503585c70c8f9b1f70d463004c4dd018cc309bb0
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122 struct brw_instruction;
123 struct brw_vs_prog_key;
124 struct brw_wm_prog_key;
125 struct brw_wm_prog_data;
126
127 enum brw_state_id {
128 BRW_STATE_URB_FENCE,
129 BRW_STATE_FRAGMENT_PROGRAM,
130 BRW_STATE_VERTEX_PROGRAM,
131 BRW_STATE_INPUT_DIMENSIONS,
132 BRW_STATE_CURBE_OFFSETS,
133 BRW_STATE_REDUCED_PRIMITIVE,
134 BRW_STATE_PRIMITIVE,
135 BRW_STATE_CONTEXT,
136 BRW_STATE_WM_INPUT_DIMENSIONS,
137 BRW_STATE_PSP,
138 BRW_STATE_SURFACES,
139 BRW_STATE_VS_BINDING_TABLE,
140 BRW_STATE_GS_BINDING_TABLE,
141 BRW_STATE_PS_BINDING_TABLE,
142 BRW_STATE_INDICES,
143 BRW_STATE_VERTICES,
144 BRW_STATE_BATCH,
145 BRW_STATE_NR_WM_SURFACES,
146 BRW_STATE_NR_VS_SURFACES,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 };
153
154 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
155 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
156 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
157 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
158 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
159 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
160 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
161 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
162 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
163 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
164 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
165 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
166 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
167 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
168 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
169 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
170 /**
171 * Used for any batch entry with a relocated pointer that will be used
172 * by any 3D rendering.
173 */
174 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
175 /** \see brw.state.depth_region */
176 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
177 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
178 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
179 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
180 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
181
182 struct brw_state_flags {
183 /** State update flags signalled by mesa internals */
184 GLuint mesa;
185 /**
186 * State update flags signalled as the result of brw_tracked_state updates
187 */
188 GLuint brw;
189 /** State update flags signalled by brw_state_cache.c searches */
190 GLuint cache;
191 };
192
193 enum state_struct_type {
194 AUB_TRACE_VS_STATE = 1,
195 AUB_TRACE_GS_STATE = 2,
196 AUB_TRACE_CLIP_STATE = 3,
197 AUB_TRACE_SF_STATE = 4,
198 AUB_TRACE_WM_STATE = 5,
199 AUB_TRACE_CC_STATE = 6,
200 AUB_TRACE_CLIP_VP_STATE = 7,
201 AUB_TRACE_SF_VP_STATE = 8,
202 AUB_TRACE_CC_VP_STATE = 0x9,
203 AUB_TRACE_SAMPLER_STATE = 0xa,
204 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
205 AUB_TRACE_SCRATCH_SPACE = 0xc,
206 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
207
208 AUB_TRACE_SCISSOR_STATE = 0x15,
209 AUB_TRACE_BLEND_STATE = 0x16,
210 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
211
212 /* Not written to .aub files the same way the structures above are. */
213 AUB_TRACE_NO_TYPE = 0x100,
214 AUB_TRACE_BINDING_TABLE = 0x101,
215 AUB_TRACE_SURFACE_STATE = 0x102,
216 AUB_TRACE_VS_CONSTANTS = 0x103,
217 AUB_TRACE_WM_CONSTANTS = 0x104,
218 };
219
220 /** Subclass of Mesa vertex program */
221 struct brw_vertex_program {
222 struct gl_vertex_program program;
223 GLuint id;
224 bool use_const_buffer;
225 };
226
227
228 /** Subclass of Mesa fragment program */
229 struct brw_fragment_program {
230 struct gl_fragment_program program;
231 GLuint id; /**< serial no. to identify frag progs, never re-used */
232 };
233
234 struct brw_shader {
235 struct gl_shader base;
236
237 /** Shader IR transformed for native compile, at link time. */
238 struct exec_list *ir;
239 };
240
241 struct brw_shader_program {
242 struct gl_shader_program base;
243 };
244
245 enum param_conversion {
246 PARAM_NO_CONVERT,
247 PARAM_CONVERT_F2I,
248 PARAM_CONVERT_F2U,
249 PARAM_CONVERT_F2B,
250 PARAM_CONVERT_ZERO,
251 };
252
253 /* Data about a particular attempt to compile a program. Note that
254 * there can be many of these, each in a different GL state
255 * corresponding to a different brw_wm_prog_key struct, with different
256 * compiled programs:
257 */
258 struct brw_wm_prog_data {
259 GLuint curb_read_length;
260 GLuint urb_read_length;
261
262 GLuint first_curbe_grf;
263 GLuint first_curbe_grf_16;
264 GLuint reg_blocks;
265 GLuint reg_blocks_16;
266 GLuint total_scratch;
267
268 GLuint nr_params; /**< number of float params/constants */
269 GLuint nr_pull_params;
270 bool error;
271 int dispatch_width;
272 uint32_t prog_offset_16;
273
274 /* Pointer to tracked values (only valid once
275 * _mesa_load_state_parameters has been called at runtime).
276 */
277 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
278 enum param_conversion param_convert[MAX_UNIFORMS * 4];
279 const float *pull_param[MAX_UNIFORMS * 4];
280 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
281 };
282
283 /**
284 * Enum representing the i965-specific vertex results that don't correspond
285 * exactly to any element of gl_vert_result. The values of this enum are
286 * assigned such that they don't conflict with gl_vert_result.
287 */
288 typedef enum
289 {
290 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
291 BRW_VERT_RESULT_HPOS_DUPLICATE,
292 BRW_VERT_RESULT_PAD,
293 BRW_VERT_RESULT_MAX
294 } brw_vert_result;
295
296
297 /**
298 * Data structure recording the relationship between the gl_vert_result enum
299 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
300 * single octaword within the VUE (128 bits).
301 *
302 * Note that each BRW register contains 256 bits (2 octawords), so when
303 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
304 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
305 * in a vertex shader), each register corresponds to a single VUE slot, since
306 * it contains data for two separate vertices.
307 */
308 struct brw_vue_map {
309 /**
310 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
311 * not stored in a slot (because they are not written, or because
312 * additional processing is applied before storing them in the VUE), the
313 * value is -1.
314 */
315 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
316
317 /**
318 * Map from VUE slot to gl_vert_result value. For slots that do not
319 * directly correspond to a gl_vert_result, the value comes from
320 * brw_vert_result.
321 *
322 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
323 * simplifies code that uses the value stored in slot_to_vert_result to
324 * create a bit mask).
325 */
326 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
327
328 /**
329 * Total number of VUE slots in use
330 */
331 int num_slots;
332 };
333
334 /**
335 * Convert a VUE slot number into a byte offset within the VUE.
336 */
337 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
338 {
339 return 16*slot;
340 }
341
342 /**
343 * Convert a vert_result into a byte offset within the VUE.
344 */
345 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
346 GLuint vert_result)
347 {
348 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
349 }
350
351
352 struct brw_sf_prog_data {
353 GLuint urb_read_length;
354 GLuint total_grf;
355
356 /* Each vertex may have upto 12 attributes, 4 components each,
357 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
358 * rows.
359 *
360 * Actually we use 4 for each, so call it 12 rows.
361 */
362 GLuint urb_entry_size;
363 };
364
365 struct brw_clip_prog_data {
366 GLuint curb_read_length; /* user planes? */
367 GLuint clip_mode;
368 GLuint urb_read_length;
369 GLuint total_grf;
370 };
371
372 struct brw_gs_prog_data {
373 GLuint urb_read_length;
374 GLuint total_grf;
375
376 /**
377 * Gen6 transform feedback: Amount by which the streaming vertex buffer
378 * indices should be incremented each time the GS is invoked.
379 */
380 unsigned svbi_postincrement_value;
381 };
382
383 struct brw_vs_prog_data {
384 struct brw_vue_map vue_map;
385
386 GLuint curb_read_length;
387 GLuint urb_read_length;
388 GLuint total_grf;
389 GLbitfield64 outputs_written;
390 GLuint nr_params; /**< number of float params/constants */
391 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
392 GLuint total_scratch;
393
394 GLbitfield64 inputs_read;
395
396 /* Used for calculating urb partitions:
397 */
398 GLuint urb_entry_size;
399
400 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
401 const float *pull_param[MAX_UNIFORMS * 4];
402
403 bool uses_new_param_layout;
404 bool uses_vertexid;
405 bool userclip;
406 };
407
408
409 /* Size == 0 if output either not written, or always [0,0,0,1]
410 */
411 struct brw_vs_ouput_sizes {
412 GLubyte output_size[VERT_RESULT_MAX];
413 };
414
415
416 /** Number of texture sampler units */
417 #define BRW_MAX_TEX_UNIT 16
418
419 /** Max number of render targets in a shader */
420 #define BRW_MAX_DRAW_BUFFERS 8
421
422 /**
423 * Max number of binding table entries used for stream output.
424 *
425 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
426 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
427 *
428 * On Gen6, the size of transform feedback data is limited not by the number
429 * of components but by the number of binding table entries we set aside. We
430 * use one binding table entry for a float, one entry for a vector, and one
431 * entry per matrix column. Since the only way we can communicate our
432 * transform feedback capabilities to the client is via
433 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
434 * worst case, in which all the varyings are floats, so we use up one binding
435 * table entry per component. Therefore we need to set aside at least 64
436 * binding table entries for use by transform feedback.
437 *
438 * Note: since we don't currently pack varyings, it is currently impossible
439 * for the client to actually use up all of these binding table entries--if
440 * all of their varyings were floats, they would run out of varying slots and
441 * fail to link. But that's a bug, so it seems prudent to go ahead and
442 * allocate the number of binding table entries we will need once the bug is
443 * fixed.
444 */
445 #define BRW_MAX_SOL_BINDINGS 64
446
447 /** Maximum number of actual buffers used for stream output */
448 #define BRW_MAX_SOL_BUFFERS 4
449
450 /**
451 * Helpers to create Surface Binding Table indexes for draw buffers,
452 * textures, and constant buffers.
453 *
454 * Shader threads access surfaces via numeric handles, rather than directly
455 * using pointers. The binding table maps these numeric handles to the
456 * address of the actual buffer.
457 *
458 * For example, a shader might ask to sample from "surface 7." In this case,
459 * bind[7] would contain a pointer to a texture.
460 *
461 * Although the hardware supports separate binding tables per pipeline stage
462 * (VS, HS, DS, GS, PS), we currently share a single binding table for all of
463 * them. This is purely for convenience.
464 *
465 * Currently our binding tables are (arbitrarily) programmed as follows:
466 *
467 * +-------------------------------+
468 * | 0 | Draw buffer 0 | .
469 * | . | . | \
470 * | : | : | > Only relevant to the WM.
471 * | 7 | Draw buffer 7 | /
472 * |-----|-------------------------| `
473 * | 8 | VS Pull Constant Buffer |
474 * | 9 | WM Pull Constant Buffer |
475 * |-----|-------------------------|
476 * | 10 | Texture 0 |
477 * | . | . |
478 * | : | : |
479 * | 25 | Texture 15 |
480 * +-----|-------------------------+
481 * | 26 | SOL Binding 0 |
482 * | . | . |
483 * | : | : |
484 * | 89 | SOL Binding 63 |
485 * +-------------------------------+
486 *
487 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
488 * the identity function or things will break. We do want to keep draw buffers
489 * first so we can use headerless render target writes for RT 0.
490 */
491 #define SURF_INDEX_DRAW(d) (d)
492 #define SURF_INDEX_VERT_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 0)
493 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
494 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
495 #define SURF_INDEX_SOL_BINDING(t) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + (t))
496
497 /** Maximum size of the binding table. */
498 #define BRW_MAX_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
499
500 enum brw_cache_id {
501 BRW_BLEND_STATE,
502 BRW_DEPTH_STENCIL_STATE,
503 BRW_COLOR_CALC_STATE,
504 BRW_CC_VP,
505 BRW_CC_UNIT,
506 BRW_WM_PROG,
507 BRW_SAMPLER,
508 BRW_WM_UNIT,
509 BRW_SF_PROG,
510 BRW_SF_VP,
511 BRW_SF_UNIT, /* scissor state on gen6 */
512 BRW_VS_UNIT,
513 BRW_VS_PROG,
514 BRW_GS_UNIT,
515 BRW_GS_PROG,
516 BRW_CLIP_VP,
517 BRW_CLIP_UNIT,
518 BRW_CLIP_PROG,
519
520 BRW_MAX_CACHE
521 };
522
523 struct brw_cache_item {
524 /**
525 * Effectively part of the key, cache_id identifies what kind of state
526 * buffer is involved, and also which brw->state.dirty.cache flag should
527 * be set when this cache item is chosen.
528 */
529 enum brw_cache_id cache_id;
530 /** 32-bit hash of the key data */
531 GLuint hash;
532 GLuint key_size; /* for variable-sized keys */
533 GLuint aux_size;
534 const void *key;
535
536 uint32_t offset;
537 uint32_t size;
538
539 struct brw_cache_item *next;
540 };
541
542
543
544 struct brw_cache {
545 struct brw_context *brw;
546
547 struct brw_cache_item **items;
548 drm_intel_bo *bo;
549 GLuint size, n_items;
550
551 uint32_t next_offset;
552 bool bo_used_by_gpu;
553 };
554
555
556 /* Considered adding a member to this struct to document which flags
557 * an update might raise so that ordering of the state atoms can be
558 * checked or derived at runtime. Dropped the idea in favor of having
559 * a debug mode where the state is monitored for flags which are
560 * raised that have already been tested against.
561 */
562 struct brw_tracked_state {
563 struct brw_state_flags dirty;
564 void (*emit)( struct brw_context *brw );
565 };
566
567 /* Flags for brw->state.cache.
568 */
569 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
570 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
571 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
572 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
573 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
574 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
575 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
576 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
577 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
578 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
579 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
580 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
581 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
582 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
583 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
584 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
585 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
586 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
587
588 struct brw_cached_batch_item {
589 struct header *header;
590 GLuint sz;
591 struct brw_cached_batch_item *next;
592 };
593
594
595
596 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
597 * be easier if C allowed arrays of packed elements?
598 */
599 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
600
601 struct brw_vertex_buffer {
602 /** Buffer object containing the uploaded vertex data */
603 drm_intel_bo *bo;
604 uint32_t offset;
605 /** Byte stride between elements in the uploaded array */
606 GLuint stride;
607 };
608 struct brw_vertex_element {
609 const struct gl_client_array *glarray;
610
611 int buffer;
612
613 /** The corresponding Mesa vertex attribute */
614 gl_vert_attrib attrib;
615 /** Size of a complete element */
616 GLuint element_size;
617 /** Offset of the first element within the buffer object */
618 unsigned int offset;
619 };
620
621
622
623 struct brw_vertex_info {
624 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
625 };
626
627 struct brw_query_object {
628 struct gl_query_object Base;
629
630 /** Last query BO associated with this query. */
631 drm_intel_bo *bo;
632 /** First index in bo with query data for this object. */
633 int first_index;
634 /** Last index in bo with query data for this object. */
635 int last_index;
636 };
637
638
639 /**
640 * brw_context is derived from intel_context.
641 */
642 struct brw_context
643 {
644 struct intel_context intel; /**< base class, must be first field */
645 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
646
647 bool emit_state_always;
648 bool has_surface_tile_offset;
649 bool has_compr4;
650 bool has_negative_rhw_bug;
651 bool has_aa_line_parameters;
652 bool has_pln;
653 bool precompile;
654
655 struct {
656 struct brw_state_flags dirty;
657 } state;
658
659 struct brw_cache cache;
660 struct brw_cached_batch_item *cached_batch_items;
661
662 struct {
663 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
664 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
665 struct {
666 uint32_t handle;
667 uint32_t offset;
668 uint32_t stride;
669 } current_buffers[VERT_ATTRIB_MAX];
670
671 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
672 GLuint nr_enabled;
673 GLuint nr_buffers, nr_current_buffers;
674
675 /* Summary of size and varying of active arrays, so we can check
676 * for changes to this state:
677 */
678 struct brw_vertex_info info;
679 unsigned int min_index, max_index;
680
681 /* Offset from start of vertex buffer so we can avoid redefining
682 * the same VB packed over and over again.
683 */
684 unsigned int start_vertex_bias;
685 } vb;
686
687 struct {
688 /**
689 * Index buffer for this draw_prims call.
690 *
691 * Updates are signaled by BRW_NEW_INDICES.
692 */
693 const struct _mesa_index_buffer *ib;
694
695 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
696 drm_intel_bo *bo;
697 GLuint type;
698
699 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
700 * avoid re-uploading the IB packet over and over if we're actually
701 * referencing the same index buffer.
702 */
703 unsigned int start_vertex_offset;
704 } ib;
705
706 /* Active vertex program:
707 */
708 const struct gl_vertex_program *vertex_program;
709 const struct gl_fragment_program *fragment_program;
710
711 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
712 uint32_t CMD_VF_STATISTICS;
713 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
714 uint32_t CMD_PIPELINE_SELECT;
715
716 /**
717 * Platform specific constants containing the maximum number of threads
718 * for each pipeline stage.
719 */
720 int max_vs_threads;
721 int max_gs_threads;
722 int max_wm_threads;
723
724 /* BRW_NEW_URB_ALLOCATIONS:
725 */
726 struct {
727 GLuint vsize; /* vertex size plus header in urb registers */
728 GLuint csize; /* constant buffer size in urb registers */
729 GLuint sfsize; /* setup data size in urb registers */
730
731 bool constrained;
732
733 GLuint max_vs_entries; /* Maximum number of VS entries */
734 GLuint max_gs_entries; /* Maximum number of GS entries */
735
736 GLuint nr_vs_entries;
737 GLuint nr_gs_entries;
738 GLuint nr_clip_entries;
739 GLuint nr_sf_entries;
740 GLuint nr_cs_entries;
741
742 /* gen6:
743 * The length of each URB entry owned by the VS (or GS), as
744 * a number of 1024-bit (128-byte) rows. Should be >= 1.
745 *
746 * gen7: Same meaning, but in 512-bit (64-byte) rows.
747 */
748 GLuint vs_size;
749 GLuint gs_size;
750
751 GLuint vs_start;
752 GLuint gs_start;
753 GLuint clip_start;
754 GLuint sf_start;
755 GLuint cs_start;
756 GLuint size; /* Hardware URB size, in KB. */
757
758 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
759 * URB space for the GS.
760 */
761 bool gen6_gs_previously_active;
762 } urb;
763
764
765 /* BRW_NEW_CURBE_OFFSETS:
766 */
767 struct {
768 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
769 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
770 GLuint clip_start;
771 GLuint clip_size;
772 GLuint vs_start;
773 GLuint vs_size;
774 GLuint total_size;
775
776 drm_intel_bo *curbe_bo;
777 /** Offset within curbe_bo of space for current curbe entry */
778 GLuint curbe_offset;
779 /** Offset within curbe_bo of space for next curbe entry */
780 GLuint curbe_next_offset;
781
782 /**
783 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
784 * in brw_curbe.c with the same set of constant data to be uploaded,
785 * so we'd rather not upload new constants in that case (it can cause
786 * a pipeline bubble since only up to 4 can be pipelined at a time).
787 */
788 GLfloat *last_buf;
789 /**
790 * Allocation for where to calculate the next set of CURBEs.
791 * It's a hot enough path that malloc/free of that data matters.
792 */
793 GLfloat *next_buf;
794 GLuint last_bufsz;
795 } curbe;
796
797 struct {
798 /** Binding table of pointers to surf_bo entries */
799 uint32_t bo_offset;
800 uint32_t surf_offset[BRW_MAX_SURFACES];
801 } bind;
802
803 /** SAMPLER_STATE count and offset */
804 struct {
805 GLuint count;
806 uint32_t offset;
807 } sampler;
808
809 struct {
810 struct brw_vs_prog_data *prog_data;
811 int8_t *constant_map; /* variable array following prog_data */
812
813 drm_intel_bo *scratch_bo;
814 drm_intel_bo *const_bo;
815 /** Offset in the program cache to the VS program */
816 uint32_t prog_offset;
817 uint32_t state_offset;
818
819 uint32_t push_const_offset; /* Offset in the batchbuffer */
820 int push_const_size; /* in 256-bit register increments */
821
822 /** @{ register allocator */
823
824 struct ra_regs *regs;
825
826 /**
827 * Array of the ra classes for the unaligned contiguous register
828 * block sizes used.
829 */
830 int *classes;
831
832 /**
833 * Mapping for register-allocated objects in *regs to the first
834 * GRF for that object.
835 */
836 uint8_t *ra_reg_to_grf;
837 /** @} */
838 } vs;
839
840 struct {
841 struct brw_gs_prog_data *prog_data;
842
843 bool prog_active;
844 /** Offset in the program cache to the CLIP program pre-gen6 */
845 uint32_t prog_offset;
846 uint32_t state_offset;
847 } gs;
848
849 struct {
850 struct brw_clip_prog_data *prog_data;
851
852 /** Offset in the program cache to the CLIP program pre-gen6 */
853 uint32_t prog_offset;
854
855 /* Offset in the batch to the CLIP state on pre-gen6. */
856 uint32_t state_offset;
857
858 /* As of gen6, this is the offset in the batch to the CLIP VP,
859 * instead of vp_bo.
860 */
861 uint32_t vp_offset;
862 } clip;
863
864
865 struct {
866 struct brw_sf_prog_data *prog_data;
867
868 /** Offset in the program cache to the CLIP program pre-gen6 */
869 uint32_t prog_offset;
870 uint32_t state_offset;
871 uint32_t vp_offset;
872 } sf;
873
874 struct {
875 struct brw_wm_prog_data *prog_data;
876 struct brw_wm_compile *compile_data;
877
878 /** Input sizes, calculated from active vertex program.
879 * One bit per fragment program input attribute.
880 */
881 GLbitfield input_size_masks[4];
882
883 /** offsets in the batch to sampler default colors (texture border color)
884 */
885 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
886
887 GLuint render_surf;
888
889 drm_intel_bo *scratch_bo;
890
891 /** Offset in the program cache to the WM program */
892 uint32_t prog_offset;
893
894 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
895
896 drm_intel_bo *const_bo; /* pull constant buffer. */
897 /**
898 * This is offset in the batch to the push constants on gen6.
899 *
900 * Pre-gen6, push constants live in the CURBE.
901 */
902 uint32_t push_const_offset;
903
904 /** @{ register allocator */
905
906 struct ra_regs *regs;
907
908 /** Array of the ra classes for the unaligned contiguous
909 * register block sizes used.
910 */
911 int *classes;
912
913 /**
914 * Mapping for register-allocated objects in *regs to the first
915 * GRF for that object.
916 */
917 uint8_t *ra_reg_to_grf;
918
919 /**
920 * ra class for the aligned pairs we use for PLN, which doesn't
921 * appear in *classes.
922 */
923 int aligned_pairs_class;
924
925 /** @} */
926 } wm;
927
928
929 struct {
930 uint32_t state_offset;
931 uint32_t blend_state_offset;
932 uint32_t depth_stencil_state_offset;
933 uint32_t vp_offset;
934 } cc;
935
936 struct {
937 struct brw_query_object *obj;
938 drm_intel_bo *bo;
939 int index;
940 bool active;
941 } query;
942 /* Used to give every program string a unique id
943 */
944 GLuint program_id;
945
946 int num_atoms;
947 const struct brw_tracked_state **atoms;
948
949 /* If (INTEL_DEBUG & DEBUG_BATCH) */
950 struct {
951 uint32_t offset;
952 uint32_t size;
953 enum state_struct_type type;
954 } *state_batch_list;
955 int state_batch_count;
956
957 /**
958 * \brief State needed to execute HiZ ops.
959 *
960 * \see gen6_hiz_init()
961 * \see gen6_hiz_exec()
962 */
963 struct brw_hiz_state {
964 /** \brief VBO for rectangle primitive.
965 *
966 * Rather than using glGenBuffers(), we allocate the VBO directly
967 * through drm.
968 */
969 drm_intel_bo *vertex_bo;
970 } hiz;
971
972 struct brw_sol_state {
973 uint32_t svbi_0_starting_index;
974 uint32_t svbi_0_max_index;
975 uint32_t offset_0_batch_start;
976 uint32_t primitives_generated;
977 uint32_t primitives_written;
978 } sol;
979
980 uint32_t render_target_format[MESA_FORMAT_COUNT];
981 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
982 };
983
984
985
986 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
987
988 struct brw_instruction_info {
989 char *name;
990 int nsrc;
991 int ndst;
992 bool is_arith;
993 };
994 extern const struct brw_instruction_info brw_opcodes[128];
995
996 /*======================================================================
997 * brw_vtbl.c
998 */
999 void brwInitVtbl( struct brw_context *brw );
1000
1001 /*======================================================================
1002 * brw_context.c
1003 */
1004 bool brwCreateContext(int api,
1005 const struct gl_config *mesaVis,
1006 __DRIcontext *driContextPriv,
1007 void *sharedContextPrivate);
1008
1009 /*======================================================================
1010 * brw_queryobj.c
1011 */
1012 void brw_init_queryobj_functions(struct dd_function_table *functions);
1013 void brw_prepare_query_begin(struct brw_context *brw);
1014 void brw_emit_query_begin(struct brw_context *brw);
1015 void brw_emit_query_end(struct brw_context *brw);
1016
1017 /*======================================================================
1018 * brw_state_dump.c
1019 */
1020 void brw_debug_batch(struct intel_context *intel);
1021
1022 /*======================================================================
1023 * brw_tex.c
1024 */
1025 void brw_validate_textures( struct brw_context *brw );
1026
1027
1028 /*======================================================================
1029 * brw_program.c
1030 */
1031 void brwInitFragProgFuncs( struct dd_function_table *functions );
1032
1033 int brw_get_scratch_size(int size);
1034 void brw_get_scratch_bo(struct intel_context *intel,
1035 drm_intel_bo **scratch_bo, int size);
1036
1037
1038 /* brw_urb.c
1039 */
1040 void brw_upload_urb_fence(struct brw_context *brw);
1041
1042 /* brw_curbe.c
1043 */
1044 void brw_upload_cs_urb_state(struct brw_context *brw);
1045
1046 /* brw_disasm.c */
1047 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1048
1049 /* brw_vs.c */
1050 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1051
1052 /* brw_wm.c */
1053 unsigned
1054 brw_compute_barycentric_interp_modes(bool shade_model_flat,
1055 const struct gl_fragment_program *fprog);
1056
1057 /* brw_wm_surface_state.c */
1058 void brw_init_surface_formats(struct brw_context *brw);
1059 void
1060 brw_update_sol_surface(struct brw_context *brw,
1061 struct gl_buffer_object *buffer_obj,
1062 uint32_t *out_offset, unsigned num_vector_components,
1063 unsigned stride_dwords, unsigned offset_dwords);
1064
1065 /* gen6_clip_state.c */
1066 bool
1067 brw_fprog_uses_noperspective(const struct gl_fragment_program *fprog);
1068
1069 /* gen6_sol.c */
1070 void
1071 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1072 struct gl_transform_feedback_object *obj);
1073 void
1074 brw_end_transform_feedback(struct gl_context *ctx,
1075 struct gl_transform_feedback_object *obj);
1076
1077 /* gen7_sol_state.c */
1078 void
1079 gen7_end_transform_feedback(struct gl_context *ctx,
1080 struct gl_transform_feedback_object *obj);
1081
1082
1083
1084 /*======================================================================
1085 * Inline conversion functions. These are better-typed than the
1086 * macros used previously:
1087 */
1088 static INLINE struct brw_context *
1089 brw_context( struct gl_context *ctx )
1090 {
1091 return (struct brw_context *)ctx;
1092 }
1093
1094 static INLINE struct brw_vertex_program *
1095 brw_vertex_program(struct gl_vertex_program *p)
1096 {
1097 return (struct brw_vertex_program *) p;
1098 }
1099
1100 static INLINE const struct brw_vertex_program *
1101 brw_vertex_program_const(const struct gl_vertex_program *p)
1102 {
1103 return (const struct brw_vertex_program *) p;
1104 }
1105
1106 static INLINE struct brw_fragment_program *
1107 brw_fragment_program(struct gl_fragment_program *p)
1108 {
1109 return (struct brw_fragment_program *) p;
1110 }
1111
1112 static INLINE const struct brw_fragment_program *
1113 brw_fragment_program_const(const struct gl_fragment_program *p)
1114 {
1115 return (const struct brw_fragment_program *) p;
1116 }
1117
1118 static inline
1119 float convert_param(enum param_conversion conversion, const float *param)
1120 {
1121 union {
1122 float f;
1123 uint32_t u;
1124 int32_t i;
1125 } fi;
1126
1127 switch (conversion) {
1128 case PARAM_NO_CONVERT:
1129 return *param;
1130 case PARAM_CONVERT_F2I:
1131 fi.i = *param;
1132 return fi.f;
1133 case PARAM_CONVERT_F2U:
1134 fi.u = *param;
1135 return fi.f;
1136 case PARAM_CONVERT_F2B:
1137 if (*param != 0.0)
1138 fi.i = 1;
1139 else
1140 fi.i = 0;
1141 return fi.f;
1142 case PARAM_CONVERT_ZERO:
1143 return 0.0;
1144 default:
1145 return *param;
1146 }
1147 }
1148
1149 /**
1150 * Pre-gen6, the register file of the EUs was shared between threads,
1151 * and each thread used some subset allocated on a 16-register block
1152 * granularity. The unit states wanted these block counts.
1153 */
1154 static inline int
1155 brw_register_blocks(int reg_count)
1156 {
1157 return ALIGN(reg_count, 16) / 16 - 1;
1158 }
1159
1160 static inline uint32_t
1161 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1162 uint32_t prog_offset)
1163 {
1164 struct intel_context *intel = &brw->intel;
1165
1166 if (intel->gen >= 5) {
1167 /* Using state base address. */
1168 return prog_offset;
1169 }
1170
1171 drm_intel_bo_emit_reloc(intel->batch.bo,
1172 state_offset,
1173 brw->cache.bo,
1174 prog_offset,
1175 I915_GEM_DOMAIN_INSTRUCTION, 0);
1176
1177 return brw->cache.bo->offset + prog_offset;
1178 }
1179
1180 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1181
1182 #endif