i965/vs: Delete the old vertex shader backend.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* Glossary:
45 *
46 * URB - uniform resource buffer. A mid-sized buffer which is
47 * partitioned between the fixed function units and used for passing
48 * values (vertices, primitives, constants) between them.
49 *
50 * CURBE - constant URB entry. An urb region (entry) used to hold
51 * constant values which the fixed function units can be instructed to
52 * preload into the GRF when spawning a thread.
53 *
54 * VUE - vertex URB entry. An urb entry holding a vertex and usually
55 * a vertex header. The header contains control information and
56 * things like primitive type, Begin/end flags and clip codes.
57 *
58 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
59 * unit holding rasterization and interpolation parameters.
60 *
61 * GRF - general register file. One of several register files
62 * addressable by programmed threads. The inputs (r0, payload, curbe,
63 * urb) of the thread are preloaded to this area before the thread is
64 * spawned. The registers are individually 8 dwords wide and suitable
65 * for general usage. Registers holding thread input values are not
66 * special and may be overwritten.
67 *
68 * MRF - message register file. Threads communicate (and terminate)
69 * by sending messages. Message parameters are placed in contiguous
70 * MRF registers. All program output is via these messages. URB
71 * entries are populated by sending a message to the shared URB
72 * function containing the new data, together with a control word,
73 * often an unmodified copy of R0.
74 *
75 * R0 - GRF register 0. Typically holds control information used when
76 * sending messages to other threads.
77 *
78 * EU or GEN4 EU: The name of the programmable subsystem of the
79 * i965 hardware. Threads are executed by the EU, the registers
80 * described above are part of the EU architecture.
81 *
82 * Fixed function units:
83 *
84 * CS - Command streamer. Notional first unit, little software
85 * interaction. Holds the URB entries used for constant data, ie the
86 * CURBEs.
87 *
88 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
89 * this unit is responsible for pulling vertices out of vertex buffers
90 * in vram and injecting them into the processing pipe as VUEs. If
91 * enabled, it first passes them to a VS thread which is a good place
92 * for the driver to implement any active vertex shader.
93 *
94 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
95 * enabled, incoming strips etc are passed to GS threads in individual
96 * line/triangle/point units. The GS thread may perform arbitary
97 * computation and emit whatever primtives with whatever vertices it
98 * chooses. This makes GS an excellent place to implement GL's
99 * unfilled polygon modes, though of course it is capable of much
100 * more. Additionally, GS is used to translate away primitives not
101 * handled by latter units, including Quads and Lineloops.
102 *
103 * CS - Clipper. Mesa's clipping algorithms are imported to run on
104 * this unit. The fixed function part performs cliptesting against
105 * the 6 fixed clipplanes and makes descisions on whether or not the
106 * incoming primitive needs to be passed to a thread for clipping.
107 * User clip planes are handled via cooperation with the VS thread.
108 *
109 * SF - Strips Fans or Setup: Triangles are prepared for
110 * rasterization. Interpolation coefficients are calculated.
111 * Flatshading and two-side lighting usually performed here.
112 *
113 * WM - Windower. Interpolation of vertex attributes performed here.
114 * Fragment shader implemented here. SIMD aspects of EU taken full
115 * advantage of, as pixels are processed in blocks of 16.
116 *
117 * CC - Color Calculator. No EU threads associated with this unit.
118 * Handles blending and (presumably) depth and stencil testing.
119 */
120
121
122 #define BRW_MAX_CURBE (32*16)
123
124 struct brw_context;
125 struct brw_instruction;
126 struct brw_vs_prog_key;
127 struct brw_wm_prog_key;
128 struct brw_wm_prog_data;
129
130 enum brw_state_id {
131 BRW_STATE_URB_FENCE,
132 BRW_STATE_FRAGMENT_PROGRAM,
133 BRW_STATE_VERTEX_PROGRAM,
134 BRW_STATE_INPUT_DIMENSIONS,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_WM_INPUT_DIMENSIONS,
140 BRW_STATE_PSP,
141 BRW_STATE_SURFACES,
142 BRW_STATE_VS_BINDING_TABLE,
143 BRW_STATE_GS_BINDING_TABLE,
144 BRW_STATE_PS_BINDING_TABLE,
145 BRW_STATE_INDICES,
146 BRW_STATE_VERTICES,
147 BRW_STATE_BATCH,
148 BRW_STATE_NR_WM_SURFACES,
149 BRW_STATE_NR_VS_SURFACES,
150 BRW_STATE_INDEX_BUFFER,
151 BRW_STATE_VS_CONSTBUF,
152 BRW_STATE_PROGRAM_CACHE,
153 BRW_STATE_STATE_BASE_ADDRESS,
154 BRW_STATE_SOL_INDICES,
155 };
156
157 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
158 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
159 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
160 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
161 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
184
185 struct brw_state_flags {
186 /** State update flags signalled by mesa internals */
187 GLuint mesa;
188 /**
189 * State update flags signalled as the result of brw_tracked_state updates
190 */
191 GLuint brw;
192 /** State update flags signalled by brw_state_cache.c searches */
193 GLuint cache;
194 };
195
196 #define AUB_TRACE_TYPE_MASK 0x0000ff00
197 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
198 #define AUB_TRACE_TYPE_BATCH (1 << 8)
199 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
200 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
201 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
202 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
203 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
204 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
205 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
206 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
207 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
208 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
209
210 /**
211 * state_struct_type enum values are encoded with the top 16 bits representing
212 * the type to be delivered to the .aub file, and the bottom 16 bits
213 * representing the subtype. This macro performs the encoding.
214 */
215 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
216
217 enum state_struct_type {
218 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
219 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
220 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
221 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
222 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
223 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
224 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
225 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
226 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
227 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
228 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
229 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
230 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
231
232 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
233 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
234 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
235
236 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
237 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
238 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
239 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
240 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
241 };
242
243 /**
244 * Decode a state_struct_type value to determine the type that should be
245 * stored in the .aub file.
246 */
247 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
248 {
249 return (ss_type & 0xFFFF0000) >> 16;
250 }
251
252 /**
253 * Decode a state_struct_type value to determine the subtype that should be
254 * stored in the .aub file.
255 */
256 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
257 {
258 return ss_type & 0xFFFF;
259 }
260
261 /** Subclass of Mesa vertex program */
262 struct brw_vertex_program {
263 struct gl_vertex_program program;
264 GLuint id;
265 };
266
267
268 /** Subclass of Mesa fragment program */
269 struct brw_fragment_program {
270 struct gl_fragment_program program;
271 GLuint id; /**< serial no. to identify frag progs, never re-used */
272 };
273
274 struct brw_shader {
275 struct gl_shader base;
276
277 bool compiled_once;
278
279 /** Shader IR transformed for native compile, at link time. */
280 struct exec_list *ir;
281 };
282
283 struct brw_shader_program {
284 struct gl_shader_program base;
285 };
286
287 /* Data about a particular attempt to compile a program. Note that
288 * there can be many of these, each in a different GL state
289 * corresponding to a different brw_wm_prog_key struct, with different
290 * compiled programs.
291 *
292 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
293 * struct!
294 */
295 struct brw_wm_prog_data {
296 GLuint curb_read_length;
297 GLuint urb_read_length;
298
299 GLuint first_curbe_grf;
300 GLuint first_curbe_grf_16;
301 GLuint reg_blocks;
302 GLuint reg_blocks_16;
303 GLuint total_scratch;
304
305 GLuint nr_params; /**< number of float params/constants */
306 GLuint nr_pull_params;
307 bool error;
308 bool dual_src_blend;
309 int dispatch_width;
310 uint32_t prog_offset_16;
311
312 /**
313 * Mask of which interpolation modes are required by the fragment shader.
314 * Used in hardware setup on gen6+.
315 */
316 uint32_t barycentric_interp_modes;
317
318 /* Pointers to tracked values (only valid once
319 * _mesa_load_state_parameters has been called at runtime).
320 *
321 * These must be the last fields of the struct (see
322 * brw_wm_prog_data_compare()).
323 */
324 const float **param;
325 const float **pull_param;
326 };
327
328 /**
329 * Enum representing the i965-specific vertex results that don't correspond
330 * exactly to any element of gl_vert_result. The values of this enum are
331 * assigned such that they don't conflict with gl_vert_result.
332 */
333 typedef enum
334 {
335 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
336 BRW_VERT_RESULT_HPOS_DUPLICATE,
337 BRW_VERT_RESULT_PAD,
338 /*
339 * It's actually not a vert_result but just a _mark_ to let sf aware that
340 * he need do something special to handle gl_PointCoord builtin variable
341 * correctly. see compile_sf_prog() for more info.
342 */
343 BRW_VERT_RESULT_PNTC,
344 BRW_VERT_RESULT_MAX
345 } brw_vert_result;
346
347
348 /**
349 * Data structure recording the relationship between the gl_vert_result enum
350 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
351 * single octaword within the VUE (128 bits).
352 *
353 * Note that each BRW register contains 256 bits (2 octawords), so when
354 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
355 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
356 * in a vertex shader), each register corresponds to a single VUE slot, since
357 * it contains data for two separate vertices.
358 */
359 struct brw_vue_map {
360 /**
361 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
362 * not stored in a slot (because they are not written, or because
363 * additional processing is applied before storing them in the VUE), the
364 * value is -1.
365 */
366 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
367
368 /**
369 * Map from VUE slot to gl_vert_result value. For slots that do not
370 * directly correspond to a gl_vert_result, the value comes from
371 * brw_vert_result.
372 *
373 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
374 * simplifies code that uses the value stored in slot_to_vert_result to
375 * create a bit mask).
376 */
377 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
378
379 /**
380 * Total number of VUE slots in use
381 */
382 int num_slots;
383 };
384
385 /**
386 * Convert a VUE slot number into a byte offset within the VUE.
387 */
388 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
389 {
390 return 16*slot;
391 }
392
393 /**
394 * Convert a vert_result into a byte offset within the VUE.
395 */
396 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
397 GLuint vert_result)
398 {
399 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
400 }
401
402
403 struct brw_sf_prog_data {
404 GLuint urb_read_length;
405 GLuint total_grf;
406
407 /* Each vertex may have upto 12 attributes, 4 components each,
408 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
409 * rows.
410 *
411 * Actually we use 4 for each, so call it 12 rows.
412 */
413 GLuint urb_entry_size;
414 };
415
416 struct brw_clip_prog_data {
417 GLuint curb_read_length; /* user planes? */
418 GLuint clip_mode;
419 GLuint urb_read_length;
420 GLuint total_grf;
421 };
422
423 struct brw_gs_prog_data {
424 GLuint urb_read_length;
425 GLuint total_grf;
426
427 /**
428 * Gen6 transform feedback: Amount by which the streaming vertex buffer
429 * indices should be incremented each time the GS is invoked.
430 */
431 unsigned svbi_postincrement_value;
432 };
433
434 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
435 * struct!
436 */
437 struct brw_vs_prog_data {
438 struct brw_vue_map vue_map;
439
440 GLuint curb_read_length;
441 GLuint urb_read_length;
442 GLuint total_grf;
443 GLbitfield64 outputs_written;
444 GLuint nr_params; /**< number of float params/constants */
445 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
446 GLuint total_scratch;
447
448 GLbitfield64 inputs_read;
449
450 /* Used for calculating urb partitions:
451 */
452 GLuint urb_entry_size;
453
454 bool uses_new_param_layout;
455 bool uses_vertexid;
456 bool userclip;
457
458 int num_surfaces;
459
460 /* These pointers must appear last. See brw_vs_prog_data_compare(). */
461 const float **param;
462 const float **pull_param;
463 };
464
465
466 /* Size == 0 if output either not written, or always [0,0,0,1]
467 */
468 struct brw_vs_ouput_sizes {
469 GLubyte output_size[VERT_RESULT_MAX];
470 };
471
472
473 /** Number of texture sampler units */
474 #define BRW_MAX_TEX_UNIT 16
475
476 /** Max number of render targets in a shader */
477 #define BRW_MAX_DRAW_BUFFERS 8
478
479 /**
480 * Max number of binding table entries used for stream output.
481 *
482 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
483 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
484 *
485 * On Gen6, the size of transform feedback data is limited not by the number
486 * of components but by the number of binding table entries we set aside. We
487 * use one binding table entry for a float, one entry for a vector, and one
488 * entry per matrix column. Since the only way we can communicate our
489 * transform feedback capabilities to the client is via
490 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
491 * worst case, in which all the varyings are floats, so we use up one binding
492 * table entry per component. Therefore we need to set aside at least 64
493 * binding table entries for use by transform feedback.
494 *
495 * Note: since we don't currently pack varyings, it is currently impossible
496 * for the client to actually use up all of these binding table entries--if
497 * all of their varyings were floats, they would run out of varying slots and
498 * fail to link. But that's a bug, so it seems prudent to go ahead and
499 * allocate the number of binding table entries we will need once the bug is
500 * fixed.
501 */
502 #define BRW_MAX_SOL_BINDINGS 64
503
504 /** Maximum number of actual buffers used for stream output */
505 #define BRW_MAX_SOL_BUFFERS 4
506
507 #define BRW_MAX_WM_UBOS 12
508 #define BRW_MAX_VS_UBOS 12
509
510 /**
511 * Helpers to create Surface Binding Table indexes for draw buffers,
512 * textures, and constant buffers.
513 *
514 * Shader threads access surfaces via numeric handles, rather than directly
515 * using pointers. The binding table maps these numeric handles to the
516 * address of the actual buffer.
517 *
518 * For example, a shader might ask to sample from "surface 7." In this case,
519 * bind[7] would contain a pointer to a texture.
520 *
521 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
522 *
523 * +-------------------------------+
524 * | 0 | Draw buffer 0 |
525 * | . | . |
526 * | : | : |
527 * | 7 | Draw buffer 7 |
528 * |-----|-------------------------|
529 * | 8 | WM Pull Constant Buffer |
530 * |-----|-------------------------|
531 * | 9 | Texture 0 |
532 * | . | . |
533 * | : | : |
534 * | 24 | Texture 15 |
535 * |-----|-------------------------|
536 * | 25 | UBO 0 |
537 * | . | . |
538 * | : | : |
539 * | 36 | UBO 11 |
540 * +-------------------------------+
541 *
542 * Our VS binding tables are programmed as follows:
543 *
544 * +-----+-------------------------+
545 * | 0 | VS Pull Constant Buffer |
546 * +-----+-------------------------+
547 * | 1 | Texture 0 |
548 * | . | . |
549 * | : | : |
550 * | 16 | Texture 15 |
551 * +-----+-------------------------+
552 * | 17 | UBO 0 |
553 * | . | . |
554 * | : | : |
555 * | 28 | UBO 11 |
556 * +-------------------------------+
557 *
558 * Our (gen6) GS binding tables are programmed as follows:
559 *
560 * +-----+-------------------------+
561 * | 0 | SOL Binding 0 |
562 * | . | . |
563 * | : | : |
564 * | 63 | SOL Binding 63 |
565 * +-----+-------------------------+
566 *
567 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
568 * the identity function or things will break. We do want to keep draw buffers
569 * first so we can use headerless render target writes for RT 0.
570 */
571 #define SURF_INDEX_DRAW(d) (d)
572 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
573 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
574 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
575
576 /** Maximum size of the binding table. */
577 #define BRW_MAX_WM_SURFACES SURF_INDEX_WM_UBO(BRW_MAX_WM_UBOS)
578
579 #define SURF_INDEX_VERT_CONST_BUFFER (0)
580 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
581 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
582 #define BRW_MAX_VS_SURFACES SURF_INDEX_VS_UBO(BRW_MAX_VS_UBOS)
583
584 #define SURF_INDEX_SOL_BINDING(t) ((t))
585 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
586
587 enum brw_cache_id {
588 BRW_BLEND_STATE,
589 BRW_DEPTH_STENCIL_STATE,
590 BRW_COLOR_CALC_STATE,
591 BRW_CC_VP,
592 BRW_CC_UNIT,
593 BRW_WM_PROG,
594 BRW_BLORP_BLIT_PROG,
595 BRW_SAMPLER,
596 BRW_WM_UNIT,
597 BRW_SF_PROG,
598 BRW_SF_VP,
599 BRW_SF_UNIT, /* scissor state on gen6 */
600 BRW_VS_UNIT,
601 BRW_VS_PROG,
602 BRW_GS_UNIT,
603 BRW_GS_PROG,
604 BRW_CLIP_VP,
605 BRW_CLIP_UNIT,
606 BRW_CLIP_PROG,
607
608 BRW_MAX_CACHE
609 };
610
611 struct brw_cache_item {
612 /**
613 * Effectively part of the key, cache_id identifies what kind of state
614 * buffer is involved, and also which brw->state.dirty.cache flag should
615 * be set when this cache item is chosen.
616 */
617 enum brw_cache_id cache_id;
618 /** 32-bit hash of the key data */
619 GLuint hash;
620 GLuint key_size; /* for variable-sized keys */
621 GLuint aux_size;
622 const void *key;
623
624 uint32_t offset;
625 uint32_t size;
626
627 struct brw_cache_item *next;
628 };
629
630
631 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
632 int aux_size, const void *key);
633 typedef void (*cache_aux_free_func)(const void *aux);
634
635 struct brw_cache {
636 struct brw_context *brw;
637
638 struct brw_cache_item **items;
639 drm_intel_bo *bo;
640 GLuint size, n_items;
641
642 uint32_t next_offset;
643 bool bo_used_by_gpu;
644
645 /**
646 * Optional functions used in determining whether the prog_data for a new
647 * cache item matches an existing cache item (in case there's relevant data
648 * outside of the prog_data). If NULL, a plain memcmp is done.
649 */
650 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
651 /** Optional functions for freeing other pointers attached to a prog_data. */
652 cache_aux_free_func aux_free[BRW_MAX_CACHE];
653 };
654
655
656 /* Considered adding a member to this struct to document which flags
657 * an update might raise so that ordering of the state atoms can be
658 * checked or derived at runtime. Dropped the idea in favor of having
659 * a debug mode where the state is monitored for flags which are
660 * raised that have already been tested against.
661 */
662 struct brw_tracked_state {
663 struct brw_state_flags dirty;
664 void (*emit)( struct brw_context *brw );
665 };
666
667 /* Flags for brw->state.cache.
668 */
669 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
670 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
671 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
672 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
673 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
674 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
675 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
676 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
677 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
678 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
679 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
680 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
681 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
682 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
683 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
684 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
685 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
686 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
687
688 struct brw_cached_batch_item {
689 struct header *header;
690 GLuint sz;
691 struct brw_cached_batch_item *next;
692 };
693
694
695
696 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
697 * be easier if C allowed arrays of packed elements?
698 */
699 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
700
701 struct brw_vertex_buffer {
702 /** Buffer object containing the uploaded vertex data */
703 drm_intel_bo *bo;
704 uint32_t offset;
705 /** Byte stride between elements in the uploaded array */
706 GLuint stride;
707 GLuint step_rate;
708 };
709 struct brw_vertex_element {
710 const struct gl_client_array *glarray;
711
712 int buffer;
713
714 /** The corresponding Mesa vertex attribute */
715 gl_vert_attrib attrib;
716 /** Size of a complete element */
717 GLuint element_size;
718 /** Offset of the first element within the buffer object */
719 unsigned int offset;
720 };
721
722
723
724 struct brw_vertex_info {
725 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
726 };
727
728 struct brw_query_object {
729 struct gl_query_object Base;
730
731 /** Last query BO associated with this query. */
732 drm_intel_bo *bo;
733 /** First index in bo with query data for this object. */
734 int first_index;
735 /** Last index in bo with query data for this object. */
736 int last_index;
737 };
738
739
740 /**
741 * brw_context is derived from intel_context.
742 */
743 struct brw_context
744 {
745 struct intel_context intel; /**< base class, must be first field */
746 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
747
748 bool emit_state_always;
749 bool has_surface_tile_offset;
750 bool has_compr4;
751 bool has_negative_rhw_bug;
752 bool has_aa_line_parameters;
753 bool has_pln;
754 bool precompile;
755
756 /**
757 * Some versions of Gen hardware don't do centroid interpolation correctly
758 * on unlit pixels, causing incorrect values for derivatives near triangle
759 * edges. Enabling this flag causes the fragment shader to use
760 * non-centroid interpolation for unlit pixels, at the expense of two extra
761 * fragment shader instructions.
762 */
763 bool needs_unlit_centroid_workaround;
764
765 struct {
766 struct brw_state_flags dirty;
767 } state;
768
769 struct brw_cache cache;
770 struct brw_cached_batch_item *cached_batch_items;
771
772 struct {
773 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
774 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
775
776 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
777 GLuint nr_enabled;
778 GLuint nr_buffers;
779
780 /* Summary of size and varying of active arrays, so we can check
781 * for changes to this state:
782 */
783 struct brw_vertex_info info;
784 unsigned int min_index, max_index;
785
786 /* Offset from start of vertex buffer so we can avoid redefining
787 * the same VB packed over and over again.
788 */
789 unsigned int start_vertex_bias;
790 } vb;
791
792 struct {
793 /**
794 * Index buffer for this draw_prims call.
795 *
796 * Updates are signaled by BRW_NEW_INDICES.
797 */
798 const struct _mesa_index_buffer *ib;
799
800 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
801 drm_intel_bo *bo;
802 GLuint type;
803
804 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
805 * avoid re-uploading the IB packet over and over if we're actually
806 * referencing the same index buffer.
807 */
808 unsigned int start_vertex_offset;
809 } ib;
810
811 /* Active vertex program:
812 */
813 const struct gl_vertex_program *vertex_program;
814 const struct gl_fragment_program *fragment_program;
815
816 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
817 uint32_t CMD_VF_STATISTICS;
818 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
819 uint32_t CMD_PIPELINE_SELECT;
820
821 /**
822 * Platform specific constants containing the maximum number of threads
823 * for each pipeline stage.
824 */
825 int max_vs_threads;
826 int max_gs_threads;
827 int max_wm_threads;
828
829 /* BRW_NEW_URB_ALLOCATIONS:
830 */
831 struct {
832 GLuint vsize; /* vertex size plus header in urb registers */
833 GLuint csize; /* constant buffer size in urb registers */
834 GLuint sfsize; /* setup data size in urb registers */
835
836 bool constrained;
837
838 GLuint max_vs_entries; /* Maximum number of VS entries */
839 GLuint max_gs_entries; /* Maximum number of GS entries */
840
841 GLuint nr_vs_entries;
842 GLuint nr_gs_entries;
843 GLuint nr_clip_entries;
844 GLuint nr_sf_entries;
845 GLuint nr_cs_entries;
846
847 /* gen6:
848 * The length of each URB entry owned by the VS (or GS), as
849 * a number of 1024-bit (128-byte) rows. Should be >= 1.
850 *
851 * gen7: Same meaning, but in 512-bit (64-byte) rows.
852 */
853 GLuint vs_size;
854 GLuint gs_size;
855
856 GLuint vs_start;
857 GLuint gs_start;
858 GLuint clip_start;
859 GLuint sf_start;
860 GLuint cs_start;
861 GLuint size; /* Hardware URB size, in KB. */
862
863 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
864 * URB space for the GS.
865 */
866 bool gen6_gs_previously_active;
867 } urb;
868
869
870 /* BRW_NEW_CURBE_OFFSETS:
871 */
872 struct {
873 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
874 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
875 GLuint clip_start;
876 GLuint clip_size;
877 GLuint vs_start;
878 GLuint vs_size;
879 GLuint total_size;
880
881 drm_intel_bo *curbe_bo;
882 /** Offset within curbe_bo of space for current curbe entry */
883 GLuint curbe_offset;
884 /** Offset within curbe_bo of space for next curbe entry */
885 GLuint curbe_next_offset;
886
887 /**
888 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
889 * in brw_curbe.c with the same set of constant data to be uploaded,
890 * so we'd rather not upload new constants in that case (it can cause
891 * a pipeline bubble since only up to 4 can be pipelined at a time).
892 */
893 GLfloat *last_buf;
894 /**
895 * Allocation for where to calculate the next set of CURBEs.
896 * It's a hot enough path that malloc/free of that data matters.
897 */
898 GLfloat *next_buf;
899 GLuint last_bufsz;
900 } curbe;
901
902 /** SAMPLER_STATE count and offset */
903 struct {
904 GLuint count;
905 uint32_t offset;
906 } sampler;
907
908 struct {
909 struct brw_vs_prog_data *prog_data;
910 int8_t *constant_map; /* variable array following prog_data */
911
912 drm_intel_bo *scratch_bo;
913 drm_intel_bo *const_bo;
914 /** Offset in the program cache to the VS program */
915 uint32_t prog_offset;
916 uint32_t state_offset;
917
918 uint32_t push_const_offset; /* Offset in the batchbuffer */
919 int push_const_size; /* in 256-bit register increments */
920
921 /** @{ register allocator */
922
923 struct ra_regs *regs;
924
925 /**
926 * Array of the ra classes for the unaligned contiguous register
927 * block sizes used.
928 */
929 int *classes;
930
931 /**
932 * Mapping for register-allocated objects in *regs to the first
933 * GRF for that object.
934 */
935 uint8_t *ra_reg_to_grf;
936 /** @} */
937
938 uint32_t bind_bo_offset;
939 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
940 } vs;
941
942 struct {
943 struct brw_gs_prog_data *prog_data;
944
945 bool prog_active;
946 /** Offset in the program cache to the CLIP program pre-gen6 */
947 uint32_t prog_offset;
948 uint32_t state_offset;
949
950 uint32_t bind_bo_offset;
951 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
952 } gs;
953
954 struct {
955 struct brw_clip_prog_data *prog_data;
956
957 /** Offset in the program cache to the CLIP program pre-gen6 */
958 uint32_t prog_offset;
959
960 /* Offset in the batch to the CLIP state on pre-gen6. */
961 uint32_t state_offset;
962
963 /* As of gen6, this is the offset in the batch to the CLIP VP,
964 * instead of vp_bo.
965 */
966 uint32_t vp_offset;
967 } clip;
968
969
970 struct {
971 struct brw_sf_prog_data *prog_data;
972
973 /** Offset in the program cache to the CLIP program pre-gen6 */
974 uint32_t prog_offset;
975 uint32_t state_offset;
976 uint32_t vp_offset;
977 } sf;
978
979 struct {
980 struct brw_wm_prog_data *prog_data;
981 struct brw_wm_compile *compile_data;
982
983 /** Input sizes, calculated from active vertex program.
984 * One bit per fragment program input attribute.
985 */
986 GLbitfield input_size_masks[4];
987
988 /** offsets in the batch to sampler default colors (texture border color)
989 */
990 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
991
992 GLuint render_surf;
993
994 drm_intel_bo *scratch_bo;
995
996 /**
997 * Buffer object used in place of multisampled null render targets on
998 * Gen6. See brw_update_null_renderbuffer_surface().
999 */
1000 drm_intel_bo *multisampled_null_render_target_bo;
1001
1002 /** Offset in the program cache to the WM program */
1003 uint32_t prog_offset;
1004
1005 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1006
1007 drm_intel_bo *const_bo; /* pull constant buffer. */
1008 /**
1009 * This is offset in the batch to the push constants on gen6.
1010 *
1011 * Pre-gen6, push constants live in the CURBE.
1012 */
1013 uint32_t push_const_offset;
1014
1015 /** Binding table of pointers to surf_bo entries */
1016 uint32_t bind_bo_offset;
1017 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1018
1019 struct {
1020 struct ra_regs *regs;
1021
1022 /** Array of the ra classes for the unaligned contiguous
1023 * register block sizes used.
1024 */
1025 int *classes;
1026
1027 /**
1028 * Mapping for register-allocated objects in *regs to the first
1029 * GRF for that object.
1030 */
1031 uint8_t *ra_reg_to_grf;
1032
1033 /**
1034 * ra class for the aligned pairs we use for PLN, which doesn't
1035 * appear in *classes.
1036 */
1037 int aligned_pairs_class;
1038 } reg_sets[2];
1039 } wm;
1040
1041
1042 struct {
1043 uint32_t state_offset;
1044 uint32_t blend_state_offset;
1045 uint32_t depth_stencil_state_offset;
1046 uint32_t vp_offset;
1047 } cc;
1048
1049 struct {
1050 struct brw_query_object *obj;
1051 drm_intel_bo *bo;
1052 int index;
1053 bool begin_emitted;
1054 } query;
1055 /* Used to give every program string a unique id
1056 */
1057 GLuint program_id;
1058
1059 int num_atoms;
1060 const struct brw_tracked_state **atoms;
1061
1062 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1063 struct {
1064 uint32_t offset;
1065 uint32_t size;
1066 enum state_struct_type type;
1067 } *state_batch_list;
1068 int state_batch_count;
1069
1070 struct brw_sol_state {
1071 uint32_t svbi_0_starting_index;
1072 uint32_t svbi_0_max_index;
1073 uint32_t offset_0_batch_start;
1074 uint32_t primitives_generated;
1075 uint32_t primitives_written;
1076 bool counting_primitives_generated;
1077 bool counting_primitives_written;
1078 } sol;
1079
1080 uint32_t render_target_format[MESA_FORMAT_COUNT];
1081 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1082
1083 /* PrimitiveRestart */
1084 struct {
1085 bool in_progress;
1086 bool enable_cut_index;
1087 } prim_restart;
1088
1089 uint32_t num_instances;
1090 };
1091
1092
1093
1094 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1095
1096 struct brw_instruction_info {
1097 char *name;
1098 int nsrc;
1099 int ndst;
1100 bool is_arith;
1101 };
1102 extern const struct brw_instruction_info brw_opcodes[128];
1103
1104 /*======================================================================
1105 * brw_vtbl.c
1106 */
1107 void brwInitVtbl( struct brw_context *brw );
1108
1109 /*======================================================================
1110 * brw_context.c
1111 */
1112 bool brwCreateContext(int api,
1113 const struct gl_config *mesaVis,
1114 __DRIcontext *driContextPriv,
1115 unsigned major_version,
1116 unsigned minor_version,
1117 uint32_t flags,
1118 unsigned *error,
1119 void *sharedContextPrivate);
1120
1121 /*======================================================================
1122 * brw_misc_state.c
1123 */
1124 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1125 struct intel_mipmap_tree *stencil_mt,
1126 uint32_t *out_tile_mask_x,
1127 uint32_t *out_tile_mask_y);
1128 void brw_workaround_depthstencil_alignment(struct brw_context *brw);
1129
1130 /*======================================================================
1131 * brw_queryobj.c
1132 */
1133 void brw_init_queryobj_functions(struct dd_function_table *functions);
1134 void brw_emit_query_begin(struct brw_context *brw);
1135 void brw_emit_query_end(struct brw_context *brw);
1136
1137 /*======================================================================
1138 * brw_state_dump.c
1139 */
1140 void brw_debug_batch(struct intel_context *intel);
1141 void brw_annotate_aub(struct intel_context *intel);
1142
1143 /*======================================================================
1144 * brw_tex.c
1145 */
1146 void brw_validate_textures( struct brw_context *brw );
1147
1148
1149 /*======================================================================
1150 * brw_program.c
1151 */
1152 void brwInitFragProgFuncs( struct dd_function_table *functions );
1153
1154 int brw_get_scratch_size(int size);
1155 void brw_get_scratch_bo(struct intel_context *intel,
1156 drm_intel_bo **scratch_bo, int size);
1157
1158
1159 /* brw_urb.c
1160 */
1161 void brw_upload_urb_fence(struct brw_context *brw);
1162
1163 /* brw_curbe.c
1164 */
1165 void brw_upload_cs_urb_state(struct brw_context *brw);
1166
1167 /* brw_fs_reg_allocate.cpp
1168 */
1169 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1170
1171 /* brw_disasm.c */
1172 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1173
1174 /* brw_vs.c */
1175 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1176
1177 /* brw_wm_surface_state.c */
1178 void brw_init_surface_formats(struct brw_context *brw);
1179 void
1180 brw_update_sol_surface(struct brw_context *brw,
1181 struct gl_buffer_object *buffer_obj,
1182 uint32_t *out_offset, unsigned num_vector_components,
1183 unsigned stride_dwords, unsigned offset_dwords);
1184 void brw_upload_ubo_surfaces(struct brw_context *brw,
1185 struct gl_shader *shader,
1186 uint32_t *surf_offsets);
1187
1188 /* gen6_sol.c */
1189 void
1190 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1191 struct gl_transform_feedback_object *obj);
1192 void
1193 brw_end_transform_feedback(struct gl_context *ctx,
1194 struct gl_transform_feedback_object *obj);
1195
1196 /* gen7_sol_state.c */
1197 void
1198 gen7_end_transform_feedback(struct gl_context *ctx,
1199 struct gl_transform_feedback_object *obj);
1200
1201 /* brw_blorp_blit.cpp */
1202 GLbitfield
1203 brw_blorp_framebuffer(struct intel_context *intel,
1204 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1205 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1206 GLbitfield mask, GLenum filter);
1207
1208 /* gen6_multisample_state.c */
1209 void
1210 gen6_emit_3dstate_multisample(struct brw_context *brw,
1211 unsigned num_samples);
1212 void
1213 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1214 unsigned num_samples, float coverage,
1215 bool coverage_invert);
1216
1217 /* gen7_urb.c */
1218 void
1219 gen7_allocate_push_constants(struct brw_context *brw);
1220
1221 void
1222 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1223 GLuint vs_size, GLuint vs_start);
1224
1225
1226
1227 /*======================================================================
1228 * Inline conversion functions. These are better-typed than the
1229 * macros used previously:
1230 */
1231 static INLINE struct brw_context *
1232 brw_context( struct gl_context *ctx )
1233 {
1234 return (struct brw_context *)ctx;
1235 }
1236
1237 static INLINE struct brw_vertex_program *
1238 brw_vertex_program(struct gl_vertex_program *p)
1239 {
1240 return (struct brw_vertex_program *) p;
1241 }
1242
1243 static INLINE const struct brw_vertex_program *
1244 brw_vertex_program_const(const struct gl_vertex_program *p)
1245 {
1246 return (const struct brw_vertex_program *) p;
1247 }
1248
1249 static INLINE struct brw_fragment_program *
1250 brw_fragment_program(struct gl_fragment_program *p)
1251 {
1252 return (struct brw_fragment_program *) p;
1253 }
1254
1255 static INLINE const struct brw_fragment_program *
1256 brw_fragment_program_const(const struct gl_fragment_program *p)
1257 {
1258 return (const struct brw_fragment_program *) p;
1259 }
1260
1261 /**
1262 * Pre-gen6, the register file of the EUs was shared between threads,
1263 * and each thread used some subset allocated on a 16-register block
1264 * granularity. The unit states wanted these block counts.
1265 */
1266 static inline int
1267 brw_register_blocks(int reg_count)
1268 {
1269 return ALIGN(reg_count, 16) / 16 - 1;
1270 }
1271
1272 static inline uint32_t
1273 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1274 uint32_t prog_offset)
1275 {
1276 struct intel_context *intel = &brw->intel;
1277
1278 if (intel->gen >= 5) {
1279 /* Using state base address. */
1280 return prog_offset;
1281 }
1282
1283 drm_intel_bo_emit_reloc(intel->batch.bo,
1284 state_offset,
1285 brw->cache.bo,
1286 prog_offset,
1287 I915_GEM_DOMAIN_INSTRUCTION, 0);
1288
1289 return brw->cache.bo->offset + prog_offset;
1290 }
1291
1292 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1293 bool brw_lower_texture_gradients(struct exec_list *instructions);
1294
1295 struct opcode_desc {
1296 char *name;
1297 int nsrc;
1298 int ndst;
1299 };
1300
1301 extern const struct opcode_desc opcode_descs[128];
1302
1303 #ifdef __cplusplus
1304 }
1305 #endif
1306
1307 #endif