mesa: skip _MaxElement computation unless driver needs strict bounds checking
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 BRW_STATE_VUE_MAP_GEOM_OUT,
153 BRW_STATE_TRANSFORM_FEEDBACK,
154 BRW_STATE_RASTERIZER_DISCARD,
155 BRW_STATE_STATS_WM,
156 };
157
158 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
159 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
160 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
161 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
166 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
167 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
168 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
169 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
170 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
171 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
172 /**
173 * Used for any batch entry with a relocated pointer that will be used
174 * by any 3D rendering.
175 */
176 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
177 /** \see brw.state.depth_region */
178 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
179 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
180 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
181 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
182 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
183 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
184 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
185 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
186 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
187
188 struct brw_state_flags {
189 /** State update flags signalled by mesa internals */
190 GLuint mesa;
191 /**
192 * State update flags signalled as the result of brw_tracked_state updates
193 */
194 GLuint brw;
195 /** State update flags signalled by brw_state_cache.c searches */
196 GLuint cache;
197 };
198
199 #define AUB_TRACE_TYPE_MASK 0x0000ff00
200 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
201 #define AUB_TRACE_TYPE_BATCH (1 << 8)
202 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
203 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
204 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
205 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
206 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
207 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
208 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
209 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
210 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
211 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
212
213 /**
214 * state_struct_type enum values are encoded with the top 16 bits representing
215 * the type to be delivered to the .aub file, and the bottom 16 bits
216 * representing the subtype. This macro performs the encoding.
217 */
218 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
219
220 enum state_struct_type {
221 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
222 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
223 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
224 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
225 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
226 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
227 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
228 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
229 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
230 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
231 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
232 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
233 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
234
235 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
236 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
237 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
238
239 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
240 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
241 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
242 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
243 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
244 };
245
246 /**
247 * Decode a state_struct_type value to determine the type that should be
248 * stored in the .aub file.
249 */
250 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
251 {
252 return (ss_type & 0xFFFF0000) >> 16;
253 }
254
255 /**
256 * Decode a state_struct_type value to determine the subtype that should be
257 * stored in the .aub file.
258 */
259 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
260 {
261 return ss_type & 0xFFFF;
262 }
263
264 /** Subclass of Mesa vertex program */
265 struct brw_vertex_program {
266 struct gl_vertex_program program;
267 GLuint id;
268 };
269
270
271 /** Subclass of Mesa fragment program */
272 struct brw_fragment_program {
273 struct gl_fragment_program program;
274 GLuint id; /**< serial no. to identify frag progs, never re-used */
275 };
276
277 struct brw_shader {
278 struct gl_shader base;
279
280 bool compiled_once;
281
282 /** Shader IR transformed for native compile, at link time. */
283 struct exec_list *ir;
284 };
285
286 /* Data about a particular attempt to compile a program. Note that
287 * there can be many of these, each in a different GL state
288 * corresponding to a different brw_wm_prog_key struct, with different
289 * compiled programs.
290 *
291 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
292 * struct!
293 */
294 struct brw_wm_prog_data {
295 GLuint curb_read_length;
296 GLuint urb_read_length;
297
298 GLuint first_curbe_grf;
299 GLuint first_curbe_grf_16;
300 GLuint reg_blocks;
301 GLuint reg_blocks_16;
302 GLuint total_scratch;
303
304 GLuint nr_params; /**< number of float params/constants */
305 GLuint nr_pull_params;
306 bool dual_src_blend;
307 int dispatch_width;
308 uint32_t prog_offset_16;
309
310 /**
311 * Mask of which interpolation modes are required by the fragment shader.
312 * Used in hardware setup on gen6+.
313 */
314 uint32_t barycentric_interp_modes;
315
316 /* Pointers to tracked values (only valid once
317 * _mesa_load_state_parameters has been called at runtime).
318 *
319 * These must be the last fields of the struct (see
320 * brw_wm_prog_data_compare()).
321 */
322 const float **param;
323 const float **pull_param;
324 };
325
326 /**
327 * Enum representing the i965-specific vertex results that don't correspond
328 * exactly to any element of gl_varying_slot. The values of this enum are
329 * assigned such that they don't conflict with gl_varying_slot.
330 */
331 typedef enum
332 {
333 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
334 BRW_VARYING_SLOT_POS_DUPLICATE,
335 BRW_VARYING_SLOT_PAD,
336 /**
337 * Technically this is not a varying but just a placeholder that
338 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
339 * builtin variable to be compiled correctly. see compile_sf_prog() for
340 * more info.
341 */
342 BRW_VARYING_SLOT_PNTC,
343 BRW_VARYING_SLOT_COUNT
344 } brw_varying_slot;
345
346
347 /**
348 * Data structure recording the relationship between the gl_varying_slot enum
349 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
350 * single octaword within the VUE (128 bits).
351 *
352 * Note that each BRW register contains 256 bits (2 octawords), so when
353 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
354 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
355 * in a vertex shader), each register corresponds to a single VUE slot, since
356 * it contains data for two separate vertices.
357 */
358 struct brw_vue_map {
359 /**
360 * Bitfield representing all varying slots that are (a) stored in this VUE
361 * map, and (b) actually written by the shader. Does not include any of
362 * the additional varying slots defined in brw_varying_slot.
363 */
364 GLbitfield64 slots_valid;
365
366 /**
367 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
368 * not stored in a slot (because they are not written, or because
369 * additional processing is applied before storing them in the VUE), the
370 * value is -1.
371 */
372 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
373
374 /**
375 * Map from VUE slot to gl_varying_slot value. For slots that do not
376 * directly correspond to a gl_varying_slot, the value comes from
377 * brw_varying_slot.
378 *
379 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
380 * simplifies code that uses the value stored in slot_to_varying to
381 * create a bit mask).
382 */
383 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
384
385 /**
386 * Total number of VUE slots in use
387 */
388 int num_slots;
389 };
390
391 /**
392 * Convert a VUE slot number into a byte offset within the VUE.
393 */
394 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
395 {
396 return 16*slot;
397 }
398
399 /**
400 * Convert a vertex output (brw_varying_slot) into a byte offset within the
401 * VUE.
402 */
403 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
404 GLuint varying)
405 {
406 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
407 }
408
409 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
410 GLbitfield64 slots_valid, bool userclip_active);
411
412
413 struct brw_sf_prog_data {
414 GLuint urb_read_length;
415 GLuint total_grf;
416
417 /* Each vertex may have upto 12 attributes, 4 components each,
418 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
419 * rows.
420 *
421 * Actually we use 4 for each, so call it 12 rows.
422 */
423 GLuint urb_entry_size;
424 };
425
426 struct brw_clip_prog_data {
427 GLuint curb_read_length; /* user planes? */
428 GLuint clip_mode;
429 GLuint urb_read_length;
430 GLuint total_grf;
431 };
432
433 struct brw_gs_prog_data {
434 GLuint urb_read_length;
435 GLuint total_grf;
436
437 /**
438 * Gen6 transform feedback: Amount by which the streaming vertex buffer
439 * indices should be incremented each time the GS is invoked.
440 */
441 unsigned svbi_postincrement_value;
442 };
443
444
445 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
446 * this struct!
447 */
448 struct brw_vec4_prog_data {
449 struct brw_vue_map vue_map;
450
451 GLuint curb_read_length;
452 GLuint urb_read_length;
453 GLuint total_grf;
454 GLuint nr_params; /**< number of float params/constants */
455 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
456 GLuint total_scratch;
457
458 /* Used for calculating urb partitions. In the VS, this is the size of the
459 * URB entry used for both input and output to the thread. In the GS, this
460 * is the size of the URB entry used for output.
461 */
462 GLuint urb_entry_size;
463
464 int num_surfaces;
465
466 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
467 const float **param;
468 const float **pull_param;
469 };
470
471
472 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
473 * struct!
474 */
475 struct brw_vs_prog_data {
476 struct brw_vec4_prog_data base;
477
478 GLbitfield64 inputs_read;
479
480 bool uses_vertexid;
481 };
482
483 /** Number of texture sampler units */
484 #define BRW_MAX_TEX_UNIT 16
485
486 /** Max number of render targets in a shader */
487 #define BRW_MAX_DRAW_BUFFERS 8
488
489 /**
490 * Max number of binding table entries used for stream output.
491 *
492 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
493 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
494 *
495 * On Gen6, the size of transform feedback data is limited not by the number
496 * of components but by the number of binding table entries we set aside. We
497 * use one binding table entry for a float, one entry for a vector, and one
498 * entry per matrix column. Since the only way we can communicate our
499 * transform feedback capabilities to the client is via
500 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
501 * worst case, in which all the varyings are floats, so we use up one binding
502 * table entry per component. Therefore we need to set aside at least 64
503 * binding table entries for use by transform feedback.
504 *
505 * Note: since we don't currently pack varyings, it is currently impossible
506 * for the client to actually use up all of these binding table entries--if
507 * all of their varyings were floats, they would run out of varying slots and
508 * fail to link. But that's a bug, so it seems prudent to go ahead and
509 * allocate the number of binding table entries we will need once the bug is
510 * fixed.
511 */
512 #define BRW_MAX_SOL_BINDINGS 64
513
514 /** Maximum number of actual buffers used for stream output */
515 #define BRW_MAX_SOL_BUFFERS 4
516
517 #define BRW_MAX_WM_UBOS 12
518 #define BRW_MAX_VS_UBOS 12
519
520 /**
521 * Helpers to create Surface Binding Table indexes for draw buffers,
522 * textures, and constant buffers.
523 *
524 * Shader threads access surfaces via numeric handles, rather than directly
525 * using pointers. The binding table maps these numeric handles to the
526 * address of the actual buffer.
527 *
528 * For example, a shader might ask to sample from "surface 7." In this case,
529 * bind[7] would contain a pointer to a texture.
530 *
531 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
532 *
533 * +-------------------------------+
534 * | 0 | Draw buffer 0 |
535 * | . | . |
536 * | : | : |
537 * | 7 | Draw buffer 7 |
538 * |-----|-------------------------|
539 * | 8 | WM Pull Constant Buffer |
540 * |-----|-------------------------|
541 * | 9 | Texture 0 |
542 * | . | . |
543 * | : | : |
544 * | 24 | Texture 15 |
545 * |-----|-------------------------|
546 * | 25 | UBO 0 |
547 * | . | . |
548 * | : | : |
549 * | 36 | UBO 11 |
550 * +-------------------------------+
551 *
552 * Our VS binding tables are programmed as follows:
553 *
554 * +-----+-------------------------+
555 * | 0 | VS Pull Constant Buffer |
556 * +-----+-------------------------+
557 * | 1 | Texture 0 |
558 * | . | . |
559 * | : | : |
560 * | 16 | Texture 15 |
561 * +-----+-------------------------+
562 * | 17 | UBO 0 |
563 * | . | . |
564 * | : | : |
565 * | 28 | UBO 11 |
566 * +-------------------------------+
567 *
568 * Our (gen6) GS binding tables are programmed as follows:
569 *
570 * +-----+-------------------------+
571 * | 0 | SOL Binding 0 |
572 * | . | . |
573 * | : | : |
574 * | 63 | SOL Binding 63 |
575 * +-----+-------------------------+
576 *
577 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
578 * the identity function or things will break. We do want to keep draw buffers
579 * first so we can use headerless render target writes for RT 0.
580 */
581 #define SURF_INDEX_DRAW(d) (d)
582 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
583 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
584 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
585 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
586 /** Maximum size of the binding table. */
587 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
588
589 #define SURF_INDEX_VERT_CONST_BUFFER (0)
590 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
591 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
592 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
593 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
594
595 #define SURF_INDEX_SOL_BINDING(t) ((t))
596 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
597
598 /**
599 * Stride in bytes between shader_time entries.
600 *
601 * We separate entries by a cacheline to reduce traffic between EUs writing to
602 * different entries.
603 */
604 #define SHADER_TIME_STRIDE 64
605
606 enum brw_cache_id {
607 BRW_BLEND_STATE,
608 BRW_DEPTH_STENCIL_STATE,
609 BRW_COLOR_CALC_STATE,
610 BRW_CC_VP,
611 BRW_CC_UNIT,
612 BRW_WM_PROG,
613 BRW_BLORP_BLIT_PROG,
614 BRW_BLORP_CLEAR_PROG,
615 BRW_SAMPLER,
616 BRW_WM_UNIT,
617 BRW_SF_PROG,
618 BRW_SF_VP,
619 BRW_SF_UNIT, /* scissor state on gen6 */
620 BRW_VS_UNIT,
621 BRW_VS_PROG,
622 BRW_GS_UNIT,
623 BRW_GS_PROG,
624 BRW_CLIP_VP,
625 BRW_CLIP_UNIT,
626 BRW_CLIP_PROG,
627
628 BRW_MAX_CACHE
629 };
630
631 struct brw_cache_item {
632 /**
633 * Effectively part of the key, cache_id identifies what kind of state
634 * buffer is involved, and also which brw->state.dirty.cache flag should
635 * be set when this cache item is chosen.
636 */
637 enum brw_cache_id cache_id;
638 /** 32-bit hash of the key data */
639 GLuint hash;
640 GLuint key_size; /* for variable-sized keys */
641 GLuint aux_size;
642 const void *key;
643
644 uint32_t offset;
645 uint32_t size;
646
647 struct brw_cache_item *next;
648 };
649
650
651 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
652 int aux_size, const void *key);
653 typedef void (*cache_aux_free_func)(const void *aux);
654
655 struct brw_cache {
656 struct brw_context *brw;
657
658 struct brw_cache_item **items;
659 drm_intel_bo *bo;
660 GLuint size, n_items;
661
662 uint32_t next_offset;
663 bool bo_used_by_gpu;
664
665 /**
666 * Optional functions used in determining whether the prog_data for a new
667 * cache item matches an existing cache item (in case there's relevant data
668 * outside of the prog_data). If NULL, a plain memcmp is done.
669 */
670 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
671 /** Optional functions for freeing other pointers attached to a prog_data. */
672 cache_aux_free_func aux_free[BRW_MAX_CACHE];
673 };
674
675
676 /* Considered adding a member to this struct to document which flags
677 * an update might raise so that ordering of the state atoms can be
678 * checked or derived at runtime. Dropped the idea in favor of having
679 * a debug mode where the state is monitored for flags which are
680 * raised that have already been tested against.
681 */
682 struct brw_tracked_state {
683 struct brw_state_flags dirty;
684 void (*emit)( struct brw_context *brw );
685 };
686
687 enum shader_time_shader_type {
688 ST_NONE,
689 ST_VS,
690 ST_VS_WRITTEN,
691 ST_VS_RESET,
692 ST_FS8,
693 ST_FS8_WRITTEN,
694 ST_FS8_RESET,
695 ST_FS16,
696 ST_FS16_WRITTEN,
697 ST_FS16_RESET,
698 };
699
700 /* Flags for brw->state.cache.
701 */
702 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
703 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
704 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
705 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
706 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
707 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
708 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
709 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
710 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
711 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
712 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
713 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
714 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
715 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
716 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
717 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
718 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
719 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
720
721 struct brw_cached_batch_item {
722 struct header *header;
723 GLuint sz;
724 struct brw_cached_batch_item *next;
725 };
726
727
728
729 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
730 * be easier if C allowed arrays of packed elements?
731 */
732 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
733
734 struct brw_vertex_buffer {
735 /** Buffer object containing the uploaded vertex data */
736 drm_intel_bo *bo;
737 uint32_t offset;
738 /** Byte stride between elements in the uploaded array */
739 GLuint stride;
740 GLuint step_rate;
741 };
742 struct brw_vertex_element {
743 const struct gl_client_array *glarray;
744
745 int buffer;
746
747 /** The corresponding Mesa vertex attribute */
748 gl_vert_attrib attrib;
749 /** Offset of the first element within the buffer object */
750 unsigned int offset;
751 };
752
753 struct brw_query_object {
754 struct gl_query_object Base;
755
756 /** Last query BO associated with this query. */
757 drm_intel_bo *bo;
758
759 /** Last index in bo with query data for this object. */
760 int last_index;
761 };
762
763
764 /**
765 * brw_context is derived from intel_context.
766 */
767 struct brw_context
768 {
769 struct intel_context intel; /**< base class, must be first field */
770 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
771
772 bool emit_state_always;
773 bool has_surface_tile_offset;
774 bool has_compr4;
775 bool has_negative_rhw_bug;
776 bool has_aa_line_parameters;
777 bool has_pln;
778 bool precompile;
779
780 /**
781 * Some versions of Gen hardware don't do centroid interpolation correctly
782 * on unlit pixels, causing incorrect values for derivatives near triangle
783 * edges. Enabling this flag causes the fragment shader to use
784 * non-centroid interpolation for unlit pixels, at the expense of two extra
785 * fragment shader instructions.
786 */
787 bool needs_unlit_centroid_workaround;
788
789 struct {
790 struct brw_state_flags dirty;
791 } state;
792
793 struct brw_cache cache;
794 struct brw_cached_batch_item *cached_batch_items;
795
796 struct {
797 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
798 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
799
800 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
801 GLuint nr_enabled;
802 GLuint nr_buffers;
803
804 /* Summary of size and varying of active arrays, so we can check
805 * for changes to this state:
806 */
807 unsigned int min_index, max_index;
808
809 /* Offset from start of vertex buffer so we can avoid redefining
810 * the same VB packed over and over again.
811 */
812 unsigned int start_vertex_bias;
813 } vb;
814
815 struct {
816 /**
817 * Index buffer for this draw_prims call.
818 *
819 * Updates are signaled by BRW_NEW_INDICES.
820 */
821 const struct _mesa_index_buffer *ib;
822
823 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
824 drm_intel_bo *bo;
825 GLuint type;
826
827 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
828 * avoid re-uploading the IB packet over and over if we're actually
829 * referencing the same index buffer.
830 */
831 unsigned int start_vertex_offset;
832 } ib;
833
834 /* Active vertex program:
835 */
836 const struct gl_vertex_program *vertex_program;
837 const struct gl_fragment_program *fragment_program;
838
839 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
840 uint32_t CMD_VF_STATISTICS;
841 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
842 uint32_t CMD_PIPELINE_SELECT;
843
844 /**
845 * Platform specific constants containing the maximum number of threads
846 * for each pipeline stage.
847 */
848 int max_vs_threads;
849 int max_gs_threads;
850 int max_wm_threads;
851
852 /* BRW_NEW_URB_ALLOCATIONS:
853 */
854 struct {
855 GLuint vsize; /* vertex size plus header in urb registers */
856 GLuint csize; /* constant buffer size in urb registers */
857 GLuint sfsize; /* setup data size in urb registers */
858
859 bool constrained;
860
861 GLuint max_vs_entries; /* Maximum number of VS entries */
862 GLuint max_gs_entries; /* Maximum number of GS entries */
863
864 GLuint nr_vs_entries;
865 GLuint nr_gs_entries;
866 GLuint nr_clip_entries;
867 GLuint nr_sf_entries;
868 GLuint nr_cs_entries;
869
870 GLuint vs_start;
871 GLuint gs_start;
872 GLuint clip_start;
873 GLuint sf_start;
874 GLuint cs_start;
875 GLuint size; /* Hardware URB size, in KB. */
876
877 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
878 * URB space for the GS.
879 */
880 bool gen6_gs_previously_active;
881 } urb;
882
883
884 /* BRW_NEW_CURBE_OFFSETS:
885 */
886 struct {
887 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
888 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
889 GLuint clip_start;
890 GLuint clip_size;
891 GLuint vs_start;
892 GLuint vs_size;
893 GLuint total_size;
894
895 drm_intel_bo *curbe_bo;
896 /** Offset within curbe_bo of space for current curbe entry */
897 GLuint curbe_offset;
898 /** Offset within curbe_bo of space for next curbe entry */
899 GLuint curbe_next_offset;
900
901 /**
902 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
903 * in brw_curbe.c with the same set of constant data to be uploaded,
904 * so we'd rather not upload new constants in that case (it can cause
905 * a pipeline bubble since only up to 4 can be pipelined at a time).
906 */
907 GLfloat *last_buf;
908 /**
909 * Allocation for where to calculate the next set of CURBEs.
910 * It's a hot enough path that malloc/free of that data matters.
911 */
912 GLfloat *next_buf;
913 GLuint last_bufsz;
914 } curbe;
915
916 /** SAMPLER_STATE count and offset */
917 struct {
918 GLuint count;
919 uint32_t offset;
920 } sampler;
921
922 /**
923 * Layout of vertex data exiting the geometry portion of the pipleine.
924 * This comes from the geometry shader if one exists, otherwise from the
925 * vertex shader.
926 *
927 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
928 */
929 struct brw_vue_map vue_map_geom_out;
930
931 struct {
932 struct brw_vs_prog_data *prog_data;
933
934 drm_intel_bo *scratch_bo;
935 drm_intel_bo *const_bo;
936 /** Offset in the program cache to the VS program */
937 uint32_t prog_offset;
938 uint32_t state_offset;
939
940 uint32_t push_const_offset; /* Offset in the batchbuffer */
941 int push_const_size; /* in 256-bit register increments */
942
943 /** @{ register allocator */
944
945 struct ra_regs *regs;
946
947 /**
948 * Array of the ra classes for the unaligned contiguous register
949 * block sizes used.
950 */
951 int *classes;
952
953 /**
954 * Mapping for register-allocated objects in *regs to the first
955 * GRF for that object.
956 */
957 uint8_t *ra_reg_to_grf;
958 /** @} */
959
960 uint32_t bind_bo_offset;
961 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
962 } vs;
963
964 struct {
965 struct brw_gs_prog_data *prog_data;
966
967 bool prog_active;
968 /** Offset in the program cache to the CLIP program pre-gen6 */
969 uint32_t prog_offset;
970 uint32_t state_offset;
971
972 uint32_t bind_bo_offset;
973 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
974 } gs;
975
976 struct {
977 struct brw_clip_prog_data *prog_data;
978
979 /** Offset in the program cache to the CLIP program pre-gen6 */
980 uint32_t prog_offset;
981
982 /* Offset in the batch to the CLIP state on pre-gen6. */
983 uint32_t state_offset;
984
985 /* As of gen6, this is the offset in the batch to the CLIP VP,
986 * instead of vp_bo.
987 */
988 uint32_t vp_offset;
989 } clip;
990
991
992 struct {
993 struct brw_sf_prog_data *prog_data;
994
995 /** Offset in the program cache to the CLIP program pre-gen6 */
996 uint32_t prog_offset;
997 uint32_t state_offset;
998 uint32_t vp_offset;
999 } sf;
1000
1001 struct {
1002 struct brw_wm_prog_data *prog_data;
1003
1004 /** offsets in the batch to sampler default colors (texture border color)
1005 */
1006 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1007
1008 GLuint render_surf;
1009
1010 drm_intel_bo *scratch_bo;
1011
1012 /**
1013 * Buffer object used in place of multisampled null render targets on
1014 * Gen6. See brw_update_null_renderbuffer_surface().
1015 */
1016 drm_intel_bo *multisampled_null_render_target_bo;
1017
1018 /** Offset in the program cache to the WM program */
1019 uint32_t prog_offset;
1020
1021 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1022
1023 drm_intel_bo *const_bo; /* pull constant buffer. */
1024 /**
1025 * This is offset in the batch to the push constants on gen6.
1026 *
1027 * Pre-gen6, push constants live in the CURBE.
1028 */
1029 uint32_t push_const_offset;
1030
1031 /** Binding table of pointers to surf_bo entries */
1032 uint32_t bind_bo_offset;
1033 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1034
1035 struct {
1036 struct ra_regs *regs;
1037
1038 /** Array of the ra classes for the unaligned contiguous
1039 * register block sizes used.
1040 */
1041 int *classes;
1042
1043 /**
1044 * Mapping for register-allocated objects in *regs to the first
1045 * GRF for that object.
1046 */
1047 uint8_t *ra_reg_to_grf;
1048
1049 /**
1050 * ra class for the aligned pairs we use for PLN, which doesn't
1051 * appear in *classes.
1052 */
1053 int aligned_pairs_class;
1054 } reg_sets[2];
1055 } wm;
1056
1057
1058 struct {
1059 uint32_t state_offset;
1060 uint32_t blend_state_offset;
1061 uint32_t depth_stencil_state_offset;
1062 uint32_t vp_offset;
1063 } cc;
1064
1065 struct {
1066 struct brw_query_object *obj;
1067 bool begin_emitted;
1068 } query;
1069
1070 int num_atoms;
1071 const struct brw_tracked_state **atoms;
1072
1073 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1074 struct {
1075 uint32_t offset;
1076 uint32_t size;
1077 enum state_struct_type type;
1078 } *state_batch_list;
1079 int state_batch_count;
1080
1081 struct brw_sol_state {
1082 uint32_t svbi_0_starting_index;
1083 uint32_t svbi_0_max_index;
1084 uint32_t offset_0_batch_start;
1085 uint32_t primitives_generated;
1086 uint32_t primitives_written;
1087 bool counting_primitives_generated;
1088 bool counting_primitives_written;
1089 } sol;
1090
1091 uint32_t render_target_format[MESA_FORMAT_COUNT];
1092 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1093
1094 /* PrimitiveRestart */
1095 struct {
1096 bool in_progress;
1097 bool enable_cut_index;
1098 } prim_restart;
1099
1100 /** Computed depth/stencil/hiz state from the current attached
1101 * renderbuffers, valid only during the drawing state upload loop after
1102 * brw_workaround_depthstencil_alignment().
1103 */
1104 struct {
1105 struct intel_mipmap_tree *depth_mt;
1106 struct intel_mipmap_tree *stencil_mt;
1107
1108 /* Inter-tile (page-aligned) byte offsets. */
1109 uint32_t depth_offset, hiz_offset, stencil_offset;
1110 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1111 uint32_t tile_x, tile_y;
1112 } depthstencil;
1113
1114 uint32_t num_instances;
1115 int basevertex;
1116
1117 struct {
1118 drm_intel_bo *bo;
1119 struct gl_shader_program **shader_programs;
1120 struct gl_program **programs;
1121 enum shader_time_shader_type *types;
1122 uint64_t *cumulative;
1123 int num_entries;
1124 int max_entries;
1125 double report_time;
1126 } shader_time;
1127 };
1128
1129 /*======================================================================
1130 * brw_vtbl.c
1131 */
1132 void brwInitVtbl( struct brw_context *brw );
1133
1134 /*======================================================================
1135 * brw_context.c
1136 */
1137 bool brwCreateContext(int api,
1138 const struct gl_config *mesaVis,
1139 __DRIcontext *driContextPriv,
1140 unsigned major_version,
1141 unsigned minor_version,
1142 uint32_t flags,
1143 unsigned *error,
1144 void *sharedContextPrivate);
1145
1146 /*======================================================================
1147 * brw_misc_state.c
1148 */
1149 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1150 uint32_t depth_level,
1151 uint32_t depth_layer,
1152 struct intel_mipmap_tree *stencil_mt,
1153 uint32_t *out_tile_mask_x,
1154 uint32_t *out_tile_mask_y);
1155 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1156 GLbitfield clear_mask);
1157
1158 /*======================================================================
1159 * brw_queryobj.c
1160 */
1161 void brw_init_queryobj_functions(struct dd_function_table *functions);
1162 void brw_emit_query_begin(struct brw_context *brw);
1163 void brw_emit_query_end(struct brw_context *brw);
1164
1165 /*======================================================================
1166 * brw_state_dump.c
1167 */
1168 void brw_debug_batch(struct intel_context *intel);
1169 void brw_annotate_aub(struct intel_context *intel);
1170
1171 /*======================================================================
1172 * brw_tex.c
1173 */
1174 void brw_validate_textures( struct brw_context *brw );
1175
1176
1177 /*======================================================================
1178 * brw_program.c
1179 */
1180 void brwInitFragProgFuncs( struct dd_function_table *functions );
1181
1182 int brw_get_scratch_size(int size);
1183 void brw_get_scratch_bo(struct intel_context *intel,
1184 drm_intel_bo **scratch_bo, int size);
1185 void brw_init_shader_time(struct brw_context *brw);
1186 int brw_get_shader_time_index(struct brw_context *brw,
1187 struct gl_shader_program *shader_prog,
1188 struct gl_program *prog,
1189 enum shader_time_shader_type type);
1190 void brw_collect_and_report_shader_time(struct brw_context *brw);
1191 void brw_destroy_shader_time(struct brw_context *brw);
1192
1193 /* brw_urb.c
1194 */
1195 void brw_upload_urb_fence(struct brw_context *brw);
1196
1197 /* brw_curbe.c
1198 */
1199 void brw_upload_cs_urb_state(struct brw_context *brw);
1200
1201 /* brw_fs_reg_allocate.cpp
1202 */
1203 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1204
1205 /* brw_disasm.c */
1206 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1207
1208 /* brw_vs.c */
1209 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1210
1211 /* brw_wm_surface_state.c */
1212 void brw_init_surface_formats(struct brw_context *brw);
1213 void
1214 brw_update_sol_surface(struct brw_context *brw,
1215 struct gl_buffer_object *buffer_obj,
1216 uint32_t *out_offset, unsigned num_vector_components,
1217 unsigned stride_dwords, unsigned offset_dwords);
1218 void brw_upload_ubo_surfaces(struct brw_context *brw,
1219 struct gl_shader *shader,
1220 uint32_t *surf_offsets);
1221
1222 /* gen6_sol.c */
1223 void
1224 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1225 struct gl_transform_feedback_object *obj);
1226 void
1227 brw_end_transform_feedback(struct gl_context *ctx,
1228 struct gl_transform_feedback_object *obj);
1229
1230 /* gen7_sol_state.c */
1231 void
1232 gen7_end_transform_feedback(struct gl_context *ctx,
1233 struct gl_transform_feedback_object *obj);
1234
1235 /* brw_blorp_blit.cpp */
1236 GLbitfield
1237 brw_blorp_framebuffer(struct intel_context *intel,
1238 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1239 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1240 GLbitfield mask, GLenum filter);
1241
1242 bool
1243 brw_blorp_copytexsubimage(struct intel_context *intel,
1244 struct gl_renderbuffer *src_rb,
1245 struct gl_texture_image *dst_image,
1246 int srcX0, int srcY0,
1247 int dstX0, int dstY0,
1248 int width, int height);
1249
1250 /* gen6_multisample_state.c */
1251 void
1252 gen6_emit_3dstate_multisample(struct brw_context *brw,
1253 unsigned num_samples);
1254 void
1255 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1256 unsigned num_samples, float coverage,
1257 bool coverage_invert, unsigned sample_mask);
1258 void
1259 gen6_get_sample_position(struct gl_context *ctx,
1260 struct gl_framebuffer *fb,
1261 GLuint index,
1262 GLfloat *result);
1263
1264 /* gen7_urb.c */
1265 void
1266 gen7_allocate_push_constants(struct brw_context *brw);
1267
1268 void
1269 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1270 GLuint vs_size, GLuint vs_start);
1271
1272
1273
1274 /*======================================================================
1275 * Inline conversion functions. These are better-typed than the
1276 * macros used previously:
1277 */
1278 static INLINE struct brw_context *
1279 brw_context( struct gl_context *ctx )
1280 {
1281 return (struct brw_context *)ctx;
1282 }
1283
1284 static INLINE struct brw_vertex_program *
1285 brw_vertex_program(struct gl_vertex_program *p)
1286 {
1287 return (struct brw_vertex_program *) p;
1288 }
1289
1290 static INLINE const struct brw_vertex_program *
1291 brw_vertex_program_const(const struct gl_vertex_program *p)
1292 {
1293 return (const struct brw_vertex_program *) p;
1294 }
1295
1296 static INLINE struct brw_fragment_program *
1297 brw_fragment_program(struct gl_fragment_program *p)
1298 {
1299 return (struct brw_fragment_program *) p;
1300 }
1301
1302 static INLINE const struct brw_fragment_program *
1303 brw_fragment_program_const(const struct gl_fragment_program *p)
1304 {
1305 return (const struct brw_fragment_program *) p;
1306 }
1307
1308 /**
1309 * Pre-gen6, the register file of the EUs was shared between threads,
1310 * and each thread used some subset allocated on a 16-register block
1311 * granularity. The unit states wanted these block counts.
1312 */
1313 static inline int
1314 brw_register_blocks(int reg_count)
1315 {
1316 return ALIGN(reg_count, 16) / 16 - 1;
1317 }
1318
1319 static inline uint32_t
1320 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1321 uint32_t prog_offset)
1322 {
1323 struct intel_context *intel = &brw->intel;
1324
1325 if (intel->gen >= 5) {
1326 /* Using state base address. */
1327 return prog_offset;
1328 }
1329
1330 drm_intel_bo_emit_reloc(intel->batch.bo,
1331 state_offset,
1332 brw->cache.bo,
1333 prog_offset,
1334 I915_GEM_DOMAIN_INSTRUCTION, 0);
1335
1336 return brw->cache.bo->offset + prog_offset;
1337 }
1338
1339 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1340 bool brw_lower_texture_gradients(struct intel_context *intel,
1341 struct exec_list *instructions);
1342
1343 struct opcode_desc {
1344 char *name;
1345 int nsrc;
1346 int ndst;
1347 };
1348
1349 extern const struct opcode_desc opcode_descs[128];
1350
1351 void
1352 brw_emit_depthbuffer(struct brw_context *brw);
1353
1354 void
1355 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1356 struct intel_mipmap_tree *depth_mt,
1357 uint32_t depth_offset, uint32_t depthbuffer_format,
1358 uint32_t depth_surface_type,
1359 struct intel_mipmap_tree *stencil_mt,
1360 bool hiz, bool separate_stencil,
1361 uint32_t width, uint32_t height,
1362 uint32_t tile_x, uint32_t tile_y);
1363
1364 void
1365 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1366 struct intel_mipmap_tree *depth_mt,
1367 uint32_t depth_offset, uint32_t depthbuffer_format,
1368 uint32_t depth_surface_type,
1369 struct intel_mipmap_tree *stencil_mt,
1370 bool hiz, bool separate_stencil,
1371 uint32_t width, uint32_t height,
1372 uint32_t tile_x, uint32_t tile_y);
1373
1374 #ifdef __cplusplus
1375 }
1376 #endif
1377
1378 #endif