7dcbd040f01e8babc87b3a5abc3eb7ca8faa09e6
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include <stdbool.h>
37 #include "main/macros.h"
38 #include "main/mtypes.h"
39 #include "main/errors.h"
40 #include "brw_structs.h"
41 #include "brw_pipe_control.h"
42 #include "compiler/brw_compiler.h"
43
44 #include "isl/isl.h"
45 #include "blorp/blorp.h"
46
47 #include <brw_bufmgr.h>
48
49 #include "common/gen_debug.h"
50 #include "common/gen_decoder.h"
51 #include "intel_screen.h"
52 #include "intel_tex_obj.h"
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57 /* Glossary:
58 *
59 * URB - uniform resource buffer. A mid-sized buffer which is
60 * partitioned between the fixed function units and used for passing
61 * values (vertices, primitives, constants) between them.
62 *
63 * CURBE - constant URB entry. An urb region (entry) used to hold
64 * constant values which the fixed function units can be instructed to
65 * preload into the GRF when spawning a thread.
66 *
67 * VUE - vertex URB entry. An urb entry holding a vertex and usually
68 * a vertex header. The header contains control information and
69 * things like primitive type, Begin/end flags and clip codes.
70 *
71 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
72 * unit holding rasterization and interpolation parameters.
73 *
74 * GRF - general register file. One of several register files
75 * addressable by programmed threads. The inputs (r0, payload, curbe,
76 * urb) of the thread are preloaded to this area before the thread is
77 * spawned. The registers are individually 8 dwords wide and suitable
78 * for general usage. Registers holding thread input values are not
79 * special and may be overwritten.
80 *
81 * MRF - message register file. Threads communicate (and terminate)
82 * by sending messages. Message parameters are placed in contiguous
83 * MRF registers. All program output is via these messages. URB
84 * entries are populated by sending a message to the shared URB
85 * function containing the new data, together with a control word,
86 * often an unmodified copy of R0.
87 *
88 * R0 - GRF register 0. Typically holds control information used when
89 * sending messages to other threads.
90 *
91 * EU or GEN4 EU: The name of the programmable subsystem of the
92 * i965 hardware. Threads are executed by the EU, the registers
93 * described above are part of the EU architecture.
94 *
95 * Fixed function units:
96 *
97 * CS - Command streamer. Notional first unit, little software
98 * interaction. Holds the URB entries used for constant data, ie the
99 * CURBEs.
100 *
101 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
102 * this unit is responsible for pulling vertices out of vertex buffers
103 * in vram and injecting them into the processing pipe as VUEs. If
104 * enabled, it first passes them to a VS thread which is a good place
105 * for the driver to implement any active vertex shader.
106 *
107 * HS - Hull Shader (Tessellation Control Shader)
108 *
109 * TE - Tessellation Engine (Tessellation Primitive Generation)
110 *
111 * DS - Domain Shader (Tessellation Evaluation Shader)
112 *
113 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
114 * enabled, incoming strips etc are passed to GS threads in individual
115 * line/triangle/point units. The GS thread may perform arbitary
116 * computation and emit whatever primtives with whatever vertices it
117 * chooses. This makes GS an excellent place to implement GL's
118 * unfilled polygon modes, though of course it is capable of much
119 * more. Additionally, GS is used to translate away primitives not
120 * handled by latter units, including Quads and Lineloops.
121 *
122 * CS - Clipper. Mesa's clipping algorithms are imported to run on
123 * this unit. The fixed function part performs cliptesting against
124 * the 6 fixed clipplanes and makes descisions on whether or not the
125 * incoming primitive needs to be passed to a thread for clipping.
126 * User clip planes are handled via cooperation with the VS thread.
127 *
128 * SF - Strips Fans or Setup: Triangles are prepared for
129 * rasterization. Interpolation coefficients are calculated.
130 * Flatshading and two-side lighting usually performed here.
131 *
132 * WM - Windower. Interpolation of vertex attributes performed here.
133 * Fragment shader implemented here. SIMD aspects of EU taken full
134 * advantage of, as pixels are processed in blocks of 16.
135 *
136 * CC - Color Calculator. No EU threads associated with this unit.
137 * Handles blending and (presumably) depth and stencil testing.
138 */
139
140 struct brw_context;
141 struct brw_inst;
142 struct brw_vs_prog_key;
143 struct brw_vue_prog_key;
144 struct brw_wm_prog_key;
145 struct brw_wm_prog_data;
146 struct brw_cs_prog_key;
147 struct brw_cs_prog_data;
148
149 enum brw_pipeline {
150 BRW_RENDER_PIPELINE,
151 BRW_COMPUTE_PIPELINE,
152
153 BRW_NUM_PIPELINES
154 };
155
156 enum brw_cache_id {
157 BRW_CACHE_FS_PROG,
158 BRW_CACHE_BLORP_PROG,
159 BRW_CACHE_SF_PROG,
160 BRW_CACHE_VS_PROG,
161 BRW_CACHE_FF_GS_PROG,
162 BRW_CACHE_GS_PROG,
163 BRW_CACHE_TCS_PROG,
164 BRW_CACHE_TES_PROG,
165 BRW_CACHE_CLIP_PROG,
166 BRW_CACHE_CS_PROG,
167
168 BRW_MAX_CACHE
169 };
170
171 enum brw_state_id {
172 /* brw_cache_ids must come first - see brw_program_cache.c */
173 BRW_STATE_URB_FENCE = BRW_MAX_CACHE,
174 BRW_STATE_FRAGMENT_PROGRAM,
175 BRW_STATE_GEOMETRY_PROGRAM,
176 BRW_STATE_TESS_PROGRAMS,
177 BRW_STATE_VERTEX_PROGRAM,
178 BRW_STATE_REDUCED_PRIMITIVE,
179 BRW_STATE_PATCH_PRIMITIVE,
180 BRW_STATE_PRIMITIVE,
181 BRW_STATE_CONTEXT,
182 BRW_STATE_PSP,
183 BRW_STATE_SURFACES,
184 BRW_STATE_BINDING_TABLE_POINTERS,
185 BRW_STATE_INDICES,
186 BRW_STATE_VERTICES,
187 BRW_STATE_DEFAULT_TESS_LEVELS,
188 BRW_STATE_BATCH,
189 BRW_STATE_INDEX_BUFFER,
190 BRW_STATE_VS_CONSTBUF,
191 BRW_STATE_TCS_CONSTBUF,
192 BRW_STATE_TES_CONSTBUF,
193 BRW_STATE_GS_CONSTBUF,
194 BRW_STATE_PROGRAM_CACHE,
195 BRW_STATE_STATE_BASE_ADDRESS,
196 BRW_STATE_VUE_MAP_GEOM_OUT,
197 BRW_STATE_TRANSFORM_FEEDBACK,
198 BRW_STATE_RASTERIZER_DISCARD,
199 BRW_STATE_STATS_WM,
200 BRW_STATE_UNIFORM_BUFFER,
201 BRW_STATE_IMAGE_UNITS,
202 BRW_STATE_META_IN_PROGRESS,
203 BRW_STATE_PUSH_CONSTANT_ALLOCATION,
204 BRW_STATE_NUM_SAMPLES,
205 BRW_STATE_TEXTURE_BUFFER,
206 BRW_STATE_GEN4_UNIT_STATE,
207 BRW_STATE_CC_VP,
208 BRW_STATE_SF_VP,
209 BRW_STATE_CLIP_VP,
210 BRW_STATE_SAMPLER_STATE_TABLE,
211 BRW_STATE_VS_ATTRIB_WORKAROUNDS,
212 BRW_STATE_COMPUTE_PROGRAM,
213 BRW_STATE_CS_WORK_GROUPS,
214 BRW_STATE_URB_SIZE,
215 BRW_STATE_CC_STATE,
216 BRW_STATE_BLORP,
217 BRW_STATE_VIEWPORT_COUNT,
218 BRW_STATE_CONSERVATIVE_RASTERIZATION,
219 BRW_STATE_DRAW_CALL,
220 BRW_STATE_AUX,
221 BRW_NUM_STATE_BITS
222 };
223
224 /**
225 * BRW_NEW_*_PROG_DATA and BRW_NEW_*_PROGRAM are similar, but distinct.
226 *
227 * BRW_NEW_*_PROGRAM relates to the gl_shader_program/gl_program structures.
228 * When the currently bound shader program differs from the previous draw
229 * call, these will be flagged. They cover brw->{stage}_program and
230 * ctx->{Stage}Program->_Current.
231 *
232 * BRW_NEW_*_PROG_DATA is flagged when the effective shaders change, from a
233 * driver perspective. Even if the same shader is bound at the API level,
234 * we may need to switch between multiple versions of that shader to handle
235 * changes in non-orthagonal state.
236 *
237 * Additionally, multiple shader programs may have identical vertex shaders
238 * (for example), or compile down to the same code in the backend. We combine
239 * those into a single program cache entry.
240 *
241 * BRW_NEW_*_PROG_DATA occurs when switching program cache entries, which
242 * covers the brw_*_prog_data structures, and brw->*.prog_offset.
243 */
244 #define BRW_NEW_FS_PROG_DATA (1ull << BRW_CACHE_FS_PROG)
245 /* XXX: The BRW_NEW_BLORP_BLIT_PROG_DATA dirty bit is unused (as BLORP doesn't
246 * use the normal state upload paths), but the cache is still used. To avoid
247 * polluting the brw_program_cache code with special cases, we retain the
248 * dirty bit for now. It should eventually be removed.
249 */
250 #define BRW_NEW_BLORP_BLIT_PROG_DATA (1ull << BRW_CACHE_BLORP_PROG)
251 #define BRW_NEW_SF_PROG_DATA (1ull << BRW_CACHE_SF_PROG)
252 #define BRW_NEW_VS_PROG_DATA (1ull << BRW_CACHE_VS_PROG)
253 #define BRW_NEW_FF_GS_PROG_DATA (1ull << BRW_CACHE_FF_GS_PROG)
254 #define BRW_NEW_GS_PROG_DATA (1ull << BRW_CACHE_GS_PROG)
255 #define BRW_NEW_TCS_PROG_DATA (1ull << BRW_CACHE_TCS_PROG)
256 #define BRW_NEW_TES_PROG_DATA (1ull << BRW_CACHE_TES_PROG)
257 #define BRW_NEW_CLIP_PROG_DATA (1ull << BRW_CACHE_CLIP_PROG)
258 #define BRW_NEW_CS_PROG_DATA (1ull << BRW_CACHE_CS_PROG)
259 #define BRW_NEW_URB_FENCE (1ull << BRW_STATE_URB_FENCE)
260 #define BRW_NEW_FRAGMENT_PROGRAM (1ull << BRW_STATE_FRAGMENT_PROGRAM)
261 #define BRW_NEW_GEOMETRY_PROGRAM (1ull << BRW_STATE_GEOMETRY_PROGRAM)
262 #define BRW_NEW_TESS_PROGRAMS (1ull << BRW_STATE_TESS_PROGRAMS)
263 #define BRW_NEW_VERTEX_PROGRAM (1ull << BRW_STATE_VERTEX_PROGRAM)
264 #define BRW_NEW_REDUCED_PRIMITIVE (1ull << BRW_STATE_REDUCED_PRIMITIVE)
265 #define BRW_NEW_PATCH_PRIMITIVE (1ull << BRW_STATE_PATCH_PRIMITIVE)
266 #define BRW_NEW_PRIMITIVE (1ull << BRW_STATE_PRIMITIVE)
267 #define BRW_NEW_CONTEXT (1ull << BRW_STATE_CONTEXT)
268 #define BRW_NEW_PSP (1ull << BRW_STATE_PSP)
269 #define BRW_NEW_SURFACES (1ull << BRW_STATE_SURFACES)
270 #define BRW_NEW_BINDING_TABLE_POINTERS (1ull << BRW_STATE_BINDING_TABLE_POINTERS)
271 #define BRW_NEW_INDICES (1ull << BRW_STATE_INDICES)
272 #define BRW_NEW_VERTICES (1ull << BRW_STATE_VERTICES)
273 #define BRW_NEW_DEFAULT_TESS_LEVELS (1ull << BRW_STATE_DEFAULT_TESS_LEVELS)
274 /**
275 * Used for any batch entry with a relocated pointer that will be used
276 * by any 3D rendering.
277 */
278 #define BRW_NEW_BATCH (1ull << BRW_STATE_BATCH)
279 /** \see brw.state.depth_region */
280 #define BRW_NEW_INDEX_BUFFER (1ull << BRW_STATE_INDEX_BUFFER)
281 #define BRW_NEW_VS_CONSTBUF (1ull << BRW_STATE_VS_CONSTBUF)
282 #define BRW_NEW_TCS_CONSTBUF (1ull << BRW_STATE_TCS_CONSTBUF)
283 #define BRW_NEW_TES_CONSTBUF (1ull << BRW_STATE_TES_CONSTBUF)
284 #define BRW_NEW_GS_CONSTBUF (1ull << BRW_STATE_GS_CONSTBUF)
285 #define BRW_NEW_PROGRAM_CACHE (1ull << BRW_STATE_PROGRAM_CACHE)
286 #define BRW_NEW_STATE_BASE_ADDRESS (1ull << BRW_STATE_STATE_BASE_ADDRESS)
287 #define BRW_NEW_VUE_MAP_GEOM_OUT (1ull << BRW_STATE_VUE_MAP_GEOM_OUT)
288 #define BRW_NEW_VIEWPORT_COUNT (1ull << BRW_STATE_VIEWPORT_COUNT)
289 #define BRW_NEW_TRANSFORM_FEEDBACK (1ull << BRW_STATE_TRANSFORM_FEEDBACK)
290 #define BRW_NEW_RASTERIZER_DISCARD (1ull << BRW_STATE_RASTERIZER_DISCARD)
291 #define BRW_NEW_STATS_WM (1ull << BRW_STATE_STATS_WM)
292 #define BRW_NEW_UNIFORM_BUFFER (1ull << BRW_STATE_UNIFORM_BUFFER)
293 #define BRW_NEW_IMAGE_UNITS (1ull << BRW_STATE_IMAGE_UNITS)
294 #define BRW_NEW_META_IN_PROGRESS (1ull << BRW_STATE_META_IN_PROGRESS)
295 #define BRW_NEW_PUSH_CONSTANT_ALLOCATION (1ull << BRW_STATE_PUSH_CONSTANT_ALLOCATION)
296 #define BRW_NEW_NUM_SAMPLES (1ull << BRW_STATE_NUM_SAMPLES)
297 #define BRW_NEW_TEXTURE_BUFFER (1ull << BRW_STATE_TEXTURE_BUFFER)
298 #define BRW_NEW_GEN4_UNIT_STATE (1ull << BRW_STATE_GEN4_UNIT_STATE)
299 #define BRW_NEW_CC_VP (1ull << BRW_STATE_CC_VP)
300 #define BRW_NEW_SF_VP (1ull << BRW_STATE_SF_VP)
301 #define BRW_NEW_CLIP_VP (1ull << BRW_STATE_CLIP_VP)
302 #define BRW_NEW_SAMPLER_STATE_TABLE (1ull << BRW_STATE_SAMPLER_STATE_TABLE)
303 #define BRW_NEW_VS_ATTRIB_WORKAROUNDS (1ull << BRW_STATE_VS_ATTRIB_WORKAROUNDS)
304 #define BRW_NEW_COMPUTE_PROGRAM (1ull << BRW_STATE_COMPUTE_PROGRAM)
305 #define BRW_NEW_CS_WORK_GROUPS (1ull << BRW_STATE_CS_WORK_GROUPS)
306 #define BRW_NEW_URB_SIZE (1ull << BRW_STATE_URB_SIZE)
307 #define BRW_NEW_CC_STATE (1ull << BRW_STATE_CC_STATE)
308 #define BRW_NEW_BLORP (1ull << BRW_STATE_BLORP)
309 #define BRW_NEW_CONSERVATIVE_RASTERIZATION (1ull << BRW_STATE_CONSERVATIVE_RASTERIZATION)
310 #define BRW_NEW_DRAW_CALL (1ull << BRW_STATE_DRAW_CALL)
311 #define BRW_NEW_AUX_STATE (1ull << BRW_STATE_AUX)
312
313 struct brw_state_flags {
314 /** State update flags signalled by mesa internals */
315 GLuint mesa;
316 /**
317 * State update flags signalled as the result of brw_tracked_state updates
318 */
319 uint64_t brw;
320 };
321
322
323 /** Subclass of Mesa program */
324 struct brw_program {
325 struct gl_program program;
326 GLuint id;
327
328 bool compiled_once;
329 };
330
331
332 struct brw_ff_gs_prog_data {
333 GLuint urb_read_length;
334 GLuint total_grf;
335
336 /**
337 * Gen6 transform feedback: Amount by which the streaming vertex buffer
338 * indices should be incremented each time the GS is invoked.
339 */
340 unsigned svbi_postincrement_value;
341 };
342
343 /** Number of texture sampler units */
344 #define BRW_MAX_TEX_UNIT 32
345
346 /** Max number of UBOs in a shader */
347 #define BRW_MAX_UBO 14
348
349 /** Max number of SSBOs in a shader */
350 #define BRW_MAX_SSBO 12
351
352 /** Max number of atomic counter buffer objects in a shader */
353 #define BRW_MAX_ABO 16
354
355 /** Max number of image uniforms in a shader */
356 #define BRW_MAX_IMAGES 32
357
358 /** Maximum number of actual buffers used for stream output */
359 #define BRW_MAX_SOL_BUFFERS 4
360
361 #define BRW_MAX_SURFACES (BRW_MAX_DRAW_BUFFERS + \
362 BRW_MAX_TEX_UNIT * 2 + /* normal, gather */ \
363 BRW_MAX_UBO + \
364 BRW_MAX_SSBO + \
365 BRW_MAX_ABO + \
366 BRW_MAX_IMAGES + \
367 2 + /* shader time, pull constants */ \
368 1 /* cs num work groups */)
369
370 struct brw_cache {
371 struct brw_context *brw;
372
373 struct brw_cache_item **items;
374 struct brw_bo *bo;
375 void *map;
376 GLuint size, n_items;
377
378 uint32_t next_offset;
379 };
380
381 #define perf_debug(...) do { \
382 static GLuint msg_id = 0; \
383 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) \
384 dbg_printf(__VA_ARGS__); \
385 if (brw->perf_debug) \
386 _mesa_gl_debug(&brw->ctx, &msg_id, \
387 MESA_DEBUG_SOURCE_API, \
388 MESA_DEBUG_TYPE_PERFORMANCE, \
389 MESA_DEBUG_SEVERITY_MEDIUM, \
390 __VA_ARGS__); \
391 } while(0)
392
393 #define WARN_ONCE(cond, fmt...) do { \
394 if (unlikely(cond)) { \
395 static bool _warned = false; \
396 static GLuint msg_id = 0; \
397 if (!_warned) { \
398 fprintf(stderr, "WARNING: "); \
399 fprintf(stderr, fmt); \
400 _warned = true; \
401 \
402 _mesa_gl_debug(ctx, &msg_id, \
403 MESA_DEBUG_SOURCE_API, \
404 MESA_DEBUG_TYPE_OTHER, \
405 MESA_DEBUG_SEVERITY_HIGH, fmt); \
406 } \
407 } \
408 } while (0)
409
410 /* Considered adding a member to this struct to document which flags
411 * an update might raise so that ordering of the state atoms can be
412 * checked or derived at runtime. Dropped the idea in favor of having
413 * a debug mode where the state is monitored for flags which are
414 * raised that have already been tested against.
415 */
416 struct brw_tracked_state {
417 struct brw_state_flags dirty;
418 void (*emit)( struct brw_context *brw );
419 };
420
421 enum shader_time_shader_type {
422 ST_NONE,
423 ST_VS,
424 ST_TCS,
425 ST_TES,
426 ST_GS,
427 ST_FS8,
428 ST_FS16,
429 ST_CS,
430 };
431
432 struct brw_vertex_buffer {
433 /** Buffer object containing the uploaded vertex data */
434 struct brw_bo *bo;
435 uint32_t offset;
436 uint32_t size;
437 /** Byte stride between elements in the uploaded array */
438 GLuint stride;
439 GLuint step_rate;
440 };
441 struct brw_vertex_element {
442 const struct gl_array_attributes *glattrib;
443 const struct gl_vertex_buffer_binding *glbinding;
444
445 int buffer;
446 bool is_dual_slot;
447 /** Offset of the first element within the buffer object */
448 unsigned int offset;
449 };
450
451 struct brw_query_object {
452 struct gl_query_object Base;
453
454 /** Last query BO associated with this query. */
455 struct brw_bo *bo;
456
457 /** Last index in bo with query data for this object. */
458 int last_index;
459
460 /** True if we know the batch has been flushed since we ended the query. */
461 bool flushed;
462 };
463
464 enum brw_gpu_ring {
465 UNKNOWN_RING,
466 RENDER_RING,
467 BLT_RING,
468 };
469
470 struct brw_reloc_list {
471 struct drm_i915_gem_relocation_entry *relocs;
472 int reloc_count;
473 int reloc_array_size;
474 };
475
476 struct brw_growing_bo {
477 struct brw_bo *bo;
478 uint32_t *map;
479 struct brw_bo *partial_bo;
480 uint32_t *partial_bo_map;
481 unsigned partial_bytes;
482 };
483
484 struct intel_batchbuffer {
485 /** Current batchbuffer being queued up. */
486 struct brw_growing_bo batch;
487 /** Current statebuffer being queued up. */
488 struct brw_growing_bo state;
489
490 /** Last batchbuffer submitted to the hardware. Used for glFinish(). */
491 struct brw_bo *last_bo;
492
493 #ifdef DEBUG
494 uint16_t emit, total;
495 #endif
496 uint32_t *map_next;
497 uint32_t state_used;
498
499 enum brw_gpu_ring ring;
500 bool use_shadow_copy;
501 bool use_batch_first;
502 bool needs_sol_reset;
503 bool state_base_address_emitted;
504 bool no_wrap;
505
506 struct brw_reloc_list batch_relocs;
507 struct brw_reloc_list state_relocs;
508 unsigned int valid_reloc_flags;
509
510 /** The validation list */
511 struct drm_i915_gem_exec_object2 *validation_list;
512 struct brw_bo **exec_bos;
513 int exec_count;
514 int exec_array_size;
515
516 /** The amount of aperture space (in bytes) used by all exec_bos */
517 int aperture_space;
518
519 struct {
520 uint32_t *map_next;
521 int batch_reloc_count;
522 int state_reloc_count;
523 int exec_count;
524 } saved;
525
526 /** Map from batch offset to brw_state_batch data (with DEBUG_BATCH) */
527 struct hash_table *state_batch_sizes;
528
529 struct gen_batch_decode_ctx decoder;
530 };
531
532 #define BRW_MAX_XFB_STREAMS 4
533
534 struct brw_transform_feedback_counter {
535 /**
536 * Index of the first entry of this counter within the primitive count BO.
537 * An entry is considered to be an N-tuple of 64bit values, where N is the
538 * number of vertex streams supported by the platform.
539 */
540 unsigned bo_start;
541
542 /**
543 * Index one past the last entry of this counter within the primitive
544 * count BO.
545 */
546 unsigned bo_end;
547
548 /**
549 * Primitive count values accumulated while this counter was active,
550 * excluding any entries buffered between \c bo_start and \c bo_end, which
551 * haven't been accounted for yet.
552 */
553 uint64_t accum[BRW_MAX_XFB_STREAMS];
554 };
555
556 static inline void
557 brw_reset_transform_feedback_counter(
558 struct brw_transform_feedback_counter *counter)
559 {
560 counter->bo_start = counter->bo_end;
561 memset(&counter->accum, 0, sizeof(counter->accum));
562 }
563
564 struct brw_transform_feedback_object {
565 struct gl_transform_feedback_object base;
566
567 /** A buffer to hold SO_WRITE_OFFSET(n) values while paused. */
568 struct brw_bo *offset_bo;
569
570 /** If true, SO_WRITE_OFFSET(n) should be reset to zero at next use. */
571 bool zero_offsets;
572
573 /** The most recent primitive mode (GL_TRIANGLES/GL_POINTS/GL_LINES). */
574 GLenum primitive_mode;
575
576 /**
577 * The maximum number of vertices that we can write without overflowing
578 * any of the buffers currently being used for transform feedback.
579 */
580 unsigned max_index;
581
582 struct brw_bo *prim_count_bo;
583
584 /**
585 * Count of primitives generated during this transform feedback operation.
586 */
587 struct brw_transform_feedback_counter counter;
588
589 /**
590 * Count of primitives generated during the previous transform feedback
591 * operation. Used to implement DrawTransformFeedback().
592 */
593 struct brw_transform_feedback_counter previous_counter;
594
595 /**
596 * Number of vertices written between last Begin/EndTransformFeedback().
597 *
598 * Used to implement DrawTransformFeedback().
599 */
600 uint64_t vertices_written[BRW_MAX_XFB_STREAMS];
601 bool vertices_written_valid;
602 };
603
604 /**
605 * Data shared between each programmable stage in the pipeline (vs, gs, and
606 * wm).
607 */
608 struct brw_stage_state
609 {
610 gl_shader_stage stage;
611 struct brw_stage_prog_data *prog_data;
612
613 /**
614 * Optional scratch buffer used to store spilled register values and
615 * variably-indexed GRF arrays.
616 *
617 * The contents of this buffer are short-lived so the same memory can be
618 * re-used at will for multiple shader programs (executed by the same fixed
619 * function). However reusing a scratch BO for which shader invocations
620 * are still in flight with a per-thread scratch slot size other than the
621 * original can cause threads with different scratch slot size and FFTID
622 * (which may be executed in parallel depending on the shader stage and
623 * hardware generation) to map to an overlapping region of the scratch
624 * space, which can potentially lead to mutual scratch space corruption.
625 * For that reason if you borrow this scratch buffer you should only be
626 * using the slot size given by the \c per_thread_scratch member below,
627 * unless you're taking additional measures to synchronize thread execution
628 * across slot size changes.
629 */
630 struct brw_bo *scratch_bo;
631
632 /**
633 * Scratch slot size allocated for each thread in the buffer object given
634 * by \c scratch_bo.
635 */
636 uint32_t per_thread_scratch;
637
638 /** Offset in the program cache to the program */
639 uint32_t prog_offset;
640
641 /** Offset in the batchbuffer to Gen4-5 pipelined state (VS/WM/GS_STATE). */
642 uint32_t state_offset;
643
644 struct brw_bo *push_const_bo; /* NULL if using the batchbuffer */
645 uint32_t push_const_offset; /* Offset in the push constant BO or batch */
646 int push_const_size; /* in 256-bit register increments */
647
648 /* Binding table: pointers to SURFACE_STATE entries. */
649 uint32_t bind_bo_offset;
650 uint32_t surf_offset[BRW_MAX_SURFACES];
651
652 /** SAMPLER_STATE count and table offset */
653 uint32_t sampler_count;
654 uint32_t sampler_offset;
655
656 struct brw_image_param image_param[BRW_MAX_IMAGES];
657
658 /** Need to re-emit 3DSTATE_CONSTANT_XS? */
659 bool push_constants_dirty;
660 };
661
662 enum brw_predicate_state {
663 /* The first two states are used if we can determine whether to draw
664 * without having to look at the values in the query object buffer. This
665 * will happen if there is no conditional render in progress, if the query
666 * object is already completed or if something else has already added
667 * samples to the preliminary result such as via a BLT command.
668 */
669 BRW_PREDICATE_STATE_RENDER,
670 BRW_PREDICATE_STATE_DONT_RENDER,
671 /* In this case whether to draw or not depends on the result of an
672 * MI_PREDICATE command so the predicate enable bit needs to be checked.
673 */
674 BRW_PREDICATE_STATE_USE_BIT,
675 /* In this case, either MI_PREDICATE doesn't exist or we lack the
676 * necessary kernel features to use it. Stall for the query result.
677 */
678 BRW_PREDICATE_STATE_STALL_FOR_QUERY,
679 };
680
681 struct shader_times;
682
683 struct gen_l3_config;
684
685 enum brw_query_kind {
686 OA_COUNTERS,
687 OA_COUNTERS_RAW,
688 PIPELINE_STATS,
689 };
690
691 struct brw_perf_query_register_prog {
692 uint32_t reg;
693 uint32_t val;
694 };
695
696 struct brw_perf_query_info
697 {
698 enum brw_query_kind kind;
699 const char *name;
700 const char *guid;
701 struct brw_perf_query_counter *counters;
702 int n_counters;
703 size_t data_size;
704
705 /* OA specific */
706 uint64_t oa_metrics_set_id;
707 int oa_format;
708
709 /* For indexing into the accumulator[] ... */
710 int gpu_time_offset;
711 int gpu_clock_offset;
712 int a_offset;
713 int b_offset;
714 int c_offset;
715
716 /* Register programming for a given query */
717 struct brw_perf_query_register_prog *flex_regs;
718 uint32_t n_flex_regs;
719
720 struct brw_perf_query_register_prog *mux_regs;
721 uint32_t n_mux_regs;
722
723 struct brw_perf_query_register_prog *b_counter_regs;
724 uint32_t n_b_counter_regs;
725 };
726
727 struct brw_uploader {
728 struct brw_bufmgr *bufmgr;
729 struct brw_bo *bo;
730 void *map;
731 uint32_t next_offset;
732 unsigned default_size;
733 };
734
735 /**
736 * brw_context is derived from gl_context.
737 */
738 struct brw_context
739 {
740 struct gl_context ctx; /**< base class, must be first field */
741
742 struct
743 {
744 /**
745 * Emit an MI_REPORT_PERF_COUNT command packet.
746 *
747 * This asks the GPU to write a report of the current OA counter values
748 * into @bo at the given offset and containing the given @report_id
749 * which we can cross-reference when parsing the report (gen7+ only).
750 */
751 void (*emit_mi_report_perf_count)(struct brw_context *brw,
752 struct brw_bo *bo,
753 uint32_t offset_in_bytes,
754 uint32_t report_id);
755 } vtbl;
756
757 struct brw_bufmgr *bufmgr;
758
759 uint32_t hw_ctx;
760
761 /** BO for post-sync nonzero writes for gen6 workaround. */
762 struct brw_bo *workaround_bo;
763 uint8_t pipe_controls_since_last_cs_stall;
764
765 /**
766 * Set of struct brw_bo * that have been rendered to within this batchbuffer
767 * and would need flushing before being used from another cache domain that
768 * isn't coherent with it (i.e. the sampler).
769 */
770 struct hash_table *render_cache;
771
772 /**
773 * Set of struct brw_bo * that have been used as a depth buffer within this
774 * batchbuffer and would need flushing before being used from another cache
775 * domain that isn't coherent with it (i.e. the sampler).
776 */
777 struct set *depth_cache;
778
779 /**
780 * Number of resets observed in the system at context creation.
781 *
782 * This is tracked in the context so that we can determine that another
783 * reset has occurred.
784 */
785 uint32_t reset_count;
786
787 struct intel_batchbuffer batch;
788
789 struct brw_uploader upload;
790
791 /**
792 * Set if rendering has occurred to the drawable's front buffer.
793 *
794 * This is used in the DRI2 case to detect that glFlush should also copy
795 * the contents of the fake front buffer to the real front buffer.
796 */
797 bool front_buffer_dirty;
798
799 /** Framerate throttling: @{ */
800 struct brw_bo *throttle_batch[2];
801
802 /* Limit the number of outstanding SwapBuffers by waiting for an earlier
803 * frame of rendering to complete. This gives a very precise cap to the
804 * latency between input and output such that rendering never gets more
805 * than a frame behind the user. (With the caveat that we technically are
806 * not using the SwapBuffers itself as a barrier but the first batch
807 * submitted afterwards, which may be immediately prior to the next
808 * SwapBuffers.)
809 */
810 bool need_swap_throttle;
811
812 /** General throttling, not caught by throttling between SwapBuffers */
813 bool need_flush_throttle;
814 /** @} */
815
816 GLuint stats_wm;
817
818 /**
819 * drirc options:
820 * @{
821 */
822 bool no_rast;
823 bool always_flush_batch;
824 bool always_flush_cache;
825 bool disable_throttling;
826 bool precompile;
827 bool dual_color_blend_by_location;
828
829 driOptionCache optionCache;
830 /** @} */
831
832 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
833
834 GLenum reduced_primitive;
835
836 /**
837 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
838 * variable is set, this is the flag indicating to do expensive work that
839 * might lead to a perf_debug() call.
840 */
841 bool perf_debug;
842
843 uint64_t max_gtt_map_object_size;
844
845 bool has_hiz;
846 bool has_separate_stencil;
847 bool has_swizzling;
848
849 /** Derived stencil states. */
850 bool stencil_enabled;
851 bool stencil_two_sided;
852 bool stencil_write_enabled;
853 /** Derived polygon state. */
854 bool polygon_front_bit; /**< 0=GL_CCW, 1=GL_CW */
855
856 struct isl_device isl_dev;
857
858 struct blorp_context blorp;
859
860 GLuint NewGLState;
861 struct {
862 struct brw_state_flags pipelines[BRW_NUM_PIPELINES];
863 } state;
864
865 enum brw_pipeline last_pipeline;
866
867 struct brw_cache cache;
868
869 /* Whether a meta-operation is in progress. */
870 bool meta_in_progress;
871
872 /* Whether the last depth/stencil packets were both NULL. */
873 bool no_depth_or_stencil;
874
875 /* The last PMA stall bits programmed. */
876 uint32_t pma_stall_bits;
877
878 struct {
879 struct {
880 /**
881 * Either the value of gl_BaseVertex for indexed draw calls or the
882 * value of the argument <first> for non-indexed draw calls for the
883 * current _mesa_prim.
884 */
885 int firstvertex;
886
887 /** The value of gl_BaseInstance for the current _mesa_prim. */
888 int gl_baseinstance;
889 } params;
890
891 /**
892 * Buffer and offset used for GL_ARB_shader_draw_parameters which will
893 * point to the indirect buffer for indirect draw calls.
894 */
895 struct brw_bo *draw_params_bo;
896 uint32_t draw_params_offset;
897
898 struct {
899 /**
900 * The value of gl_DrawID for the current _mesa_prim. This always comes
901 * in from it's own vertex buffer since it's not part of the indirect
902 * draw parameters.
903 */
904 int gl_drawid;
905
906 /**
907 * Stores if the current _mesa_prim is an indexed or non-indexed draw
908 * (~0/0). Useful to calculate gl_BaseVertex as an AND of firstvertex
909 * and is_indexed_draw.
910 */
911 int is_indexed_draw;
912 } derived_params;
913
914 /**
915 * Buffer and offset used for GL_ARB_shader_draw_parameters which contains
916 * parameters that are not present in the indirect buffer. They will go in
917 * their own vertex element.
918 */
919 struct brw_bo *derived_draw_params_bo;
920 uint32_t derived_draw_params_offset;
921
922 /**
923 * Pointer to the the buffer storing the indirect draw parameters. It
924 * currently only stores the number of requested draw calls but more
925 * parameters could potentially be added.
926 */
927 struct brw_bo *draw_params_count_bo;
928 uint32_t draw_params_count_offset;
929 } draw;
930
931 struct {
932 /**
933 * For gl_NumWorkGroups: If num_work_groups_bo is non NULL, then it is
934 * an indirect call, and num_work_groups_offset is valid. Otherwise,
935 * num_work_groups is set based on glDispatchCompute.
936 */
937 struct brw_bo *num_work_groups_bo;
938 GLintptr num_work_groups_offset;
939 const GLuint *num_work_groups;
940 } compute;
941
942 struct {
943 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
944 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
945
946 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
947 GLuint nr_enabled;
948 GLuint nr_buffers;
949
950 /* Summary of size and varying of active arrays, so we can check
951 * for changes to this state:
952 */
953 bool index_bounds_valid;
954 unsigned int min_index, max_index;
955
956 /* Offset from start of vertex buffer so we can avoid redefining
957 * the same VB packed over and over again.
958 */
959 unsigned int start_vertex_bias;
960
961 /**
962 * Certain vertex attribute formats aren't natively handled by the
963 * hardware and require special VS code to fix up their values.
964 *
965 * These bitfields indicate which workarounds are needed.
966 */
967 uint8_t attrib_wa_flags[VERT_ATTRIB_MAX];
968 } vb;
969
970 struct {
971 /**
972 * Index buffer for this draw_prims call.
973 *
974 * Updates are signaled by BRW_NEW_INDICES.
975 */
976 const struct _mesa_index_buffer *ib;
977
978 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
979 struct brw_bo *bo;
980 uint32_t size;
981 unsigned index_size;
982
983 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
984 * avoid re-uploading the IB packet over and over if we're actually
985 * referencing the same index buffer.
986 */
987 unsigned int start_vertex_offset;
988 } ib;
989
990 /* Active vertex program:
991 */
992 struct gl_program *programs[MESA_SHADER_STAGES];
993
994 /**
995 * Number of samples in ctx->DrawBuffer, updated by BRW_NEW_NUM_SAMPLES so
996 * that we don't have to reemit that state every time we change FBOs.
997 */
998 unsigned int num_samples;
999
1000 /* BRW_NEW_URB_ALLOCATIONS:
1001 */
1002 struct {
1003 GLuint vsize; /* vertex size plus header in urb registers */
1004 GLuint gsize; /* GS output size in urb registers */
1005 GLuint hsize; /* Tessellation control output size in urb registers */
1006 GLuint dsize; /* Tessellation evaluation output size in urb registers */
1007 GLuint csize; /* constant buffer size in urb registers */
1008 GLuint sfsize; /* setup data size in urb registers */
1009
1010 bool constrained;
1011
1012 GLuint nr_vs_entries;
1013 GLuint nr_hs_entries;
1014 GLuint nr_ds_entries;
1015 GLuint nr_gs_entries;
1016 GLuint nr_clip_entries;
1017 GLuint nr_sf_entries;
1018 GLuint nr_cs_entries;
1019
1020 GLuint vs_start;
1021 GLuint hs_start;
1022 GLuint ds_start;
1023 GLuint gs_start;
1024 GLuint clip_start;
1025 GLuint sf_start;
1026 GLuint cs_start;
1027 /**
1028 * URB size in the current configuration. The units this is expressed
1029 * in are somewhat inconsistent, see gen_device_info::urb::size.
1030 *
1031 * FINISHME: Represent the URB size consistently in KB on all platforms.
1032 */
1033 GLuint size;
1034
1035 /* True if the most recently sent _3DSTATE_URB message allocated
1036 * URB space for the GS.
1037 */
1038 bool gs_present;
1039
1040 /* True if the most recently sent _3DSTATE_URB message allocated
1041 * URB space for the HS and DS.
1042 */
1043 bool tess_present;
1044 } urb;
1045
1046
1047 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1048 struct {
1049 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
1050 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
1051 GLuint clip_start;
1052 GLuint clip_size;
1053 GLuint vs_start;
1054 GLuint vs_size;
1055 GLuint total_size;
1056
1057 /**
1058 * Pointer to the (intel_upload.c-generated) BO containing the uniforms
1059 * for upload to the CURBE.
1060 */
1061 struct brw_bo *curbe_bo;
1062 /** Offset within curbe_bo of space for current curbe entry */
1063 GLuint curbe_offset;
1064 } curbe;
1065
1066 /**
1067 * Layout of vertex data exiting the geometry portion of the pipleine.
1068 * This comes from the last enabled shader stage (GS, DS, or VS).
1069 *
1070 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1071 */
1072 struct brw_vue_map vue_map_geom_out;
1073
1074 struct {
1075 struct brw_stage_state base;
1076 } vs;
1077
1078 struct {
1079 struct brw_stage_state base;
1080 } tcs;
1081
1082 struct {
1083 struct brw_stage_state base;
1084 } tes;
1085
1086 struct {
1087 struct brw_stage_state base;
1088
1089 /**
1090 * True if the 3DSTATE_GS command most recently emitted to the 3D
1091 * pipeline enabled the GS; false otherwise.
1092 */
1093 bool enabled;
1094 } gs;
1095
1096 struct {
1097 struct brw_ff_gs_prog_data *prog_data;
1098
1099 bool prog_active;
1100 /** Offset in the program cache to the CLIP program pre-gen6 */
1101 uint32_t prog_offset;
1102 uint32_t state_offset;
1103
1104 uint32_t bind_bo_offset;
1105 /**
1106 * Surface offsets for the binding table. We only need surfaces to
1107 * implement transform feedback so BRW_MAX_SOL_BINDINGS is all that we
1108 * need in this case.
1109 */
1110 uint32_t surf_offset[BRW_MAX_SOL_BINDINGS];
1111 } ff_gs;
1112
1113 struct {
1114 struct brw_clip_prog_data *prog_data;
1115
1116 /** Offset in the program cache to the CLIP program pre-gen6 */
1117 uint32_t prog_offset;
1118
1119 /* Offset in the batch to the CLIP state on pre-gen6. */
1120 uint32_t state_offset;
1121
1122 /* As of gen6, this is the offset in the batch to the CLIP VP,
1123 * instead of vp_bo.
1124 */
1125 uint32_t vp_offset;
1126
1127 /**
1128 * The number of viewports to use. If gl_ViewportIndex is written,
1129 * we can have up to ctx->Const.MaxViewports viewports. If not,
1130 * the viewport index is always 0, so we can only emit one.
1131 */
1132 uint8_t viewport_count;
1133 } clip;
1134
1135
1136 struct {
1137 struct brw_sf_prog_data *prog_data;
1138
1139 /** Offset in the program cache to the CLIP program pre-gen6 */
1140 uint32_t prog_offset;
1141 uint32_t state_offset;
1142 uint32_t vp_offset;
1143 } sf;
1144
1145 struct {
1146 struct brw_stage_state base;
1147
1148 /**
1149 * Buffer object used in place of multisampled null render targets on
1150 * Gen6. See brw_emit_null_surface_state().
1151 */
1152 struct brw_bo *multisampled_null_render_target_bo;
1153
1154 float offset_clamp;
1155 } wm;
1156
1157 struct {
1158 struct brw_stage_state base;
1159 } cs;
1160
1161 struct {
1162 uint32_t state_offset;
1163 uint32_t blend_state_offset;
1164 uint32_t depth_stencil_state_offset;
1165 uint32_t vp_offset;
1166 } cc;
1167
1168 struct {
1169 struct brw_query_object *obj;
1170 bool begin_emitted;
1171 } query;
1172
1173 struct {
1174 enum brw_predicate_state state;
1175 bool supported;
1176 } predicate;
1177
1178 struct {
1179 /* Variables referenced in the XML meta data for OA performance
1180 * counters, e.g in the normalization equations.
1181 *
1182 * All uint64_t for consistent operand types in generated code
1183 */
1184 struct {
1185 uint64_t timestamp_frequency; /** $GpuTimestampFrequency */
1186 uint64_t n_eus; /** $EuCoresTotalCount */
1187 uint64_t n_eu_slices; /** $EuSlicesTotalCount */
1188 uint64_t n_eu_sub_slices; /** $EuSubslicesTotalCount */
1189 uint64_t eu_threads_count; /** $EuThreadsCount */
1190 uint64_t slice_mask; /** $SliceMask */
1191 uint64_t subslice_mask; /** $SubsliceMask */
1192 uint64_t gt_min_freq; /** $GpuMinFrequency */
1193 uint64_t gt_max_freq; /** $GpuMaxFrequency */
1194 uint64_t revision; /** $SkuRevisionId */
1195 } sys_vars;
1196
1197 /* OA metric sets, indexed by GUID, as know by Mesa at build time,
1198 * to cross-reference with the GUIDs of configs advertised by the
1199 * kernel at runtime
1200 */
1201 struct hash_table *oa_metrics_table;
1202
1203 /* Location of the device's sysfs entry. */
1204 char sysfs_dev_dir[256];
1205
1206 struct brw_perf_query_info *queries;
1207 int n_queries;
1208
1209 /* The i915 perf stream we open to setup + enable the OA counters */
1210 int oa_stream_fd;
1211
1212 /* An i915 perf stream fd gives exclusive access to the OA unit that will
1213 * report counter snapshots for a specific counter set/profile in a
1214 * specific layout/format so we can only start OA queries that are
1215 * compatible with the currently open fd...
1216 */
1217 int current_oa_metrics_set_id;
1218 int current_oa_format;
1219
1220 /* List of buffers containing OA reports */
1221 struct exec_list sample_buffers;
1222
1223 /* Cached list of empty sample buffers */
1224 struct exec_list free_sample_buffers;
1225
1226 int n_active_oa_queries;
1227 int n_active_pipeline_stats_queries;
1228
1229 /* The number of queries depending on running OA counters which
1230 * extends beyond brw_end_perf_query() since we need to wait until
1231 * the last MI_RPC command has parsed by the GPU.
1232 *
1233 * Accurate accounting is important here as emitting an
1234 * MI_REPORT_PERF_COUNT command while the OA unit is disabled will
1235 * effectively hang the gpu.
1236 */
1237 int n_oa_users;
1238
1239 /* To help catch an spurious problem with the hardware or perf
1240 * forwarding samples, we emit each MI_REPORT_PERF_COUNT command
1241 * with a unique ID that we can explicitly check for...
1242 */
1243 int next_query_start_report_id;
1244
1245 /**
1246 * An array of queries whose results haven't yet been assembled
1247 * based on the data in buffer objects.
1248 *
1249 * These may be active, or have already ended. However, the
1250 * results have not been requested.
1251 */
1252 struct brw_perf_query_object **unaccumulated;
1253 int unaccumulated_elements;
1254 int unaccumulated_array_size;
1255
1256 /* The total number of query objects so we can relinquish
1257 * our exclusive access to perf if the application deletes
1258 * all of its objects. (NB: We only disable perf while
1259 * there are no active queries)
1260 */
1261 int n_query_instances;
1262 } perfquery;
1263
1264 int num_atoms[BRW_NUM_PIPELINES];
1265 const struct brw_tracked_state render_atoms[76];
1266 const struct brw_tracked_state compute_atoms[11];
1267
1268 const enum isl_format *mesa_to_isl_render_format;
1269 const bool *mesa_format_supports_render;
1270
1271 /* PrimitiveRestart */
1272 struct {
1273 bool in_progress;
1274 bool enable_cut_index;
1275 } prim_restart;
1276
1277 /** Computed depth/stencil/hiz state from the current attached
1278 * renderbuffers, valid only during the drawing state upload loop after
1279 * brw_workaround_depthstencil_alignment().
1280 */
1281 struct {
1282 /* Inter-tile (page-aligned) byte offsets. */
1283 uint32_t depth_offset;
1284 /* Intra-tile x,y offsets for drawing to combined depth-stencil. Only
1285 * used for Gen < 6.
1286 */
1287 uint32_t tile_x, tile_y;
1288 } depthstencil;
1289
1290 uint32_t num_instances;
1291 int basevertex;
1292 int baseinstance;
1293
1294 struct {
1295 const struct gen_l3_config *config;
1296 } l3;
1297
1298 struct {
1299 struct brw_bo *bo;
1300 const char **names;
1301 int *ids;
1302 enum shader_time_shader_type *types;
1303 struct shader_times *cumulative;
1304 int num_entries;
1305 int max_entries;
1306 double report_time;
1307 } shader_time;
1308
1309 struct brw_fast_clear_state *fast_clear_state;
1310
1311 /* Array of aux usages to use for drawing. Aux usage for render targets is
1312 * a bit more complex than simply calling a single function so we need some
1313 * way of passing it form brw_draw.c to surface state setup.
1314 */
1315 enum isl_aux_usage draw_aux_usage[MAX_DRAW_BUFFERS];
1316
1317 __DRIcontext *driContext;
1318 struct intel_screen *screen;
1319 };
1320
1321 /* brw_clear.c */
1322 extern void intelInitClearFuncs(struct dd_function_table *functions);
1323
1324 /*======================================================================
1325 * brw_context.c
1326 */
1327 extern const char *const brw_vendor_string;
1328
1329 extern const char *
1330 brw_get_renderer_string(const struct intel_screen *screen);
1331
1332 enum {
1333 DRI_CONF_BO_REUSE_DISABLED,
1334 DRI_CONF_BO_REUSE_ALL
1335 };
1336
1337 void intel_update_renderbuffers(__DRIcontext *context,
1338 __DRIdrawable *drawable);
1339 void intel_prepare_render(struct brw_context *brw);
1340
1341 void brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering,
1342 bool *draw_aux_buffer_disabled);
1343
1344 void intel_resolve_for_dri2_flush(struct brw_context *brw,
1345 __DRIdrawable *drawable);
1346
1347 GLboolean brwCreateContext(gl_api api,
1348 const struct gl_config *mesaVis,
1349 __DRIcontext *driContextPriv,
1350 const struct __DriverContextConfig *ctx_config,
1351 unsigned *error,
1352 void *sharedContextPrivate);
1353
1354 /*======================================================================
1355 * brw_misc_state.c
1356 */
1357 void
1358 brw_meta_resolve_color(struct brw_context *brw,
1359 struct intel_mipmap_tree *mt);
1360
1361 /*======================================================================
1362 * brw_misc_state.c
1363 */
1364 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1365 GLbitfield clear_mask);
1366
1367 /* brw_object_purgeable.c */
1368 void brw_init_object_purgeable_functions(struct dd_function_table *functions);
1369
1370 /*======================================================================
1371 * brw_queryobj.c
1372 */
1373 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1374 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1375 void brw_emit_query_begin(struct brw_context *brw);
1376 void brw_emit_query_end(struct brw_context *brw);
1377 void brw_query_counter(struct gl_context *ctx, struct gl_query_object *q);
1378 bool brw_is_query_pipelined(struct brw_query_object *query);
1379 uint64_t brw_timebase_scale(struct brw_context *brw, uint64_t gpu_timestamp);
1380 uint64_t brw_raw_timestamp_delta(struct brw_context *brw,
1381 uint64_t time0, uint64_t time1);
1382
1383 /** gen6_queryobj.c */
1384 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1385 void brw_write_timestamp(struct brw_context *brw, struct brw_bo *bo, int idx);
1386 void brw_write_depth_count(struct brw_context *brw, struct brw_bo *bo, int idx);
1387
1388 /** hsw_queryobj.c */
1389 void hsw_overflow_result_to_gpr0(struct brw_context *brw,
1390 struct brw_query_object *query,
1391 int count);
1392 void hsw_init_queryobj_functions(struct dd_function_table *functions);
1393
1394 /** brw_conditional_render.c */
1395 void brw_init_conditional_render_functions(struct dd_function_table *functions);
1396 bool brw_check_conditional_render(struct brw_context *brw);
1397
1398 /** intel_batchbuffer.c */
1399 void brw_load_register_mem(struct brw_context *brw,
1400 uint32_t reg,
1401 struct brw_bo *bo,
1402 uint32_t offset);
1403 void brw_load_register_mem64(struct brw_context *brw,
1404 uint32_t reg,
1405 struct brw_bo *bo,
1406 uint32_t offset);
1407 void brw_store_register_mem32(struct brw_context *brw,
1408 struct brw_bo *bo, uint32_t reg, uint32_t offset);
1409 void brw_store_register_mem64(struct brw_context *brw,
1410 struct brw_bo *bo, uint32_t reg, uint32_t offset);
1411 void brw_load_register_imm32(struct brw_context *brw,
1412 uint32_t reg, uint32_t imm);
1413 void brw_load_register_imm64(struct brw_context *brw,
1414 uint32_t reg, uint64_t imm);
1415 void brw_load_register_reg(struct brw_context *brw, uint32_t src,
1416 uint32_t dest);
1417 void brw_load_register_reg64(struct brw_context *brw, uint32_t src,
1418 uint32_t dest);
1419 void brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
1420 uint32_t offset, uint32_t imm);
1421 void brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
1422 uint32_t offset, uint64_t imm);
1423
1424 /*======================================================================
1425 * intel_tex_validate.c
1426 */
1427 void brw_validate_textures( struct brw_context *brw );
1428
1429
1430 /*======================================================================
1431 * brw_program.c
1432 */
1433 static inline bool
1434 key_debug(struct brw_context *brw, const char *name, int a, int b)
1435 {
1436 if (a != b) {
1437 perf_debug(" %s %d->%d\n", name, a, b);
1438 return true;
1439 }
1440 return false;
1441 }
1442
1443 void brwInitFragProgFuncs( struct dd_function_table *functions );
1444
1445 void brw_get_scratch_bo(struct brw_context *brw,
1446 struct brw_bo **scratch_bo, int size);
1447 void brw_alloc_stage_scratch(struct brw_context *brw,
1448 struct brw_stage_state *stage_state,
1449 unsigned per_thread_size);
1450 void brw_init_shader_time(struct brw_context *brw);
1451 int brw_get_shader_time_index(struct brw_context *brw,
1452 struct gl_program *prog,
1453 enum shader_time_shader_type type,
1454 bool is_glsl_sh);
1455 void brw_collect_and_report_shader_time(struct brw_context *brw);
1456 void brw_destroy_shader_time(struct brw_context *brw);
1457
1458 /* brw_urb.c
1459 */
1460 void brw_calculate_urb_fence(struct brw_context *brw, unsigned csize,
1461 unsigned vsize, unsigned sfsize);
1462 void brw_upload_urb_fence(struct brw_context *brw);
1463
1464 /* brw_curbe.c
1465 */
1466 void brw_upload_cs_urb_state(struct brw_context *brw);
1467
1468 /* brw_vs.c */
1469 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1470
1471 /* brw_draw_upload.c */
1472 unsigned brw_get_vertex_surface_type(struct brw_context *brw,
1473 const struct gl_array_attributes *glattr);
1474
1475 static inline unsigned
1476 brw_get_index_type(unsigned index_size)
1477 {
1478 /* The hw needs 0x00, 0x01, and 0x02 for ubyte, ushort, and uint,
1479 * respectively.
1480 */
1481 return index_size >> 1;
1482 }
1483
1484 void brw_prepare_vertices(struct brw_context *brw);
1485
1486 /* brw_wm_surface_state.c */
1487 void brw_update_buffer_texture_surface(struct gl_context *ctx,
1488 unsigned unit,
1489 uint32_t *surf_offset);
1490 void
1491 brw_update_sol_surface(struct brw_context *brw,
1492 struct gl_buffer_object *buffer_obj,
1493 uint32_t *out_offset, unsigned num_vector_components,
1494 unsigned stride_dwords, unsigned offset_dwords);
1495 void brw_upload_ubo_surfaces(struct brw_context *brw, struct gl_program *prog,
1496 struct brw_stage_state *stage_state,
1497 struct brw_stage_prog_data *prog_data);
1498 void brw_upload_image_surfaces(struct brw_context *brw,
1499 const struct gl_program *prog,
1500 struct brw_stage_state *stage_state,
1501 struct brw_stage_prog_data *prog_data);
1502
1503 /* brw_surface_formats.c */
1504 void intel_screen_init_surface_formats(struct intel_screen *screen);
1505 void brw_init_surface_formats(struct brw_context *brw);
1506 bool brw_render_target_supported(struct brw_context *brw,
1507 struct gl_renderbuffer *rb);
1508 uint32_t brw_depth_format(struct brw_context *brw, mesa_format format);
1509
1510 /* brw_performance_query.c */
1511 void brw_init_performance_queries(struct brw_context *brw);
1512
1513 /* intel_extensions.c */
1514 extern void intelInitExtensions(struct gl_context *ctx);
1515
1516 /* intel_state.c */
1517 extern int intel_translate_shadow_compare_func(GLenum func);
1518 extern int intel_translate_compare_func(GLenum func);
1519 extern int intel_translate_stencil_op(GLenum op);
1520
1521 /* brw_sync.c */
1522 void brw_init_syncobj_functions(struct dd_function_table *functions);
1523
1524 /* gen6_sol.c */
1525 struct gl_transform_feedback_object *
1526 brw_new_transform_feedback(struct gl_context *ctx, GLuint name);
1527 void
1528 brw_delete_transform_feedback(struct gl_context *ctx,
1529 struct gl_transform_feedback_object *obj);
1530 void
1531 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1532 struct gl_transform_feedback_object *obj);
1533 void
1534 brw_end_transform_feedback(struct gl_context *ctx,
1535 struct gl_transform_feedback_object *obj);
1536 void
1537 brw_pause_transform_feedback(struct gl_context *ctx,
1538 struct gl_transform_feedback_object *obj);
1539 void
1540 brw_resume_transform_feedback(struct gl_context *ctx,
1541 struct gl_transform_feedback_object *obj);
1542 void
1543 brw_save_primitives_written_counters(struct brw_context *brw,
1544 struct brw_transform_feedback_object *obj);
1545 GLsizei
1546 brw_get_transform_feedback_vertex_count(struct gl_context *ctx,
1547 struct gl_transform_feedback_object *obj,
1548 GLuint stream);
1549
1550 /* gen7_sol_state.c */
1551 void
1552 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1553 struct gl_transform_feedback_object *obj);
1554 void
1555 gen7_end_transform_feedback(struct gl_context *ctx,
1556 struct gl_transform_feedback_object *obj);
1557 void
1558 gen7_pause_transform_feedback(struct gl_context *ctx,
1559 struct gl_transform_feedback_object *obj);
1560 void
1561 gen7_resume_transform_feedback(struct gl_context *ctx,
1562 struct gl_transform_feedback_object *obj);
1563
1564 /* hsw_sol.c */
1565 void
1566 hsw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1567 struct gl_transform_feedback_object *obj);
1568 void
1569 hsw_end_transform_feedback(struct gl_context *ctx,
1570 struct gl_transform_feedback_object *obj);
1571 void
1572 hsw_pause_transform_feedback(struct gl_context *ctx,
1573 struct gl_transform_feedback_object *obj);
1574 void
1575 hsw_resume_transform_feedback(struct gl_context *ctx,
1576 struct gl_transform_feedback_object *obj);
1577
1578 /* brw_blorp_blit.cpp */
1579 GLbitfield
1580 brw_blorp_framebuffer(struct brw_context *brw,
1581 struct gl_framebuffer *readFb,
1582 struct gl_framebuffer *drawFb,
1583 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1584 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1585 GLbitfield mask, GLenum filter);
1586
1587 bool
1588 brw_blorp_copytexsubimage(struct brw_context *brw,
1589 struct gl_renderbuffer *src_rb,
1590 struct gl_texture_image *dst_image,
1591 int slice,
1592 int srcX0, int srcY0,
1593 int dstX0, int dstY0,
1594 int width, int height);
1595
1596 /* brw_generate_mipmap.c */
1597 void brw_generate_mipmap(struct gl_context *ctx, GLenum target,
1598 struct gl_texture_object *tex_obj);
1599
1600 void
1601 gen6_get_sample_position(struct gl_context *ctx,
1602 struct gl_framebuffer *fb,
1603 GLuint index,
1604 GLfloat *result);
1605 void
1606 gen6_set_sample_maps(struct gl_context *ctx);
1607
1608 /* gen8_multisample_state.c */
1609 void gen8_emit_3dstate_sample_pattern(struct brw_context *brw);
1610
1611 /* gen7_urb.c */
1612 void
1613 gen7_emit_push_constant_state(struct brw_context *brw, unsigned vs_size,
1614 unsigned hs_size, unsigned ds_size,
1615 unsigned gs_size, unsigned fs_size);
1616
1617 void
1618 gen6_upload_urb(struct brw_context *brw, unsigned vs_size,
1619 bool gs_present, unsigned gs_size);
1620 void
1621 gen7_upload_urb(struct brw_context *brw, unsigned vs_size,
1622 bool gs_present, bool tess_present);
1623
1624 /* brw_reset.c */
1625 extern GLenum
1626 brw_get_graphics_reset_status(struct gl_context *ctx);
1627 void
1628 brw_check_for_reset(struct brw_context *brw);
1629
1630 /* brw_compute.c */
1631 extern void
1632 brw_init_compute_functions(struct dd_function_table *functions);
1633
1634 /* brw_program_binary.c */
1635 extern void
1636 brw_program_binary_init(unsigned device_id);
1637 extern void
1638 brw_get_program_binary_driver_sha1(struct gl_context *ctx, uint8_t *sha1);
1639 extern void
1640 brw_deserialize_program_binary(struct gl_context *ctx,
1641 struct gl_shader_program *shProg,
1642 struct gl_program *prog);
1643 void
1644 brw_program_serialize_nir(struct gl_context *ctx, struct gl_program *prog);
1645 void
1646 brw_program_deserialize_nir(struct gl_context *ctx, struct gl_program *prog,
1647 gl_shader_stage stage);
1648
1649 /*======================================================================
1650 * Inline conversion functions. These are better-typed than the
1651 * macros used previously:
1652 */
1653 static inline struct brw_context *
1654 brw_context( struct gl_context *ctx )
1655 {
1656 return (struct brw_context *)ctx;
1657 }
1658
1659 static inline struct brw_program *
1660 brw_program(struct gl_program *p)
1661 {
1662 return (struct brw_program *) p;
1663 }
1664
1665 static inline const struct brw_program *
1666 brw_program_const(const struct gl_program *p)
1667 {
1668 return (const struct brw_program *) p;
1669 }
1670
1671 static inline bool
1672 brw_depth_writes_enabled(const struct brw_context *brw)
1673 {
1674 const struct gl_context *ctx = &brw->ctx;
1675
1676 /* We consider depth writes disabled if the depth function is GL_EQUAL,
1677 * because it would just overwrite the existing depth value with itself.
1678 *
1679 * These bonus depth writes not only use bandwidth, but they also can
1680 * prevent early depth processing. For example, if the pixel shader
1681 * discards, the hardware must invoke the to determine whether or not
1682 * to do the depth write. If writes are disabled, we may still be able
1683 * to do the depth test before the shader, and skip the shader execution.
1684 *
1685 * The Broadwell 3DSTATE_WM_DEPTH_STENCIL documentation also contains
1686 * a programming note saying to disable depth writes for EQUAL.
1687 */
1688 return ctx->Depth.Test && ctx->Depth.Mask && ctx->Depth.Func != GL_EQUAL;
1689 }
1690
1691 void
1692 brw_emit_depthbuffer(struct brw_context *brw);
1693
1694 uint32_t get_hw_prim_for_gl_prim(int mode);
1695
1696 void
1697 gen6_upload_push_constants(struct brw_context *brw,
1698 const struct gl_program *prog,
1699 const struct brw_stage_prog_data *prog_data,
1700 struct brw_stage_state *stage_state);
1701
1702 bool
1703 gen9_use_linear_1d_layout(const struct brw_context *brw,
1704 const struct intel_mipmap_tree *mt);
1705
1706 /* brw_queryformat.c */
1707 void brw_query_internal_format(struct gl_context *ctx, GLenum target,
1708 GLenum internalFormat, GLenum pname,
1709 GLint *params);
1710
1711 #ifdef __cplusplus
1712 }
1713 #endif
1714
1715 #endif