i965: Add support for gl_VertexID and gl_InstanceID.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122
123 enum brw_state_id {
124 BRW_STATE_URB_FENCE,
125 BRW_STATE_FRAGMENT_PROGRAM,
126 BRW_STATE_VERTEX_PROGRAM,
127 BRW_STATE_INPUT_DIMENSIONS,
128 BRW_STATE_CURBE_OFFSETS,
129 BRW_STATE_REDUCED_PRIMITIVE,
130 BRW_STATE_PRIMITIVE,
131 BRW_STATE_CONTEXT,
132 BRW_STATE_WM_INPUT_DIMENSIONS,
133 BRW_STATE_PSP,
134 BRW_STATE_WM_SURFACES,
135 BRW_STATE_VS_BINDING_TABLE,
136 BRW_STATE_GS_BINDING_TABLE,
137 BRW_STATE_PS_BINDING_TABLE,
138 BRW_STATE_INDICES,
139 BRW_STATE_VERTICES,
140 BRW_STATE_BATCH,
141 BRW_STATE_NR_WM_SURFACES,
142 BRW_STATE_NR_VS_SURFACES,
143 BRW_STATE_INDEX_BUFFER,
144 BRW_STATE_VS_CONSTBUF,
145 BRW_STATE_PROGRAM_CACHE,
146 BRW_STATE_STATE_BASE_ADDRESS,
147 };
148
149 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
150 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
151 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
152 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
153 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
154 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
155 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
156 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
157 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
158 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
159 #define BRW_NEW_WM_SURFACES (1 << BRW_STATE_WM_SURFACES)
160 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
161 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
162 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
163 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
164 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
165 /**
166 * Used for any batch entry with a relocated pointer that will be used
167 * by any 3D rendering.
168 */
169 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
170 /** \see brw.state.depth_region */
171 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
172 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
173 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
174 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
175
176 struct brw_state_flags {
177 /** State update flags signalled by mesa internals */
178 GLuint mesa;
179 /**
180 * State update flags signalled as the result of brw_tracked_state updates
181 */
182 GLuint brw;
183 /** State update flags signalled by brw_state_cache.c searches */
184 GLuint cache;
185 };
186
187 enum state_struct_type {
188 AUB_TRACE_VS_STATE = 1,
189 AUB_TRACE_GS_STATE = 2,
190 AUB_TRACE_CLIP_STATE = 3,
191 AUB_TRACE_SF_STATE = 4,
192 AUB_TRACE_WM_STATE = 5,
193 AUB_TRACE_CC_STATE = 6,
194 AUB_TRACE_CLIP_VP_STATE = 7,
195 AUB_TRACE_SF_VP_STATE = 8,
196 AUB_TRACE_CC_VP_STATE = 0x9,
197 AUB_TRACE_SAMPLER_STATE = 0xa,
198 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
199 AUB_TRACE_SCRATCH_SPACE = 0xc,
200 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
201
202 AUB_TRACE_SCISSOR_STATE = 0x15,
203 AUB_TRACE_BLEND_STATE = 0x16,
204 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
205
206 /* Not written to .aub files the same way the structures above are. */
207 AUB_TRACE_NO_TYPE = 0x100,
208 AUB_TRACE_BINDING_TABLE = 0x101,
209 AUB_TRACE_SURFACE_STATE = 0x102,
210 AUB_TRACE_VS_CONSTANTS = 0x103,
211 AUB_TRACE_WM_CONSTANTS = 0x104,
212 };
213
214 /** Subclass of Mesa vertex program */
215 struct brw_vertex_program {
216 struct gl_vertex_program program;
217 GLuint id;
218 bool use_const_buffer;
219 };
220
221
222 /** Subclass of Mesa fragment program */
223 struct brw_fragment_program {
224 struct gl_fragment_program program;
225 GLuint id; /**< serial no. to identify frag progs, never re-used */
226 };
227
228 struct brw_shader {
229 struct gl_shader base;
230
231 /** Shader IR transformed for native compile, at link time. */
232 struct exec_list *ir;
233 };
234
235 struct brw_shader_program {
236 struct gl_shader_program base;
237 };
238
239 enum param_conversion {
240 PARAM_NO_CONVERT,
241 PARAM_CONVERT_F2I,
242 PARAM_CONVERT_F2U,
243 PARAM_CONVERT_F2B,
244 PARAM_CONVERT_ZERO,
245 };
246
247 /* Data about a particular attempt to compile a program. Note that
248 * there can be many of these, each in a different GL state
249 * corresponding to a different brw_wm_prog_key struct, with different
250 * compiled programs:
251 */
252 struct brw_wm_prog_data {
253 GLuint curb_read_length;
254 GLuint urb_read_length;
255
256 GLuint first_curbe_grf;
257 GLuint first_curbe_grf_16;
258 GLuint reg_blocks;
259 GLuint reg_blocks_16;
260 GLuint total_scratch;
261
262 GLuint nr_params; /**< number of float params/constants */
263 GLuint nr_pull_params;
264 bool error;
265 int dispatch_width;
266 uint32_t prog_offset_16;
267
268 /* Pointer to tracked values (only valid once
269 * _mesa_load_state_parameters has been called at runtime).
270 */
271 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
272 enum param_conversion param_convert[MAX_UNIFORMS * 4];
273 const float *pull_param[MAX_UNIFORMS * 4];
274 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
275 };
276
277 /**
278 * Enum representing the i965-specific vertex results that don't correspond
279 * exactly to any element of gl_vert_result. The values of this enum are
280 * assigned such that they don't conflict with gl_vert_result.
281 */
282 typedef enum
283 {
284 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
285 BRW_VERT_RESULT_HPOS_DUPLICATE,
286 BRW_VERT_RESULT_PAD,
287 BRW_VERT_RESULT_MAX
288 } brw_vert_result;
289
290
291 /**
292 * Data structure recording the relationship between the gl_vert_result enum
293 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
294 * single octaword within the VUE (128 bits).
295 *
296 * Note that each BRW register contains 256 bits (2 octawords), so when
297 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
298 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
299 * in a vertex shader), each register corresponds to a single VUE slot, since
300 * it contains data for two separate vertices.
301 */
302 struct brw_vue_map {
303 /**
304 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
305 * not stored in a slot (because they are not written, or because
306 * additional processing is applied before storing them in the VUE), the
307 * value is -1.
308 */
309 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
310
311 /**
312 * Map from VUE slot to gl_vert_result value. For slots that do not
313 * directly correspond to a gl_vert_result, the value comes from
314 * brw_vert_result.
315 *
316 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
317 * simplifies code that uses the value stored in slot_to_vert_result to
318 * create a bit mask).
319 */
320 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
321
322 /**
323 * Total number of VUE slots in use
324 */
325 int num_slots;
326 };
327
328 /**
329 * Convert a VUE slot number into a byte offset within the VUE.
330 */
331 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
332 {
333 return 16*slot;
334 }
335
336 /**
337 * Convert a vert_result into a byte offset within the VUE.
338 */
339 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
340 GLuint vert_result)
341 {
342 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
343 }
344
345
346 struct brw_sf_prog_data {
347 GLuint urb_read_length;
348 GLuint total_grf;
349
350 /* Each vertex may have upto 12 attributes, 4 components each,
351 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
352 * rows.
353 *
354 * Actually we use 4 for each, so call it 12 rows.
355 */
356 GLuint urb_entry_size;
357 };
358
359 struct brw_clip_prog_data {
360 GLuint curb_read_length; /* user planes? */
361 GLuint clip_mode;
362 GLuint urb_read_length;
363 GLuint total_grf;
364 };
365
366 struct brw_gs_prog_data {
367 GLuint urb_read_length;
368 GLuint total_grf;
369 };
370
371 struct brw_vs_prog_data {
372 GLuint curb_read_length;
373 GLuint urb_read_length;
374 GLuint total_grf;
375 GLbitfield64 outputs_written;
376 GLuint nr_params; /**< number of float params/constants */
377 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
378 GLuint total_scratch;
379
380 GLuint inputs_read;
381
382 /* Used for calculating urb partitions:
383 */
384 GLuint urb_entry_size;
385
386 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
387 const float *pull_param[MAX_UNIFORMS * 4];
388
389 bool uses_new_param_layout;
390 bool uses_vertexid;
391 };
392
393
394 /* Size == 0 if output either not written, or always [0,0,0,1]
395 */
396 struct brw_vs_ouput_sizes {
397 GLubyte output_size[VERT_RESULT_MAX];
398 };
399
400
401 /** Number of texture sampler units */
402 #define BRW_MAX_TEX_UNIT 16
403
404 /** Max number of render targets in a shader */
405 #define BRW_MAX_DRAW_BUFFERS 8
406
407 /**
408 * Helpers to create Surface Binding Table indexes for draw buffers,
409 * textures, and constant buffers.
410 *
411 * Shader threads access surfaces via numeric handles, rather than directly
412 * using pointers. The binding table maps these numeric handles to the
413 * address of the actual buffer.
414 *
415 * For example, a shader might ask to sample from "surface 7." In this case,
416 * bind[7] would contain a pointer to a texture.
417 *
418 * Although the hardware supports separate binding tables per pipeline stage
419 * (VS, HS, DS, GS, PS), we currently share a single binding table for all of
420 * them. This is purely for convenience.
421 *
422 * Currently our binding tables are (arbitrarily) programmed as follows:
423 *
424 * +-------------------------------+
425 * | 0 | Draw buffer 0 | .
426 * | . | . | \
427 * | : | : | > Only relevant to the WM.
428 * | 7 | Draw buffer 7 | /
429 * |-----|-------------------------| `
430 * | 8 | VS Pull Constant Buffer |
431 * | 9 | WM Pull Constant Buffer |
432 * |-----|-------------------------|
433 * | 10 | Texture 0 |
434 * | . | . |
435 * | : | : |
436 * | 25 | Texture 15 |
437 * +-------------------------------+
438 *
439 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
440 * the identity function or things will break. We do want to keep draw buffers
441 * first so we can use headerless render target writes for RT 0.
442 */
443 #define SURF_INDEX_DRAW(d) (d)
444 #define SURF_INDEX_VERT_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 0)
445 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
446 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
447
448 /** Maximum size of the binding table. */
449 #define BRW_MAX_SURFACES (BRW_MAX_DRAW_BUFFERS + BRW_MAX_TEX_UNIT + 2)
450
451 enum brw_cache_id {
452 BRW_BLEND_STATE,
453 BRW_DEPTH_STENCIL_STATE,
454 BRW_COLOR_CALC_STATE,
455 BRW_CC_VP,
456 BRW_CC_UNIT,
457 BRW_WM_PROG,
458 BRW_SAMPLER,
459 BRW_WM_UNIT,
460 BRW_SF_PROG,
461 BRW_SF_VP,
462 BRW_SF_UNIT, /* scissor state on gen6 */
463 BRW_VS_UNIT,
464 BRW_VS_PROG,
465 BRW_GS_UNIT,
466 BRW_GS_PROG,
467 BRW_CLIP_VP,
468 BRW_CLIP_UNIT,
469 BRW_CLIP_PROG,
470
471 BRW_MAX_CACHE
472 };
473
474 struct brw_cache_item {
475 /**
476 * Effectively part of the key, cache_id identifies what kind of state
477 * buffer is involved, and also which brw->state.dirty.cache flag should
478 * be set when this cache item is chosen.
479 */
480 enum brw_cache_id cache_id;
481 /** 32-bit hash of the key data */
482 GLuint hash;
483 GLuint key_size; /* for variable-sized keys */
484 GLuint aux_size;
485 const void *key;
486
487 uint32_t offset;
488 uint32_t size;
489
490 struct brw_cache_item *next;
491 };
492
493
494
495 struct brw_cache {
496 struct brw_context *brw;
497
498 struct brw_cache_item **items;
499 drm_intel_bo *bo;
500 GLuint size, n_items;
501
502 uint32_t next_offset;
503 bool bo_used_by_gpu;
504 };
505
506
507 /* Considered adding a member to this struct to document which flags
508 * an update might raise so that ordering of the state atoms can be
509 * checked or derived at runtime. Dropped the idea in favor of having
510 * a debug mode where the state is monitored for flags which are
511 * raised that have already been tested against.
512 */
513 struct brw_tracked_state {
514 struct brw_state_flags dirty;
515 void (*emit)( struct brw_context *brw );
516 };
517
518 /* Flags for brw->state.cache.
519 */
520 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
521 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
522 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
523 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
524 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
525 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
526 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
527 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
528 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
529 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
530 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
531 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
532 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
533 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
534 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
535 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
536 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
537 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
538
539 struct brw_cached_batch_item {
540 struct header *header;
541 GLuint sz;
542 struct brw_cached_batch_item *next;
543 };
544
545
546
547 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
548 * be easier if C allowed arrays of packed elements?
549 */
550 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
551
552 struct brw_vertex_buffer {
553 /** Buffer object containing the uploaded vertex data */
554 drm_intel_bo *bo;
555 uint32_t offset;
556 /** Byte stride between elements in the uploaded array */
557 GLuint stride;
558 };
559 struct brw_vertex_element {
560 const struct gl_client_array *glarray;
561
562 int buffer;
563
564 /** The corresponding Mesa vertex attribute */
565 gl_vert_attrib attrib;
566 /** Size of a complete element */
567 GLuint element_size;
568 /** Offset of the first element within the buffer object */
569 unsigned int offset;
570 };
571
572
573
574 struct brw_vertex_info {
575 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
576 };
577
578 struct brw_query_object {
579 struct gl_query_object Base;
580
581 /** Last query BO associated with this query. */
582 drm_intel_bo *bo;
583 /** First index in bo with query data for this object. */
584 int first_index;
585 /** Last index in bo with query data for this object. */
586 int last_index;
587 };
588
589
590 /**
591 * brw_context is derived from intel_context.
592 */
593 struct brw_context
594 {
595 struct intel_context intel; /**< base class, must be first field */
596 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
597
598 bool emit_state_always;
599 bool has_surface_tile_offset;
600 bool has_compr4;
601 bool has_negative_rhw_bug;
602 bool has_aa_line_parameters;
603 bool has_pln;
604 bool new_vs_backend;
605
606 struct {
607 struct brw_state_flags dirty;
608 } state;
609
610 struct brw_cache cache;
611 struct brw_cached_batch_item *cached_batch_items;
612
613 struct {
614 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
615 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
616 struct {
617 uint32_t handle;
618 uint32_t offset;
619 uint32_t stride;
620 } current_buffers[VERT_ATTRIB_MAX];
621
622 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
623 GLuint nr_enabled;
624 GLuint nr_buffers, nr_current_buffers;
625
626 /* Summary of size and varying of active arrays, so we can check
627 * for changes to this state:
628 */
629 struct brw_vertex_info info;
630 unsigned int min_index, max_index;
631
632 /* Offset from start of vertex buffer so we can avoid redefining
633 * the same VB packed over and over again.
634 */
635 unsigned int start_vertex_bias;
636 } vb;
637
638 struct {
639 /**
640 * Index buffer for this draw_prims call.
641 *
642 * Updates are signaled by BRW_NEW_INDICES.
643 */
644 const struct _mesa_index_buffer *ib;
645
646 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
647 drm_intel_bo *bo;
648 GLuint type;
649
650 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
651 * avoid re-uploading the IB packet over and over if we're actually
652 * referencing the same index buffer.
653 */
654 unsigned int start_vertex_offset;
655 } ib;
656
657 /* Active vertex program:
658 */
659 const struct gl_vertex_program *vertex_program;
660 const struct gl_fragment_program *fragment_program;
661
662 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
663 uint32_t CMD_VF_STATISTICS;
664 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
665 uint32_t CMD_PIPELINE_SELECT;
666
667 /**
668 * Platform specific constants containing the maximum number of threads
669 * for each pipeline stage.
670 */
671 int max_vs_threads;
672 int max_gs_threads;
673 int max_wm_threads;
674
675 /* BRW_NEW_URB_ALLOCATIONS:
676 */
677 struct {
678 GLuint vsize; /* vertex size plus header in urb registers */
679 GLuint csize; /* constant buffer size in urb registers */
680 GLuint sfsize; /* setup data size in urb registers */
681
682 bool constrained;
683
684 GLuint max_vs_entries; /* Maximum number of VS entries */
685 GLuint max_gs_entries; /* Maximum number of GS entries */
686
687 GLuint nr_vs_entries;
688 GLuint nr_gs_entries;
689 GLuint nr_clip_entries;
690 GLuint nr_sf_entries;
691 GLuint nr_cs_entries;
692
693 /* gen6:
694 * The length of each URB entry owned by the VS (or GS), as
695 * a number of 1024-bit (128-byte) rows. Should be >= 1.
696 *
697 * gen7: Same meaning, but in 512-bit (64-byte) rows.
698 */
699 GLuint vs_size;
700 GLuint gs_size;
701
702 GLuint vs_start;
703 GLuint gs_start;
704 GLuint clip_start;
705 GLuint sf_start;
706 GLuint cs_start;
707 GLuint size; /* Hardware URB size, in KB. */
708 } urb;
709
710
711 /* BRW_NEW_CURBE_OFFSETS:
712 */
713 struct {
714 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
715 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
716 GLuint clip_start;
717 GLuint clip_size;
718 GLuint vs_start;
719 GLuint vs_size;
720 GLuint total_size;
721
722 drm_intel_bo *curbe_bo;
723 /** Offset within curbe_bo of space for current curbe entry */
724 GLuint curbe_offset;
725 /** Offset within curbe_bo of space for next curbe entry */
726 GLuint curbe_next_offset;
727
728 /**
729 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
730 * in brw_curbe.c with the same set of constant data to be uploaded,
731 * so we'd rather not upload new constants in that case (it can cause
732 * a pipeline bubble since only up to 4 can be pipelined at a time).
733 */
734 GLfloat *last_buf;
735 /**
736 * Allocation for where to calculate the next set of CURBEs.
737 * It's a hot enough path that malloc/free of that data matters.
738 */
739 GLfloat *next_buf;
740 GLuint last_bufsz;
741 } curbe;
742
743 struct {
744 /** Binding table of pointers to surf_bo entries */
745 uint32_t bo_offset;
746 uint32_t surf_offset[BRW_MAX_SURFACES];
747 } bind;
748
749 /** SAMPLER_STATE count and offset */
750 struct {
751 GLuint count;
752 uint32_t offset;
753 } sampler;
754
755 struct {
756 struct brw_vs_prog_data *prog_data;
757 int8_t *constant_map; /* variable array following prog_data */
758
759 drm_intel_bo *scratch_bo;
760 drm_intel_bo *const_bo;
761 /** Offset in the program cache to the VS program */
762 uint32_t prog_offset;
763 uint32_t state_offset;
764
765 uint32_t push_const_offset; /* Offset in the batchbuffer */
766 int push_const_size; /* in 256-bit register increments */
767
768 /** @{ register allocator */
769
770 struct ra_regs *regs;
771
772 /**
773 * Array of the ra classes for the unaligned contiguous register
774 * block sizes used.
775 */
776 int *classes;
777
778 /**
779 * Mapping for register-allocated objects in *regs to the first
780 * GRF for that object.
781 */
782 uint8_t *ra_reg_to_grf;
783 /** @} */
784 } vs;
785
786 struct {
787 struct brw_gs_prog_data *prog_data;
788
789 bool prog_active;
790 /** Offset in the program cache to the CLIP program pre-gen6 */
791 uint32_t prog_offset;
792 uint32_t state_offset;
793 } gs;
794
795 struct {
796 struct brw_clip_prog_data *prog_data;
797
798 /** Offset in the program cache to the CLIP program pre-gen6 */
799 uint32_t prog_offset;
800
801 /* Offset in the batch to the CLIP state on pre-gen6. */
802 uint32_t state_offset;
803
804 /* As of gen6, this is the offset in the batch to the CLIP VP,
805 * instead of vp_bo.
806 */
807 uint32_t vp_offset;
808 } clip;
809
810
811 struct {
812 struct brw_sf_prog_data *prog_data;
813
814 /** Offset in the program cache to the CLIP program pre-gen6 */
815 uint32_t prog_offset;
816 uint32_t state_offset;
817 uint32_t vp_offset;
818 } sf;
819
820 struct {
821 struct brw_wm_prog_data *prog_data;
822 struct brw_wm_compile *compile_data;
823
824 /** Input sizes, calculated from active vertex program.
825 * One bit per fragment program input attribute.
826 */
827 GLbitfield input_size_masks[4];
828
829 /** offsets in the batch to sampler default colors (texture border color)
830 */
831 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
832
833 GLuint render_surf;
834
835 drm_intel_bo *scratch_bo;
836
837 /** Offset in the program cache to the WM program */
838 uint32_t prog_offset;
839
840 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
841
842 drm_intel_bo *const_bo; /* pull constant buffer. */
843 /**
844 * This is offset in the batch to the push constants on gen6.
845 *
846 * Pre-gen6, push constants live in the CURBE.
847 */
848 uint32_t push_const_offset;
849
850 /** @{ register allocator */
851
852 struct ra_regs *regs;
853
854 /** Array of the ra classes for the unaligned contiguous
855 * register block sizes used.
856 */
857 int *classes;
858
859 /**
860 * Mapping for register-allocated objects in *regs to the first
861 * GRF for that object.
862 */
863 uint8_t *ra_reg_to_grf;
864
865 /**
866 * ra class for the aligned pairs we use for PLN, which doesn't
867 * appear in *classes.
868 */
869 int aligned_pairs_class;
870
871 /** @} */
872 } wm;
873
874
875 struct {
876 uint32_t state_offset;
877 uint32_t blend_state_offset;
878 uint32_t depth_stencil_state_offset;
879 uint32_t vp_offset;
880 } cc;
881
882 struct {
883 struct brw_query_object *obj;
884 drm_intel_bo *bo;
885 int index;
886 bool active;
887 } query;
888 /* Used to give every program string a unique id
889 */
890 GLuint program_id;
891
892 int num_atoms;
893 const struct brw_tracked_state **atoms;
894
895 /* If (INTEL_DEBUG & DEBUG_BATCH) */
896 struct {
897 uint32_t offset;
898 uint32_t size;
899 enum state_struct_type type;
900 } *state_batch_list;
901 int state_batch_count;
902 };
903
904
905
906 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
907
908 struct brw_instruction_info {
909 char *name;
910 int nsrc;
911 int ndst;
912 bool is_arith;
913 };
914 extern const struct brw_instruction_info brw_opcodes[128];
915
916 /*======================================================================
917 * brw_vtbl.c
918 */
919 void brwInitVtbl( struct brw_context *brw );
920
921 /*======================================================================
922 * brw_context.c
923 */
924 bool brwCreateContext(int api,
925 const struct gl_config *mesaVis,
926 __DRIcontext *driContextPriv,
927 void *sharedContextPrivate);
928
929 /*======================================================================
930 * brw_queryobj.c
931 */
932 void brw_init_queryobj_functions(struct dd_function_table *functions);
933 void brw_prepare_query_begin(struct brw_context *brw);
934 void brw_emit_query_begin(struct brw_context *brw);
935 void brw_emit_query_end(struct brw_context *brw);
936
937 /*======================================================================
938 * brw_state_dump.c
939 */
940 void brw_debug_batch(struct intel_context *intel);
941
942 /*======================================================================
943 * brw_tex.c
944 */
945 void brw_validate_textures( struct brw_context *brw );
946
947
948 /*======================================================================
949 * brw_program.c
950 */
951 void brwInitFragProgFuncs( struct dd_function_table *functions );
952
953 int brw_get_scratch_size(int size);
954 void brw_get_scratch_bo(struct intel_context *intel,
955 drm_intel_bo **scratch_bo, int size);
956
957
958 /* brw_urb.c
959 */
960 void brw_upload_urb_fence(struct brw_context *brw);
961
962 /* brw_curbe.c
963 */
964 void brw_upload_cs_urb_state(struct brw_context *brw);
965
966 /* brw_disasm.c */
967 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
968
969 /* brw_vs.c */
970 void brw_compute_vue_map(struct brw_vue_map *vue_map,
971 const struct intel_context *intel,
972 bool userclip_active,
973 GLbitfield64 outputs_written);
974 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
975
976 /* brw_wm.c */
977 unsigned
978 brw_compute_barycentric_interp_modes(bool shade_model_flat,
979 const struct gl_fragment_program *fprog);
980
981 /* gen6_clip_state.c */
982 bool
983 brw_fprog_uses_noperspective(const struct gl_fragment_program *fprog);
984
985
986
987 /*======================================================================
988 * Inline conversion functions. These are better-typed than the
989 * macros used previously:
990 */
991 static INLINE struct brw_context *
992 brw_context( struct gl_context *ctx )
993 {
994 return (struct brw_context *)ctx;
995 }
996
997 static INLINE struct brw_vertex_program *
998 brw_vertex_program(struct gl_vertex_program *p)
999 {
1000 return (struct brw_vertex_program *) p;
1001 }
1002
1003 static INLINE const struct brw_vertex_program *
1004 brw_vertex_program_const(const struct gl_vertex_program *p)
1005 {
1006 return (const struct brw_vertex_program *) p;
1007 }
1008
1009 static INLINE struct brw_fragment_program *
1010 brw_fragment_program(struct gl_fragment_program *p)
1011 {
1012 return (struct brw_fragment_program *) p;
1013 }
1014
1015 static INLINE const struct brw_fragment_program *
1016 brw_fragment_program_const(const struct gl_fragment_program *p)
1017 {
1018 return (const struct brw_fragment_program *) p;
1019 }
1020
1021 static inline
1022 float convert_param(enum param_conversion conversion, const float *param)
1023 {
1024 union {
1025 float f;
1026 uint32_t u;
1027 int32_t i;
1028 } fi;
1029
1030 switch (conversion) {
1031 case PARAM_NO_CONVERT:
1032 return *param;
1033 case PARAM_CONVERT_F2I:
1034 fi.i = *param;
1035 return fi.f;
1036 case PARAM_CONVERT_F2U:
1037 fi.u = *param;
1038 return fi.f;
1039 case PARAM_CONVERT_F2B:
1040 if (*param != 0.0)
1041 fi.i = 1;
1042 else
1043 fi.i = 0;
1044 return fi.f;
1045 case PARAM_CONVERT_ZERO:
1046 return 0.0;
1047 default:
1048 return *param;
1049 }
1050 }
1051
1052 /**
1053 * Pre-gen6, the register file of the EUs was shared between threads,
1054 * and each thread used some subset allocated on a 16-register block
1055 * granularity. The unit states wanted these block counts.
1056 */
1057 static inline int
1058 brw_register_blocks(int reg_count)
1059 {
1060 return ALIGN(reg_count, 16) / 16 - 1;
1061 }
1062
1063 static inline uint32_t
1064 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1065 uint32_t prog_offset)
1066 {
1067 struct intel_context *intel = &brw->intel;
1068
1069 if (intel->gen >= 5) {
1070 /* Using state base address. */
1071 return prog_offset;
1072 }
1073
1074 drm_intel_bo_emit_reloc(intel->batch.bo,
1075 state_offset,
1076 brw->cache.bo,
1077 prog_offset,
1078 I915_GEM_DOMAIN_INSTRUCTION, 0);
1079
1080 return brw->cache.bo->offset + prog_offset;
1081 }
1082
1083 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1084
1085 #endif