i965: Add support for GL_AMD_performance_monitor on Ironlake.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_vec4_prog_key;
129 struct brw_wm_prog_key;
130 struct brw_wm_prog_data;
131 struct brw_perf_bo_layout;
132
133 enum brw_state_id {
134 BRW_STATE_URB_FENCE,
135 BRW_STATE_FRAGMENT_PROGRAM,
136 BRW_STATE_GEOMETRY_PROGRAM,
137 BRW_STATE_VERTEX_PROGRAM,
138 BRW_STATE_CURBE_OFFSETS,
139 BRW_STATE_REDUCED_PRIMITIVE,
140 BRW_STATE_PRIMITIVE,
141 BRW_STATE_CONTEXT,
142 BRW_STATE_PSP,
143 BRW_STATE_SURFACES,
144 BRW_STATE_VS_BINDING_TABLE,
145 BRW_STATE_GS_BINDING_TABLE,
146 BRW_STATE_PS_BINDING_TABLE,
147 BRW_STATE_INDICES,
148 BRW_STATE_VERTICES,
149 BRW_STATE_BATCH,
150 BRW_STATE_INDEX_BUFFER,
151 BRW_STATE_VS_CONSTBUF,
152 BRW_STATE_GS_CONSTBUF,
153 BRW_STATE_PROGRAM_CACHE,
154 BRW_STATE_STATE_BASE_ADDRESS,
155 BRW_STATE_VUE_MAP_VS,
156 BRW_STATE_VUE_MAP_GEOM_OUT,
157 BRW_STATE_TRANSFORM_FEEDBACK,
158 BRW_STATE_RASTERIZER_DISCARD,
159 BRW_STATE_STATS_WM,
160 BRW_STATE_UNIFORM_BUFFER,
161 BRW_STATE_META_IN_PROGRESS,
162 BRW_STATE_INTERPOLATION_MAP,
163 BRW_STATE_PUSH_CONSTANT_ALLOCATION,
164 BRW_NUM_STATE_BITS
165 };
166
167 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
168 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
169 #define BRW_NEW_GEOMETRY_PROGRAM (1 << BRW_STATE_GEOMETRY_PROGRAM)
170 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
171 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
172 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
173 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
174 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
175 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
176 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
177 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
178 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
179 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
180 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
181 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
182 /**
183 * Used for any batch entry with a relocated pointer that will be used
184 * by any 3D rendering.
185 */
186 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
187 /** \see brw.state.depth_region */
188 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
189 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
190 #define BRW_NEW_GS_CONSTBUF (1 << BRW_STATE_GS_CONSTBUF)
191 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
192 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
193 #define BRW_NEW_VUE_MAP_VS (1 << BRW_STATE_VUE_MAP_VS)
194 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
195 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
196 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
197 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
198 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
199 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
200 #define BRW_NEW_INTERPOLATION_MAP (1 << BRW_STATE_INTERPOLATION_MAP)
201 #define BRW_NEW_PUSH_CONSTANT_ALLOCATION (1 << BRW_STATE_PUSH_CONSTANT_ALLOCATION)
202
203 struct brw_state_flags {
204 /** State update flags signalled by mesa internals */
205 GLuint mesa;
206 /**
207 * State update flags signalled as the result of brw_tracked_state updates
208 */
209 GLuint brw;
210 /** State update flags signalled by brw_state_cache.c searches */
211 GLuint cache;
212 };
213
214 #define AUB_TRACE_TYPE_MASK 0x0000ff00
215 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
216 #define AUB_TRACE_TYPE_BATCH (1 << 8)
217 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
218 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
219 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
220 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
221 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
222 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
223 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
224 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
225 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
226 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
227
228 /**
229 * state_struct_type enum values are encoded with the top 16 bits representing
230 * the type to be delivered to the .aub file, and the bottom 16 bits
231 * representing the subtype. This macro performs the encoding.
232 */
233 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
234
235 enum state_struct_type {
236 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
237 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
238 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
239 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
240 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
241 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
242 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
243 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
244 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
245 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
246 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
247 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
248 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
249
250 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
251 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
252 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
253
254 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
255 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
256 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
257 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
258 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
259 };
260
261 /**
262 * Decode a state_struct_type value to determine the type that should be
263 * stored in the .aub file.
264 */
265 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
266 {
267 return (ss_type & 0xFFFF0000) >> 16;
268 }
269
270 /**
271 * Decode a state_struct_type value to determine the subtype that should be
272 * stored in the .aub file.
273 */
274 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
275 {
276 return ss_type & 0xFFFF;
277 }
278
279 /** Subclass of Mesa vertex program */
280 struct brw_vertex_program {
281 struct gl_vertex_program program;
282 GLuint id;
283 };
284
285
286 /** Subclass of Mesa geometry program */
287 struct brw_geometry_program {
288 struct gl_geometry_program program;
289 unsigned id; /**< serial no. to identify geom progs, never re-used */
290 };
291
292
293 /** Subclass of Mesa fragment program */
294 struct brw_fragment_program {
295 struct gl_fragment_program program;
296 GLuint id; /**< serial no. to identify frag progs, never re-used */
297 };
298
299 struct brw_shader {
300 struct gl_shader base;
301
302 bool compiled_once;
303
304 /** Shader IR transformed for native compile, at link time. */
305 struct exec_list *ir;
306 };
307
308 /* Data about a particular attempt to compile a program. Note that
309 * there can be many of these, each in a different GL state
310 * corresponding to a different brw_wm_prog_key struct, with different
311 * compiled programs.
312 *
313 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
314 * struct!
315 */
316 struct brw_wm_prog_data {
317 GLuint curb_read_length;
318 GLuint num_varying_inputs;
319
320 GLuint first_curbe_grf;
321 GLuint first_curbe_grf_16;
322 GLuint reg_blocks;
323 GLuint reg_blocks_16;
324 GLuint total_scratch;
325
326 unsigned binding_table_size;
327
328 GLuint nr_params; /**< number of float params/constants */
329 GLuint nr_pull_params;
330 bool dual_src_blend;
331 int dispatch_width;
332 uint32_t prog_offset_16;
333
334 /**
335 * Mask of which interpolation modes are required by the fragment shader.
336 * Used in hardware setup on gen6+.
337 */
338 uint32_t barycentric_interp_modes;
339
340 /**
341 * Map from gl_varying_slot to the position within the FS setup data
342 * payload where the varying's attribute vertex deltas should be delivered.
343 * For varying slots that are not used by the FS, the value is -1.
344 */
345 int urb_setup[VARYING_SLOT_MAX];
346
347 /* Pointers to tracked values (only valid once
348 * _mesa_load_state_parameters has been called at runtime).
349 *
350 * These must be the last fields of the struct (see
351 * brw_wm_prog_data_compare()).
352 */
353 const float **param;
354 const float **pull_param;
355 };
356
357 /**
358 * Enum representing the i965-specific vertex results that don't correspond
359 * exactly to any element of gl_varying_slot. The values of this enum are
360 * assigned such that they don't conflict with gl_varying_slot.
361 */
362 typedef enum
363 {
364 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
365 BRW_VARYING_SLOT_PAD,
366 /**
367 * Technically this is not a varying but just a placeholder that
368 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
369 * builtin variable to be compiled correctly. see compile_sf_prog() for
370 * more info.
371 */
372 BRW_VARYING_SLOT_PNTC,
373 BRW_VARYING_SLOT_COUNT
374 } brw_varying_slot;
375
376
377 /**
378 * Data structure recording the relationship between the gl_varying_slot enum
379 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
380 * single octaword within the VUE (128 bits).
381 *
382 * Note that each BRW register contains 256 bits (2 octawords), so when
383 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
384 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
385 * in a vertex shader), each register corresponds to a single VUE slot, since
386 * it contains data for two separate vertices.
387 */
388 struct brw_vue_map {
389 /**
390 * Bitfield representing all varying slots that are (a) stored in this VUE
391 * map, and (b) actually written by the shader. Does not include any of
392 * the additional varying slots defined in brw_varying_slot.
393 */
394 GLbitfield64 slots_valid;
395
396 /**
397 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
398 * not stored in a slot (because they are not written, or because
399 * additional processing is applied before storing them in the VUE), the
400 * value is -1.
401 */
402 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
403
404 /**
405 * Map from VUE slot to gl_varying_slot value. For slots that do not
406 * directly correspond to a gl_varying_slot, the value comes from
407 * brw_varying_slot.
408 *
409 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
410 * simplifies code that uses the value stored in slot_to_varying to
411 * create a bit mask).
412 */
413 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
414
415 /**
416 * Total number of VUE slots in use
417 */
418 int num_slots;
419 };
420
421 /**
422 * Convert a VUE slot number into a byte offset within the VUE.
423 */
424 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
425 {
426 return 16*slot;
427 }
428
429 /**
430 * Convert a vertex output (brw_varying_slot) into a byte offset within the
431 * VUE.
432 */
433 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
434 GLuint varying)
435 {
436 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
437 }
438
439 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
440 GLbitfield64 slots_valid);
441
442
443 /**
444 * Bitmask indicating which fragment shader inputs represent varyings (and
445 * hence have to be delivered to the fragment shader by the SF/SBE stage).
446 */
447 #define BRW_FS_VARYING_INPUT_MASK \
448 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
449 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
450
451
452 /*
453 * Mapping of VUE map slots to interpolation modes.
454 */
455 struct interpolation_mode_map {
456 unsigned char mode[BRW_VARYING_SLOT_COUNT];
457 };
458
459 static inline bool brw_any_flat_varyings(struct interpolation_mode_map *map)
460 {
461 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
462 if (map->mode[i] == INTERP_QUALIFIER_FLAT)
463 return true;
464
465 return false;
466 }
467
468 static inline bool brw_any_noperspective_varyings(struct interpolation_mode_map *map)
469 {
470 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
471 if (map->mode[i] == INTERP_QUALIFIER_NOPERSPECTIVE)
472 return true;
473
474 return false;
475 }
476
477
478 struct brw_sf_prog_data {
479 GLuint urb_read_length;
480 GLuint total_grf;
481
482 /* Each vertex may have upto 12 attributes, 4 components each,
483 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
484 * rows.
485 *
486 * Actually we use 4 for each, so call it 12 rows.
487 */
488 GLuint urb_entry_size;
489 };
490
491
492 /**
493 * We always program SF to start reading at an offset of 1 (2 varying slots)
494 * from the start of the vertex URB entry. This causes it to skip:
495 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
496 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
497 */
498 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
499
500
501 struct brw_clip_prog_data {
502 GLuint curb_read_length; /* user planes? */
503 GLuint clip_mode;
504 GLuint urb_read_length;
505 GLuint total_grf;
506 };
507
508 struct brw_ff_gs_prog_data {
509 GLuint urb_read_length;
510 GLuint total_grf;
511
512 /**
513 * Gen6 transform feedback: Amount by which the streaming vertex buffer
514 * indices should be incremented each time the GS is invoked.
515 */
516 unsigned svbi_postincrement_value;
517 };
518
519
520 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
521 * this struct!
522 */
523 struct brw_vec4_prog_data {
524 struct brw_vue_map vue_map;
525
526 /**
527 * Register where the thread expects to find input data from the URB
528 * (typically uniforms, followed by per-vertex inputs).
529 */
530 unsigned dispatch_grf_start_reg;
531
532 GLuint curb_read_length;
533 GLuint urb_read_length;
534 GLuint total_grf;
535 GLuint nr_params; /**< number of float params/constants */
536 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
537 GLuint total_scratch;
538
539 /* Used for calculating urb partitions. In the VS, this is the size of the
540 * URB entry used for both input and output to the thread. In the GS, this
541 * is the size of the URB entry used for output.
542 */
543 GLuint urb_entry_size;
544
545 unsigned binding_table_size;
546
547 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
548 const float **param;
549 const float **pull_param;
550 };
551
552
553 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
554 * struct!
555 */
556 struct brw_vs_prog_data {
557 struct brw_vec4_prog_data base;
558
559 GLbitfield64 inputs_read;
560
561 bool uses_vertexid;
562 };
563
564
565 /* Note: brw_gs_prog_data_compare() must be updated when adding fields to
566 * this struct!
567 */
568 struct brw_gs_prog_data
569 {
570 struct brw_vec4_prog_data base;
571
572 /**
573 * Size of an output vertex, measured in HWORDS (32 bytes).
574 */
575 unsigned output_vertex_size_hwords;
576
577 unsigned output_topology;
578
579 /**
580 * Size of the control data (cut bits or StreamID bits), in hwords (32
581 * bytes). 0 if there is no control data.
582 */
583 unsigned control_data_header_size_hwords;
584
585 /**
586 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
587 * if the control data is StreamID bits, or
588 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
589 * Ignored if control_data_header_size is 0.
590 */
591 unsigned control_data_format;
592
593 bool include_primitive_id;
594 };
595
596 /** Number of texture sampler units */
597 #define BRW_MAX_TEX_UNIT 16
598
599 /** Max number of render targets in a shader */
600 #define BRW_MAX_DRAW_BUFFERS 8
601
602 /**
603 * Max number of binding table entries used for stream output.
604 *
605 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
606 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
607 *
608 * On Gen6, the size of transform feedback data is limited not by the number
609 * of components but by the number of binding table entries we set aside. We
610 * use one binding table entry for a float, one entry for a vector, and one
611 * entry per matrix column. Since the only way we can communicate our
612 * transform feedback capabilities to the client is via
613 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
614 * worst case, in which all the varyings are floats, so we use up one binding
615 * table entry per component. Therefore we need to set aside at least 64
616 * binding table entries for use by transform feedback.
617 *
618 * Note: since we don't currently pack varyings, it is currently impossible
619 * for the client to actually use up all of these binding table entries--if
620 * all of their varyings were floats, they would run out of varying slots and
621 * fail to link. But that's a bug, so it seems prudent to go ahead and
622 * allocate the number of binding table entries we will need once the bug is
623 * fixed.
624 */
625 #define BRW_MAX_SOL_BINDINGS 64
626
627 /** Maximum number of actual buffers used for stream output */
628 #define BRW_MAX_SOL_BUFFERS 4
629
630 #define BRW_MAX_WM_UBOS 12
631 #define BRW_MAX_VS_UBOS 12
632
633 /**
634 * Helpers to create Surface Binding Table indexes for draw buffers,
635 * textures, and constant buffers.
636 *
637 * Shader threads access surfaces via numeric handles, rather than directly
638 * using pointers. The binding table maps these numeric handles to the
639 * address of the actual buffer.
640 *
641 * For example, a shader might ask to sample from "surface 7." In this case,
642 * bind[7] would contain a pointer to a texture.
643 *
644 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
645 *
646 * +-------------------------------+
647 * | 0 | Draw buffer 0 |
648 * | . | . |
649 * | : | : |
650 * | 7 | Draw buffer 7 |
651 * |-----|-------------------------|
652 * | 8 | WM Pull Constant Buffer |
653 * |-----|-------------------------|
654 * | 9 | Texture 0 |
655 * | . | . |
656 * | : | : |
657 * | 24 | Texture 15 |
658 * |-----|-------------------------|
659 * | 25 | UBO 0 |
660 * | . | . |
661 * | : | : |
662 * | 36 | UBO 11 |
663 * +-------------------------------+
664 *
665 * Our VS (and Gen7 GS) binding tables are programmed as follows:
666 *
667 * +-----+-------------------------+
668 * | 0 | Pull Constant Buffer |
669 * +-----+-------------------------+
670 * | 1 | Texture 0 |
671 * | . | . |
672 * | : | : |
673 * | 16 | Texture 15 |
674 * +-----+-------------------------+
675 * | 17 | UBO 0 |
676 * | . | . |
677 * | : | : |
678 * | 28 | UBO 11 |
679 * +-------------------------------+
680 *
681 * Our (gen6) GS binding tables are programmed as follows:
682 *
683 * +-----+-------------------------+
684 * | 0 | SOL Binding 0 |
685 * | . | . |
686 * | : | : |
687 * | 63 | SOL Binding 63 |
688 * +-----+-------------------------+
689 */
690 #define SURF_INDEX_DRAW(d) (d)
691 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
692 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
693 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
694 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
695 /** Maximum size of the binding table. */
696 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
697
698 #define SURF_INDEX_VEC4_CONST_BUFFER (0)
699 #define SURF_INDEX_VEC4_TEXTURE(t) (SURF_INDEX_VEC4_CONST_BUFFER + 1 + (t))
700 #define SURF_INDEX_VEC4_UBO(u) (SURF_INDEX_VEC4_TEXTURE(BRW_MAX_TEX_UNIT) + u)
701 #define SURF_INDEX_VEC4_SHADER_TIME (SURF_INDEX_VEC4_UBO(12))
702 #define BRW_MAX_VEC4_SURFACES (SURF_INDEX_VEC4_SHADER_TIME + 1)
703
704 #define SURF_INDEX_GEN6_SOL_BINDING(t) (t)
705 #define BRW_MAX_GEN6_GS_SURFACES SURF_INDEX_GEN6_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
706
707 /**
708 * Stride in bytes between shader_time entries.
709 *
710 * We separate entries by a cacheline to reduce traffic between EUs writing to
711 * different entries.
712 */
713 #define SHADER_TIME_STRIDE 64
714
715 enum brw_cache_id {
716 BRW_CC_VP,
717 BRW_CC_UNIT,
718 BRW_WM_PROG,
719 BRW_BLORP_BLIT_PROG,
720 BRW_BLORP_CONST_COLOR_PROG,
721 BRW_SAMPLER,
722 BRW_WM_UNIT,
723 BRW_SF_PROG,
724 BRW_SF_VP,
725 BRW_SF_UNIT, /* scissor state on gen6 */
726 BRW_VS_UNIT,
727 BRW_VS_PROG,
728 BRW_FF_GS_UNIT,
729 BRW_FF_GS_PROG,
730 BRW_GS_PROG,
731 BRW_CLIP_VP,
732 BRW_CLIP_UNIT,
733 BRW_CLIP_PROG,
734
735 BRW_MAX_CACHE
736 };
737
738 struct brw_cache_item {
739 /**
740 * Effectively part of the key, cache_id identifies what kind of state
741 * buffer is involved, and also which brw->state.dirty.cache flag should
742 * be set when this cache item is chosen.
743 */
744 enum brw_cache_id cache_id;
745 /** 32-bit hash of the key data */
746 GLuint hash;
747 GLuint key_size; /* for variable-sized keys */
748 GLuint aux_size;
749 const void *key;
750
751 uint32_t offset;
752 uint32_t size;
753
754 struct brw_cache_item *next;
755 };
756
757
758 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
759 int aux_size, const void *key);
760 typedef void (*cache_aux_free_func)(const void *aux);
761
762 struct brw_cache {
763 struct brw_context *brw;
764
765 struct brw_cache_item **items;
766 drm_intel_bo *bo;
767 GLuint size, n_items;
768
769 uint32_t next_offset;
770 bool bo_used_by_gpu;
771
772 /**
773 * Optional functions used in determining whether the prog_data for a new
774 * cache item matches an existing cache item (in case there's relevant data
775 * outside of the prog_data). If NULL, a plain memcmp is done.
776 */
777 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
778 /** Optional functions for freeing other pointers attached to a prog_data. */
779 cache_aux_free_func aux_free[BRW_MAX_CACHE];
780 };
781
782
783 /* Considered adding a member to this struct to document which flags
784 * an update might raise so that ordering of the state atoms can be
785 * checked or derived at runtime. Dropped the idea in favor of having
786 * a debug mode where the state is monitored for flags which are
787 * raised that have already been tested against.
788 */
789 struct brw_tracked_state {
790 struct brw_state_flags dirty;
791 void (*emit)( struct brw_context *brw );
792 };
793
794 enum shader_time_shader_type {
795 ST_NONE,
796 ST_VS,
797 ST_VS_WRITTEN,
798 ST_VS_RESET,
799 ST_FS8,
800 ST_FS8_WRITTEN,
801 ST_FS8_RESET,
802 ST_FS16,
803 ST_FS16_WRITTEN,
804 ST_FS16_RESET,
805 };
806
807 /* Flags for brw->state.cache.
808 */
809 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
810 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
811 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
812 #define CACHE_NEW_BLORP_BLIT_PROG (1<<BRW_BLORP_BLIT_PROG)
813 #define CACHE_NEW_BLORP_CONST_COLOR_PROG (1<<BRW_BLORP_CONST_COLOR_PROG)
814 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
815 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
816 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
817 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
818 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
819 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
820 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
821 #define CACHE_NEW_FF_GS_UNIT (1<<BRW_FF_GS_UNIT)
822 #define CACHE_NEW_FF_GS_PROG (1<<BRW_FF_GS_PROG)
823 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
824 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
825 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
826 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
827
828 struct brw_cached_batch_item {
829 struct header *header;
830 GLuint sz;
831 struct brw_cached_batch_item *next;
832 };
833
834 struct brw_vertex_buffer {
835 /** Buffer object containing the uploaded vertex data */
836 drm_intel_bo *bo;
837 uint32_t offset;
838 /** Byte stride between elements in the uploaded array */
839 GLuint stride;
840 GLuint step_rate;
841 };
842 struct brw_vertex_element {
843 const struct gl_client_array *glarray;
844
845 int buffer;
846
847 /** The corresponding Mesa vertex attribute */
848 gl_vert_attrib attrib;
849 /** Offset of the first element within the buffer object */
850 unsigned int offset;
851 };
852
853 struct brw_query_object {
854 struct gl_query_object Base;
855
856 /** Last query BO associated with this query. */
857 drm_intel_bo *bo;
858
859 /** Last index in bo with query data for this object. */
860 int last_index;
861 };
862
863
864 /**
865 * Data shared between brw_context::vs and brw_context::gs
866 */
867 struct brw_stage_state
868 {
869 /**
870 * Optional scratch buffer used to store spilled register values and
871 * variably-indexed GRF arrays.
872 */
873 drm_intel_bo *scratch_bo;
874
875 /** Pull constant buffer */
876 drm_intel_bo *const_bo;
877
878 /** Offset in the program cache to the program */
879 uint32_t prog_offset;
880
881 /** Offset in the batchbuffer to Gen4-5 pipelined state (VS/WM/GS_STATE). */
882 uint32_t state_offset;
883
884 uint32_t push_const_offset; /* Offset in the batchbuffer */
885 int push_const_size; /* in 256-bit register increments */
886
887 /* Binding table: pointers to SURFACE_STATE entries. */
888 uint32_t bind_bo_offset;
889 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
890
891 /** SAMPLER_STATE count and table offset */
892 uint32_t sampler_count;
893 uint32_t sampler_offset;
894
895 /** Offsets in the batch to sampler default colors (texture border color) */
896 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
897 };
898
899
900 /**
901 * brw_context is derived from gl_context.
902 */
903 struct brw_context
904 {
905 struct gl_context ctx; /**< base class, must be first field */
906
907 struct
908 {
909 void (*destroy) (struct brw_context * brw);
910 void (*finish_batch) (struct brw_context * brw);
911 void (*new_batch) (struct brw_context * brw);
912
913 void (*update_texture_surface)(struct gl_context *ctx,
914 unsigned unit,
915 uint32_t *surf_offset);
916 void (*update_renderbuffer_surface)(struct brw_context *brw,
917 struct gl_renderbuffer *rb,
918 bool layered,
919 unsigned unit);
920 void (*update_null_renderbuffer_surface)(struct brw_context *brw,
921 unsigned unit);
922 void (*create_constant_surface)(struct brw_context *brw,
923 drm_intel_bo *bo,
924 uint32_t offset,
925 uint32_t size,
926 uint32_t *out_offset,
927 bool dword_pitch);
928
929 /** Upload a SAMPLER_STATE table. */
930 void (*upload_sampler_state_table)(struct brw_context *brw,
931 struct gl_program *prog,
932 uint32_t sampler_count,
933 uint32_t *sst_offset,
934 uint32_t *sdc_offset);
935
936 /**
937 * Send the appropriate state packets to configure depth, stencil, and
938 * HiZ buffers (i965+ only)
939 */
940 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
941 struct intel_mipmap_tree *depth_mt,
942 uint32_t depth_offset,
943 uint32_t depthbuffer_format,
944 uint32_t depth_surface_type,
945 struct intel_mipmap_tree *stencil_mt,
946 bool hiz, bool separate_stencil,
947 uint32_t width, uint32_t height,
948 uint32_t tile_x, uint32_t tile_y);
949
950 } vtbl;
951
952 dri_bufmgr *bufmgr;
953
954 drm_intel_context *hw_ctx;
955
956 struct intel_batchbuffer batch;
957 bool no_batch_wrap;
958
959 struct {
960 drm_intel_bo *bo;
961 GLuint offset;
962 uint32_t buffer_len;
963 uint32_t buffer_offset;
964 char buffer[4096];
965 } upload;
966
967 /**
968 * Set if rendering has occured to the drawable's front buffer.
969 *
970 * This is used in the DRI2 case to detect that glFlush should also copy
971 * the contents of the fake front buffer to the real front buffer.
972 */
973 bool front_buffer_dirty;
974
975 /**
976 * Track whether front-buffer rendering is currently enabled
977 *
978 * A separate flag is used to track this in order to support MRT more
979 * easily.
980 */
981 bool is_front_buffer_rendering;
982
983 /**
984 * Track whether front-buffer is the current read target.
985 *
986 * This is closely associated with is_front_buffer_rendering, but may
987 * be set separately. The DRI2 fake front buffer must be referenced
988 * either way.
989 */
990 bool is_front_buffer_reading;
991
992 /** Framerate throttling: @{ */
993 drm_intel_bo *first_post_swapbuffers_batch;
994 bool need_throttle;
995 /** @} */
996
997 GLuint stats_wm;
998
999 /**
1000 * drirc options:
1001 * @{
1002 */
1003 bool no_rast;
1004 bool always_flush_batch;
1005 bool always_flush_cache;
1006 bool disable_throttling;
1007 bool precompile;
1008
1009 driOptionCache optionCache;
1010 /** @} */
1011
1012 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
1013
1014 GLenum reduced_primitive;
1015
1016 /**
1017 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
1018 * variable is set, this is the flag indicating to do expensive work that
1019 * might lead to a perf_debug() call.
1020 */
1021 bool perf_debug;
1022
1023 uint32_t max_gtt_map_object_size;
1024
1025 bool emit_state_always;
1026
1027 int gen;
1028 int gt;
1029
1030 bool is_g4x;
1031 bool is_baytrail;
1032 bool is_haswell;
1033
1034 bool has_hiz;
1035 bool has_separate_stencil;
1036 bool must_use_separate_stencil;
1037 bool has_llc;
1038 bool has_swizzling;
1039 bool has_surface_tile_offset;
1040 bool has_compr4;
1041 bool has_negative_rhw_bug;
1042 bool has_aa_line_parameters;
1043 bool has_pln;
1044
1045 /**
1046 * Some versions of Gen hardware don't do centroid interpolation correctly
1047 * on unlit pixels, causing incorrect values for derivatives near triangle
1048 * edges. Enabling this flag causes the fragment shader to use
1049 * non-centroid interpolation for unlit pixels, at the expense of two extra
1050 * fragment shader instructions.
1051 */
1052 bool needs_unlit_centroid_workaround;
1053
1054 GLuint NewGLState;
1055 struct {
1056 struct brw_state_flags dirty;
1057 } state;
1058
1059 struct brw_cache cache;
1060 struct brw_cached_batch_item *cached_batch_items;
1061
1062 /* Whether a meta-operation is in progress. */
1063 bool meta_in_progress;
1064
1065 struct {
1066 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
1067 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
1068
1069 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
1070 GLuint nr_enabled;
1071 GLuint nr_buffers;
1072
1073 /* Summary of size and varying of active arrays, so we can check
1074 * for changes to this state:
1075 */
1076 unsigned int min_index, max_index;
1077
1078 /* Offset from start of vertex buffer so we can avoid redefining
1079 * the same VB packed over and over again.
1080 */
1081 unsigned int start_vertex_bias;
1082 } vb;
1083
1084 struct {
1085 /**
1086 * Index buffer for this draw_prims call.
1087 *
1088 * Updates are signaled by BRW_NEW_INDICES.
1089 */
1090 const struct _mesa_index_buffer *ib;
1091
1092 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
1093 drm_intel_bo *bo;
1094 GLuint type;
1095
1096 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
1097 * avoid re-uploading the IB packet over and over if we're actually
1098 * referencing the same index buffer.
1099 */
1100 unsigned int start_vertex_offset;
1101 } ib;
1102
1103 /* Active vertex program:
1104 */
1105 const struct gl_vertex_program *vertex_program;
1106 const struct gl_geometry_program *geometry_program;
1107 const struct gl_fragment_program *fragment_program;
1108
1109 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
1110 uint32_t CMD_VF_STATISTICS;
1111 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
1112 uint32_t CMD_PIPELINE_SELECT;
1113
1114 /**
1115 * Platform specific constants containing the maximum number of threads
1116 * for each pipeline stage.
1117 */
1118 int max_vs_threads;
1119 int max_gs_threads;
1120 int max_wm_threads;
1121
1122 /* BRW_NEW_URB_ALLOCATIONS:
1123 */
1124 struct {
1125 GLuint vsize; /* vertex size plus header in urb registers */
1126 GLuint csize; /* constant buffer size in urb registers */
1127 GLuint sfsize; /* setup data size in urb registers */
1128
1129 bool constrained;
1130
1131 GLuint min_vs_entries; /* Minimum number of VS entries */
1132 GLuint max_vs_entries; /* Maximum number of VS entries */
1133 GLuint max_gs_entries; /* Maximum number of GS entries */
1134
1135 GLuint nr_vs_entries;
1136 GLuint nr_gs_entries;
1137 GLuint nr_clip_entries;
1138 GLuint nr_sf_entries;
1139 GLuint nr_cs_entries;
1140
1141 GLuint vs_start;
1142 GLuint gs_start;
1143 GLuint clip_start;
1144 GLuint sf_start;
1145 GLuint cs_start;
1146 GLuint size; /* Hardware URB size, in KB. */
1147
1148 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
1149 * URB space for the GS.
1150 */
1151 bool gen6_gs_previously_active;
1152 } urb;
1153
1154
1155 /* BRW_NEW_CURBE_OFFSETS:
1156 */
1157 struct {
1158 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
1159 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
1160 GLuint clip_start;
1161 GLuint clip_size;
1162 GLuint vs_start;
1163 GLuint vs_size;
1164 GLuint total_size;
1165
1166 drm_intel_bo *curbe_bo;
1167 /** Offset within curbe_bo of space for current curbe entry */
1168 GLuint curbe_offset;
1169 /** Offset within curbe_bo of space for next curbe entry */
1170 GLuint curbe_next_offset;
1171
1172 /**
1173 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
1174 * in brw_curbe.c with the same set of constant data to be uploaded,
1175 * so we'd rather not upload new constants in that case (it can cause
1176 * a pipeline bubble since only up to 4 can be pipelined at a time).
1177 */
1178 GLfloat *last_buf;
1179 /**
1180 * Allocation for where to calculate the next set of CURBEs.
1181 * It's a hot enough path that malloc/free of that data matters.
1182 */
1183 GLfloat *next_buf;
1184 GLuint last_bufsz;
1185 } curbe;
1186
1187 /**
1188 * Layout of vertex data exiting the vertex shader.
1189 *
1190 * BRW_NEW_VUE_MAP_VS is flagged when this VUE map changes.
1191 */
1192 struct brw_vue_map vue_map_vs;
1193
1194 /**
1195 * Layout of vertex data exiting the geometry portion of the pipleine.
1196 * This comes from the geometry shader if one exists, otherwise from the
1197 * vertex shader.
1198 *
1199 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1200 */
1201 struct brw_vue_map vue_map_geom_out;
1202
1203 /**
1204 * Data structures used by all vec4 program compiles (not specific to any
1205 * particular program).
1206 */
1207 struct {
1208 struct ra_regs *regs;
1209
1210 /**
1211 * Array of the ra classes for the unaligned contiguous register
1212 * block sizes used.
1213 */
1214 int *classes;
1215
1216 /**
1217 * Mapping for register-allocated objects in *regs to the first
1218 * GRF for that object.
1219 */
1220 uint8_t *ra_reg_to_grf;
1221 } vec4;
1222
1223 struct {
1224 struct brw_stage_state base;
1225 struct brw_vs_prog_data *prog_data;
1226 } vs;
1227
1228 struct {
1229 struct brw_stage_state base;
1230 struct brw_gs_prog_data *prog_data;
1231 } gs;
1232
1233 struct {
1234 struct brw_ff_gs_prog_data *prog_data;
1235
1236 bool prog_active;
1237 /** Offset in the program cache to the CLIP program pre-gen6 */
1238 uint32_t prog_offset;
1239 uint32_t state_offset;
1240
1241 uint32_t bind_bo_offset;
1242 uint32_t surf_offset[BRW_MAX_GEN6_GS_SURFACES];
1243 } ff_gs;
1244
1245 struct {
1246 struct brw_clip_prog_data *prog_data;
1247
1248 /** Offset in the program cache to the CLIP program pre-gen6 */
1249 uint32_t prog_offset;
1250
1251 /* Offset in the batch to the CLIP state on pre-gen6. */
1252 uint32_t state_offset;
1253
1254 /* As of gen6, this is the offset in the batch to the CLIP VP,
1255 * instead of vp_bo.
1256 */
1257 uint32_t vp_offset;
1258 } clip;
1259
1260
1261 struct {
1262 struct brw_sf_prog_data *prog_data;
1263
1264 /** Offset in the program cache to the CLIP program pre-gen6 */
1265 uint32_t prog_offset;
1266 uint32_t state_offset;
1267 uint32_t vp_offset;
1268 } sf;
1269
1270 struct {
1271 struct brw_stage_state base;
1272 struct brw_wm_prog_data *prog_data;
1273
1274 GLuint render_surf;
1275
1276 /**
1277 * Buffer object used in place of multisampled null render targets on
1278 * Gen6. See brw_update_null_renderbuffer_surface().
1279 */
1280 drm_intel_bo *multisampled_null_render_target_bo;
1281
1282 struct {
1283 struct ra_regs *regs;
1284
1285 /** Array of the ra classes for the unaligned contiguous
1286 * register block sizes used.
1287 */
1288 int *classes;
1289
1290 /**
1291 * Mapping for register-allocated objects in *regs to the first
1292 * GRF for that object.
1293 */
1294 uint8_t *ra_reg_to_grf;
1295
1296 /**
1297 * ra class for the aligned pairs we use for PLN, which doesn't
1298 * appear in *classes.
1299 */
1300 int aligned_pairs_class;
1301 } reg_sets[2];
1302 } wm;
1303
1304
1305 struct {
1306 uint32_t state_offset;
1307 uint32_t blend_state_offset;
1308 uint32_t depth_stencil_state_offset;
1309 uint32_t vp_offset;
1310 } cc;
1311
1312 struct {
1313 struct brw_query_object *obj;
1314 bool begin_emitted;
1315 } query;
1316
1317 struct {
1318 /* A map describing which counters are stored at a particular 32-bit
1319 * offset in the buffer object.
1320 */
1321 const struct brw_perf_bo_layout *bo_layout;
1322
1323 /* Number of 32-bit entries in the buffer object. */
1324 int entries_in_bo;
1325 } perfmon;
1326
1327 int num_atoms;
1328 const struct brw_tracked_state **atoms;
1329
1330 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1331 struct {
1332 uint32_t offset;
1333 uint32_t size;
1334 enum state_struct_type type;
1335 } *state_batch_list;
1336 int state_batch_count;
1337
1338 uint32_t render_target_format[MESA_FORMAT_COUNT];
1339 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1340
1341 /* Interpolation modes, one byte per vue slot.
1342 * Used Gen4/5 by the clip|sf|wm stages. Ignored on Gen6+.
1343 */
1344 struct interpolation_mode_map interpolation_mode;
1345
1346 /* PrimitiveRestart */
1347 struct {
1348 bool in_progress;
1349 bool enable_cut_index;
1350 } prim_restart;
1351
1352 /** Computed depth/stencil/hiz state from the current attached
1353 * renderbuffers, valid only during the drawing state upload loop after
1354 * brw_workaround_depthstencil_alignment().
1355 */
1356 struct {
1357 struct intel_mipmap_tree *depth_mt;
1358 struct intel_mipmap_tree *stencil_mt;
1359
1360 /* Inter-tile (page-aligned) byte offsets. */
1361 uint32_t depth_offset, hiz_offset, stencil_offset;
1362 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1363 uint32_t tile_x, tile_y;
1364 } depthstencil;
1365
1366 uint32_t num_instances;
1367 int basevertex;
1368
1369 struct {
1370 drm_intel_bo *bo;
1371 struct gl_shader_program **shader_programs;
1372 struct gl_program **programs;
1373 enum shader_time_shader_type *types;
1374 uint64_t *cumulative;
1375 int num_entries;
1376 int max_entries;
1377 double report_time;
1378 } shader_time;
1379
1380 __DRIcontext *driContext;
1381 struct intel_screen *intelScreen;
1382 void (*saved_viewport)(struct gl_context *ctx,
1383 GLint x, GLint y, GLsizei width, GLsizei height);
1384 };
1385
1386 /*======================================================================
1387 * brw_vtbl.c
1388 */
1389 void brwInitVtbl( struct brw_context *brw );
1390
1391 /*======================================================================
1392 * brw_context.c
1393 */
1394 bool brwCreateContext(int api,
1395 const struct gl_config *mesaVis,
1396 __DRIcontext *driContextPriv,
1397 unsigned major_version,
1398 unsigned minor_version,
1399 uint32_t flags,
1400 unsigned *error,
1401 void *sharedContextPrivate);
1402
1403 /*======================================================================
1404 * brw_misc_state.c
1405 */
1406 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1407 uint32_t depth_level,
1408 uint32_t depth_layer,
1409 struct intel_mipmap_tree *stencil_mt,
1410 uint32_t *out_tile_mask_x,
1411 uint32_t *out_tile_mask_y);
1412 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1413 GLbitfield clear_mask);
1414
1415 /* brw_object_purgeable.c */
1416 void brw_init_object_purgeable_functions(struct dd_function_table *functions);
1417
1418 /*======================================================================
1419 * brw_queryobj.c
1420 */
1421 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1422 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1423 void brw_emit_query_begin(struct brw_context *brw);
1424 void brw_emit_query_end(struct brw_context *brw);
1425
1426 /** gen6_queryobj.c */
1427 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1428
1429 /*======================================================================
1430 * brw_state_dump.c
1431 */
1432 void brw_debug_batch(struct brw_context *brw);
1433 void brw_annotate_aub(struct brw_context *brw);
1434
1435 /*======================================================================
1436 * brw_tex.c
1437 */
1438 void brw_validate_textures( struct brw_context *brw );
1439
1440
1441 /*======================================================================
1442 * brw_program.c
1443 */
1444 void brwInitFragProgFuncs( struct dd_function_table *functions );
1445
1446 int brw_get_scratch_size(int size);
1447 void brw_get_scratch_bo(struct brw_context *brw,
1448 drm_intel_bo **scratch_bo, int size);
1449 void brw_init_shader_time(struct brw_context *brw);
1450 int brw_get_shader_time_index(struct brw_context *brw,
1451 struct gl_shader_program *shader_prog,
1452 struct gl_program *prog,
1453 enum shader_time_shader_type type);
1454 void brw_collect_and_report_shader_time(struct brw_context *brw);
1455 void brw_destroy_shader_time(struct brw_context *brw);
1456
1457 /* brw_urb.c
1458 */
1459 void brw_upload_urb_fence(struct brw_context *brw);
1460
1461 /* brw_curbe.c
1462 */
1463 void brw_upload_cs_urb_state(struct brw_context *brw);
1464
1465 /* brw_fs_reg_allocate.cpp
1466 */
1467 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1468
1469 /* brw_vec4_reg_allocate.cpp */
1470 void brw_vec4_alloc_reg_set(struct brw_context *brw);
1471
1472 /* brw_disasm.c */
1473 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1474
1475 /* brw_vs.c */
1476 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1477
1478 /* brw_draw_upload.c */
1479 unsigned brw_get_vertex_surface_type(struct brw_context *brw,
1480 const struct gl_client_array *glarray);
1481 unsigned brw_get_index_type(GLenum type);
1482
1483 /* brw_wm_surface_state.c */
1484 void brw_init_surface_formats(struct brw_context *brw);
1485 void
1486 brw_update_sol_surface(struct brw_context *brw,
1487 struct gl_buffer_object *buffer_obj,
1488 uint32_t *out_offset, unsigned num_vector_components,
1489 unsigned stride_dwords, unsigned offset_dwords);
1490 void brw_upload_ubo_surfaces(struct brw_context *brw,
1491 struct gl_shader *shader,
1492 uint32_t *surf_offsets);
1493
1494 /* brw_surface_formats.c */
1495 bool brw_is_hiz_depth_format(struct brw_context *ctx, gl_format format);
1496 bool brw_render_target_supported(struct brw_context *brw,
1497 struct gl_renderbuffer *rb);
1498
1499 /* brw_performance_monitor.c */
1500 void brw_init_performance_monitors(struct brw_context *brw);
1501
1502 /* gen6_sol.c */
1503 void
1504 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1505 struct gl_transform_feedback_object *obj);
1506 void
1507 brw_end_transform_feedback(struct gl_context *ctx,
1508 struct gl_transform_feedback_object *obj);
1509
1510 /* gen7_sol_state.c */
1511 void
1512 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1513 struct gl_transform_feedback_object *obj);
1514 void
1515 gen7_end_transform_feedback(struct gl_context *ctx,
1516 struct gl_transform_feedback_object *obj);
1517
1518 /* brw_blorp_blit.cpp */
1519 GLbitfield
1520 brw_blorp_framebuffer(struct brw_context *brw,
1521 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1522 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1523 GLbitfield mask, GLenum filter);
1524
1525 bool
1526 brw_blorp_copytexsubimage(struct brw_context *brw,
1527 struct gl_renderbuffer *src_rb,
1528 struct gl_texture_image *dst_image,
1529 int slice,
1530 int srcX0, int srcY0,
1531 int dstX0, int dstY0,
1532 int width, int height);
1533
1534 /* gen6_multisample_state.c */
1535 void
1536 gen6_emit_3dstate_multisample(struct brw_context *brw,
1537 unsigned num_samples);
1538 void
1539 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1540 unsigned num_samples, float coverage,
1541 bool coverage_invert, unsigned sample_mask);
1542 void
1543 gen6_get_sample_position(struct gl_context *ctx,
1544 struct gl_framebuffer *fb,
1545 GLuint index,
1546 GLfloat *result);
1547
1548 /* gen7_urb.c */
1549 void
1550 gen7_emit_push_constant_state(struct brw_context *brw, unsigned vs_size,
1551 unsigned gs_size, unsigned fs_size);
1552
1553 void
1554 gen7_emit_urb_state(struct brw_context *brw,
1555 unsigned nr_vs_entries, unsigned vs_size,
1556 unsigned vs_start, unsigned nr_gs_entries,
1557 unsigned gs_size, unsigned gs_start);
1558
1559
1560
1561 /*======================================================================
1562 * Inline conversion functions. These are better-typed than the
1563 * macros used previously:
1564 */
1565 static INLINE struct brw_context *
1566 brw_context( struct gl_context *ctx )
1567 {
1568 return (struct brw_context *)ctx;
1569 }
1570
1571 static INLINE struct brw_vertex_program *
1572 brw_vertex_program(struct gl_vertex_program *p)
1573 {
1574 return (struct brw_vertex_program *) p;
1575 }
1576
1577 static INLINE const struct brw_vertex_program *
1578 brw_vertex_program_const(const struct gl_vertex_program *p)
1579 {
1580 return (const struct brw_vertex_program *) p;
1581 }
1582
1583 static INLINE struct brw_fragment_program *
1584 brw_fragment_program(struct gl_fragment_program *p)
1585 {
1586 return (struct brw_fragment_program *) p;
1587 }
1588
1589 static INLINE const struct brw_fragment_program *
1590 brw_fragment_program_const(const struct gl_fragment_program *p)
1591 {
1592 return (const struct brw_fragment_program *) p;
1593 }
1594
1595 /**
1596 * Pre-gen6, the register file of the EUs was shared between threads,
1597 * and each thread used some subset allocated on a 16-register block
1598 * granularity. The unit states wanted these block counts.
1599 */
1600 static inline int
1601 brw_register_blocks(int reg_count)
1602 {
1603 return ALIGN(reg_count, 16) / 16 - 1;
1604 }
1605
1606 static inline uint32_t
1607 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1608 uint32_t prog_offset)
1609 {
1610 if (brw->gen >= 5) {
1611 /* Using state base address. */
1612 return prog_offset;
1613 }
1614
1615 drm_intel_bo_emit_reloc(brw->batch.bo,
1616 state_offset,
1617 brw->cache.bo,
1618 prog_offset,
1619 I915_GEM_DOMAIN_INSTRUCTION, 0);
1620
1621 return brw->cache.bo->offset + prog_offset;
1622 }
1623
1624 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1625 bool brw_lower_texture_gradients(struct brw_context *brw,
1626 struct exec_list *instructions);
1627
1628 struct opcode_desc {
1629 char *name;
1630 int nsrc;
1631 int ndst;
1632 };
1633
1634 extern const struct opcode_desc opcode_descs[128];
1635
1636 void
1637 brw_emit_depthbuffer(struct brw_context *brw);
1638
1639 void
1640 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1641 struct intel_mipmap_tree *depth_mt,
1642 uint32_t depth_offset, uint32_t depthbuffer_format,
1643 uint32_t depth_surface_type,
1644 struct intel_mipmap_tree *stencil_mt,
1645 bool hiz, bool separate_stencil,
1646 uint32_t width, uint32_t height,
1647 uint32_t tile_x, uint32_t tile_y);
1648
1649 void
1650 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1651 struct intel_mipmap_tree *depth_mt,
1652 uint32_t depth_offset, uint32_t depthbuffer_format,
1653 uint32_t depth_surface_type,
1654 struct intel_mipmap_tree *stencil_mt,
1655 bool hiz, bool separate_stencil,
1656 uint32_t width, uint32_t height,
1657 uint32_t tile_x, uint32_t tile_y);
1658
1659 extern const GLuint prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1];
1660
1661 void
1662 brw_setup_vec4_key_clip_info(struct brw_context *brw,
1663 struct brw_vec4_prog_key *key,
1664 bool program_uses_clip_distance);
1665
1666 void
1667 gen6_upload_vec4_push_constants(struct brw_context *brw,
1668 const struct gl_program *prog,
1669 const struct brw_vec4_prog_data *prog_data,
1670 struct brw_stage_state *stage_state,
1671 enum state_struct_type type);
1672
1673 #ifdef __cplusplus
1674 }
1675 #endif
1676
1677 #endif