941
942 uint32_t bind_bo_offset;
943 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
944 } vs;
945
946 struct {
947 struct brw_gs_prog_data *prog_data;
948
949 bool prog_active;
950 /** Offset in the program cache to the CLIP program pre-gen6 */
951 uint32_t prog_offset;
952 uint32_t state_offset;
953
954 uint32_t bind_bo_offset;
955 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
956 } gs;
957
958 struct {
959 struct brw_clip_prog_data *prog_data;
960
961 /** Offset in the program cache to the CLIP program pre-gen6 */
962 uint32_t prog_offset;
963
964 /* Offset in the batch to the CLIP state on pre-gen6. */
965 uint32_t state_offset;
966
967 /* As of gen6, this is the offset in the batch to the CLIP VP,
968 * instead of vp_bo.
969 */
970 uint32_t vp_offset;
971 } clip;
972
973
974 struct {
975 struct brw_sf_prog_data *prog_data;
976
977 /** Offset in the program cache to the CLIP program pre-gen6 */
978 uint32_t prog_offset;
979 uint32_t state_offset;
980 uint32_t vp_offset;
981 } sf;
982
983 struct {
984 struct brw_wm_prog_data *prog_data;
985
986 /** offsets in the batch to sampler default colors (texture border color)
987 */
988 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
989
990 GLuint render_surf;
991
992 drm_intel_bo *scratch_bo;
993
994 /**
995 * Buffer object used in place of multisampled null render targets on
996 * Gen6. See brw_update_null_renderbuffer_surface().
997 */
998 drm_intel_bo *multisampled_null_render_target_bo;
999
1000 /** Offset in the program cache to the WM program */
1001 uint32_t prog_offset;
1002
1003 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1004
1005 drm_intel_bo *const_bo; /* pull constant buffer. */
1006 /**
1007 * This is offset in the batch to the push constants on gen6.
1008 *
1009 * Pre-gen6, push constants live in the CURBE.
1010 */
1011 uint32_t push_const_offset;
1012
1013 /** Binding table of pointers to surf_bo entries */
1014 uint32_t bind_bo_offset;
1015 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1016
1017 struct {
1018 struct ra_regs *regs;
1019
1020 /** Array of the ra classes for the unaligned contiguous
1021 * register block sizes used.
1022 */
1023 int *classes;
1024
1025 /**
1026 * Mapping for register-allocated objects in *regs to the first
1027 * GRF for that object.
1028 */
1029 uint8_t *ra_reg_to_grf;
1030
1031 /**
1032 * ra class for the aligned pairs we use for PLN, which doesn't
1033 * appear in *classes.
1034 */
1035 int aligned_pairs_class;
1036 } reg_sets[2];
1037 } wm;
1038
1039
1040 struct {
1041 uint32_t state_offset;
1042 uint32_t blend_state_offset;
1043 uint32_t depth_stencil_state_offset;
1044 uint32_t vp_offset;
1045 } cc;
1046
1047 struct {
1048 struct brw_query_object *obj;
1049 bool begin_emitted;
1050 } query;
1051
1052 int num_atoms;
1053 const struct brw_tracked_state **atoms;
1054
1055 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1056 struct {
1057 uint32_t offset;
1058 uint32_t size;
1059 enum state_struct_type type;
1060 } *state_batch_list;
1061 int state_batch_count;
1062
1063 struct brw_sol_state {
1064 uint32_t svbi_0_starting_index;
1065 uint32_t svbi_0_max_index;
1066 uint32_t offset_0_batch_start;
1067 uint32_t primitives_generated;
1068 uint32_t primitives_written;
1069 bool counting_primitives_generated;
1070 bool counting_primitives_written;
1071 } sol;
1072
1073 uint32_t render_target_format[MESA_FORMAT_COUNT];
1074 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1075
1076 /* PrimitiveRestart */
1077 struct {
1078 bool in_progress;
1079 bool enable_cut_index;
1080 } prim_restart;
1081
1082 /** Computed depth/stencil/hiz state from the current attached
1083 * renderbuffers, valid only during the drawing state upload loop after
1084 * brw_workaround_depthstencil_alignment().
1085 */
1086 struct {
1087 struct intel_mipmap_tree *depth_mt;
1088 struct intel_mipmap_tree *stencil_mt;
1089
1090 /* Inter-tile (page-aligned) byte offsets. */
1091 uint32_t depth_offset, hiz_offset, stencil_offset;
1092 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1093 uint32_t tile_x, tile_y;
1094 } depthstencil;
1095
1096 uint32_t num_instances;
1097 int basevertex;
1098
1099 struct {
1100 drm_intel_bo *bo;
1101 struct gl_shader_program **shader_programs;
1102 struct gl_program **programs;
1103 enum shader_time_shader_type *types;
1104 uint64_t *cumulative;
1105 int num_entries;
1106 int max_entries;
1107 double report_time;
1108 } shader_time;
1109 };
1110
1111 /*======================================================================
1112 * brw_vtbl.c
1113 */
1114 void brwInitVtbl( struct brw_context *brw );
1115
1116 /*======================================================================
1117 * brw_context.c
1118 */
1119 bool brwCreateContext(int api,
1120 const struct gl_config *mesaVis,
1121 __DRIcontext *driContextPriv,
1122 unsigned major_version,
1123 unsigned minor_version,
1124 uint32_t flags,
1125 unsigned *error,
1126 void *sharedContextPrivate);
1127
1128 /*======================================================================
1129 * brw_misc_state.c
1130 */
1131 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1132 uint32_t depth_level,
1133 uint32_t depth_layer,
1134 struct intel_mipmap_tree *stencil_mt,
1135 uint32_t *out_tile_mask_x,
1136 uint32_t *out_tile_mask_y);
1137 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1138 GLbitfield clear_mask);
1139
1140 /*======================================================================
1141 * brw_queryobj.c
1142 */
1143 void brw_init_queryobj_functions(struct dd_function_table *functions);
1144 void brw_emit_query_begin(struct brw_context *brw);
1145 void brw_emit_query_end(struct brw_context *brw);
1146
1147 /*======================================================================
1148 * brw_state_dump.c
1149 */
1150 void brw_debug_batch(struct intel_context *intel);
1151 void brw_annotate_aub(struct intel_context *intel);
1152
1153 /*======================================================================
1154 * brw_tex.c
1155 */
1156 void brw_validate_textures( struct brw_context *brw );
1157
1158
1159 /*======================================================================
1160 * brw_program.c
1161 */
1162 void brwInitFragProgFuncs( struct dd_function_table *functions );
1163
1164 int brw_get_scratch_size(int size);
1165 void brw_get_scratch_bo(struct intel_context *intel,
1166 drm_intel_bo **scratch_bo, int size);
1167 void brw_init_shader_time(struct brw_context *brw);
1168 int brw_get_shader_time_index(struct brw_context *brw,
1169 struct gl_shader_program *shader_prog,
1170 struct gl_program *prog,
1171 enum shader_time_shader_type type);
1172 void brw_collect_and_report_shader_time(struct brw_context *brw);
1173 void brw_destroy_shader_time(struct brw_context *brw);
1174
1175 /* brw_urb.c
1176 */
1177 void brw_upload_urb_fence(struct brw_context *brw);
1178
1179 /* brw_curbe.c
1180 */
1181 void brw_upload_cs_urb_state(struct brw_context *brw);
1182
1183 /* brw_fs_reg_allocate.cpp
1184 */
1185 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1186
1187 /* brw_disasm.c */
1188 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1189
1190 /* brw_vs.c */
1191 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1192
1193 /* brw_wm_surface_state.c */
1194 void brw_init_surface_formats(struct brw_context *brw);
1195 void
1196 brw_update_sol_surface(struct brw_context *brw,
1197 struct gl_buffer_object *buffer_obj,
1198 uint32_t *out_offset, unsigned num_vector_components,
1199 unsigned stride_dwords, unsigned offset_dwords);
1200 void brw_upload_ubo_surfaces(struct brw_context *brw,
1201 struct gl_shader *shader,
1202 uint32_t *surf_offsets);
1203
1204 /* gen6_sol.c */
1205 void
1206 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1207 struct gl_transform_feedback_object *obj);
1208 void
1209 brw_end_transform_feedback(struct gl_context *ctx,
1210 struct gl_transform_feedback_object *obj);
1211
1212 /* gen7_sol_state.c */
1213 void
1214 gen7_end_transform_feedback(struct gl_context *ctx,
1215 struct gl_transform_feedback_object *obj);
1216
1217 /* brw_blorp_blit.cpp */
1218 GLbitfield
1219 brw_blorp_framebuffer(struct intel_context *intel,
1220 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1221 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1222 GLbitfield mask, GLenum filter);
1223
1224 bool
1225 brw_blorp_copytexsubimage(struct intel_context *intel,
1226 struct gl_renderbuffer *src_rb,
1227 struct gl_texture_image *dst_image,
1228 int srcX0, int srcY0,
1229 int dstX0, int dstY0,
1230 int width, int height);
1231
1232 /* gen6_multisample_state.c */
1233 void
1234 gen6_emit_3dstate_multisample(struct brw_context *brw,
1235 unsigned num_samples);
1236 void
1237 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1238 unsigned num_samples, float coverage,
1239 bool coverage_invert, unsigned sample_mask);
1240 void
1241 gen6_get_sample_position(struct gl_context *ctx,
1242 struct gl_framebuffer *fb,
1243 GLuint index,
1244 GLfloat *result);
1245
1246 /* gen7_urb.c */
1247 void
1248 gen7_allocate_push_constants(struct brw_context *brw);
1249
1250 void
1251 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1252 GLuint vs_size, GLuint vs_start);
1253
1254
1255
1256 /*======================================================================
1257 * Inline conversion functions. These are better-typed than the
1258 * macros used previously:
1259 */
1260 static INLINE struct brw_context *
1261 brw_context( struct gl_context *ctx )
1262 {
1263 return (struct brw_context *)ctx;
1264 }
1265
1266 static INLINE struct brw_vertex_program *
1267 brw_vertex_program(struct gl_vertex_program *p)
1268 {
1269 return (struct brw_vertex_program *) p;
1270 }
1271
1272 static INLINE const struct brw_vertex_program *
1273 brw_vertex_program_const(const struct gl_vertex_program *p)
1274 {
1275 return (const struct brw_vertex_program *) p;
1276 }
1277
1278 static INLINE struct brw_fragment_program *
1279 brw_fragment_program(struct gl_fragment_program *p)
1280 {
1281 return (struct brw_fragment_program *) p;
1282 }
1283
1284 static INLINE const struct brw_fragment_program *
1285 brw_fragment_program_const(const struct gl_fragment_program *p)
1286 {
1287 return (const struct brw_fragment_program *) p;
1288 }
1289
1290 /**
1291 * Pre-gen6, the register file of the EUs was shared between threads,
1292 * and each thread used some subset allocated on a 16-register block
1293 * granularity. The unit states wanted these block counts.
1294 */
1295 static inline int
1296 brw_register_blocks(int reg_count)
1297 {
1298 return ALIGN(reg_count, 16) / 16 - 1;
1299 }
1300
1301 static inline uint32_t
1302 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1303 uint32_t prog_offset)
1304 {
1305 struct intel_context *intel = &brw->intel;
1306
1307 if (intel->gen >= 5) {
1308 /* Using state base address. */
1309 return prog_offset;
1310 }
1311
1312 drm_intel_bo_emit_reloc(intel->batch.bo,
1313 state_offset,
1314 brw->cache.bo,
1315 prog_offset,
1316 I915_GEM_DOMAIN_INSTRUCTION, 0);
1317
1318 return brw->cache.bo->offset + prog_offset;
1319 }
1320
1321 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1322 bool brw_lower_texture_gradients(struct exec_list *instructions);
1323
1324 struct opcode_desc {
1325 char *name;
1326 int nsrc;
1327 int ndst;
1328 };
1329
1330 extern const struct opcode_desc opcode_descs[128];
1331
1332 void
1333 brw_emit_depthbuffer(struct brw_context *brw);
1334
1335 void
1336 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1337 struct intel_mipmap_tree *depth_mt,
1338 uint32_t depth_offset, uint32_t depthbuffer_format,
1339 uint32_t depth_surface_type,
1340 struct intel_mipmap_tree *stencil_mt,
1341 bool hiz, bool separate_stencil,
1342 uint32_t width, uint32_t height,
1343 uint32_t tile_x, uint32_t tile_y);
1344
1345 void
1346 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1347 struct intel_mipmap_tree *depth_mt,
1348 uint32_t depth_offset, uint32_t depthbuffer_format,
1349 uint32_t depth_surface_type,
1350 struct intel_mipmap_tree *stencil_mt,
1351 bool hiz, bool separate_stencil,
1352 uint32_t width, uint32_t height,
1353 uint32_t tile_x, uint32_t tile_y);
1354
1355 #ifdef __cplusplus
1356 }
1357 #endif
1358
1359 #endif