i965: Bind UBOs as surfaces like we do for pull constants.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* Glossary:
45 *
46 * URB - uniform resource buffer. A mid-sized buffer which is
47 * partitioned between the fixed function units and used for passing
48 * values (vertices, primitives, constants) between them.
49 *
50 * CURBE - constant URB entry. An urb region (entry) used to hold
51 * constant values which the fixed function units can be instructed to
52 * preload into the GRF when spawning a thread.
53 *
54 * VUE - vertex URB entry. An urb entry holding a vertex and usually
55 * a vertex header. The header contains control information and
56 * things like primitive type, Begin/end flags and clip codes.
57 *
58 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
59 * unit holding rasterization and interpolation parameters.
60 *
61 * GRF - general register file. One of several register files
62 * addressable by programmed threads. The inputs (r0, payload, curbe,
63 * urb) of the thread are preloaded to this area before the thread is
64 * spawned. The registers are individually 8 dwords wide and suitable
65 * for general usage. Registers holding thread input values are not
66 * special and may be overwritten.
67 *
68 * MRF - message register file. Threads communicate (and terminate)
69 * by sending messages. Message parameters are placed in contiguous
70 * MRF registers. All program output is via these messages. URB
71 * entries are populated by sending a message to the shared URB
72 * function containing the new data, together with a control word,
73 * often an unmodified copy of R0.
74 *
75 * R0 - GRF register 0. Typically holds control information used when
76 * sending messages to other threads.
77 *
78 * EU or GEN4 EU: The name of the programmable subsystem of the
79 * i965 hardware. Threads are executed by the EU, the registers
80 * described above are part of the EU architecture.
81 *
82 * Fixed function units:
83 *
84 * CS - Command streamer. Notional first unit, little software
85 * interaction. Holds the URB entries used for constant data, ie the
86 * CURBEs.
87 *
88 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
89 * this unit is responsible for pulling vertices out of vertex buffers
90 * in vram and injecting them into the processing pipe as VUEs. If
91 * enabled, it first passes them to a VS thread which is a good place
92 * for the driver to implement any active vertex shader.
93 *
94 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
95 * enabled, incoming strips etc are passed to GS threads in individual
96 * line/triangle/point units. The GS thread may perform arbitary
97 * computation and emit whatever primtives with whatever vertices it
98 * chooses. This makes GS an excellent place to implement GL's
99 * unfilled polygon modes, though of course it is capable of much
100 * more. Additionally, GS is used to translate away primitives not
101 * handled by latter units, including Quads and Lineloops.
102 *
103 * CS - Clipper. Mesa's clipping algorithms are imported to run on
104 * this unit. The fixed function part performs cliptesting against
105 * the 6 fixed clipplanes and makes descisions on whether or not the
106 * incoming primitive needs to be passed to a thread for clipping.
107 * User clip planes are handled via cooperation with the VS thread.
108 *
109 * SF - Strips Fans or Setup: Triangles are prepared for
110 * rasterization. Interpolation coefficients are calculated.
111 * Flatshading and two-side lighting usually performed here.
112 *
113 * WM - Windower. Interpolation of vertex attributes performed here.
114 * Fragment shader implemented here. SIMD aspects of EU taken full
115 * advantage of, as pixels are processed in blocks of 16.
116 *
117 * CC - Color Calculator. No EU threads associated with this unit.
118 * Handles blending and (presumably) depth and stencil testing.
119 */
120
121
122 #define BRW_MAX_CURBE (32*16)
123
124 struct brw_context;
125 struct brw_instruction;
126 struct brw_vs_prog_key;
127 struct brw_wm_prog_key;
128 struct brw_wm_prog_data;
129
130 enum brw_state_id {
131 BRW_STATE_URB_FENCE,
132 BRW_STATE_FRAGMENT_PROGRAM,
133 BRW_STATE_VERTEX_PROGRAM,
134 BRW_STATE_INPUT_DIMENSIONS,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_WM_INPUT_DIMENSIONS,
140 BRW_STATE_PSP,
141 BRW_STATE_SURFACES,
142 BRW_STATE_VS_BINDING_TABLE,
143 BRW_STATE_GS_BINDING_TABLE,
144 BRW_STATE_PS_BINDING_TABLE,
145 BRW_STATE_INDICES,
146 BRW_STATE_VERTICES,
147 BRW_STATE_BATCH,
148 BRW_STATE_NR_WM_SURFACES,
149 BRW_STATE_NR_VS_SURFACES,
150 BRW_STATE_INDEX_BUFFER,
151 BRW_STATE_VS_CONSTBUF,
152 BRW_STATE_PROGRAM_CACHE,
153 BRW_STATE_STATE_BASE_ADDRESS,
154 BRW_STATE_SOL_INDICES,
155 };
156
157 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
158 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
159 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
160 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
161 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
184
185 struct brw_state_flags {
186 /** State update flags signalled by mesa internals */
187 GLuint mesa;
188 /**
189 * State update flags signalled as the result of brw_tracked_state updates
190 */
191 GLuint brw;
192 /** State update flags signalled by brw_state_cache.c searches */
193 GLuint cache;
194 };
195
196 #define AUB_TRACE_TYPE_MASK 0x0000ff00
197 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
198 #define AUB_TRACE_TYPE_BATCH (1 << 8)
199 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
200 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
201 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
202 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
203 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
204 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
205 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
206 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
207 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
208 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
209
210 /**
211 * state_struct_type enum values are encoded with the top 16 bits representing
212 * the type to be delivered to the .aub file, and the bottom 16 bits
213 * representing the subtype. This macro performs the encoding.
214 */
215 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
216
217 enum state_struct_type {
218 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
219 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
220 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
221 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
222 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
223 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
224 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
225 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
226 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
227 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
228 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
229 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
230 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
231
232 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
233 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
234 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
235
236 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
237 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
238 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
239 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
240 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
241 };
242
243 /**
244 * Decode a state_struct_type value to determine the type that should be
245 * stored in the .aub file.
246 */
247 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
248 {
249 return (ss_type & 0xFFFF0000) >> 16;
250 }
251
252 /**
253 * Decode a state_struct_type value to determine the subtype that should be
254 * stored in the .aub file.
255 */
256 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
257 {
258 return ss_type & 0xFFFF;
259 }
260
261 /** Subclass of Mesa vertex program */
262 struct brw_vertex_program {
263 struct gl_vertex_program program;
264 GLuint id;
265 bool use_const_buffer;
266 };
267
268
269 /** Subclass of Mesa fragment program */
270 struct brw_fragment_program {
271 struct gl_fragment_program program;
272 GLuint id; /**< serial no. to identify frag progs, never re-used */
273 };
274
275 struct brw_shader {
276 struct gl_shader base;
277
278 /** Shader IR transformed for native compile, at link time. */
279 struct exec_list *ir;
280 };
281
282 struct brw_shader_program {
283 struct gl_shader_program base;
284 };
285
286 /* Data about a particular attempt to compile a program. Note that
287 * there can be many of these, each in a different GL state
288 * corresponding to a different brw_wm_prog_key struct, with different
289 * compiled programs:
290 */
291 struct brw_wm_prog_data {
292 GLuint curb_read_length;
293 GLuint urb_read_length;
294
295 GLuint first_curbe_grf;
296 GLuint first_curbe_grf_16;
297 GLuint reg_blocks;
298 GLuint reg_blocks_16;
299 GLuint total_scratch;
300
301 GLuint nr_params; /**< number of float params/constants */
302 GLuint nr_pull_params;
303 bool error;
304 bool dual_src_blend;
305 int dispatch_width;
306 uint32_t prog_offset_16;
307
308 /**
309 * Mask of which interpolation modes are required by the fragment shader.
310 * Used in hardware setup on gen6+.
311 */
312 uint32_t barycentric_interp_modes;
313
314 /* Pointer to tracked values (only valid once
315 * _mesa_load_state_parameters has been called at runtime).
316 */
317 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
318 const float *pull_param[MAX_UNIFORMS * 4];
319 };
320
321 /**
322 * Enum representing the i965-specific vertex results that don't correspond
323 * exactly to any element of gl_vert_result. The values of this enum are
324 * assigned such that they don't conflict with gl_vert_result.
325 */
326 typedef enum
327 {
328 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
329 BRW_VERT_RESULT_HPOS_DUPLICATE,
330 BRW_VERT_RESULT_PAD,
331 /*
332 * It's actually not a vert_result but just a _mark_ to let sf aware that
333 * he need do something special to handle gl_PointCoord builtin variable
334 * correctly. see compile_sf_prog() for more info.
335 */
336 BRW_VERT_RESULT_PNTC,
337 BRW_VERT_RESULT_MAX
338 } brw_vert_result;
339
340
341 /**
342 * Data structure recording the relationship between the gl_vert_result enum
343 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
344 * single octaword within the VUE (128 bits).
345 *
346 * Note that each BRW register contains 256 bits (2 octawords), so when
347 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
348 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
349 * in a vertex shader), each register corresponds to a single VUE slot, since
350 * it contains data for two separate vertices.
351 */
352 struct brw_vue_map {
353 /**
354 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
355 * not stored in a slot (because they are not written, or because
356 * additional processing is applied before storing them in the VUE), the
357 * value is -1.
358 */
359 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
360
361 /**
362 * Map from VUE slot to gl_vert_result value. For slots that do not
363 * directly correspond to a gl_vert_result, the value comes from
364 * brw_vert_result.
365 *
366 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
367 * simplifies code that uses the value stored in slot_to_vert_result to
368 * create a bit mask).
369 */
370 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
371
372 /**
373 * Total number of VUE slots in use
374 */
375 int num_slots;
376 };
377
378 /**
379 * Convert a VUE slot number into a byte offset within the VUE.
380 */
381 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
382 {
383 return 16*slot;
384 }
385
386 /**
387 * Convert a vert_result into a byte offset within the VUE.
388 */
389 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
390 GLuint vert_result)
391 {
392 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
393 }
394
395
396 struct brw_sf_prog_data {
397 GLuint urb_read_length;
398 GLuint total_grf;
399
400 /* Each vertex may have upto 12 attributes, 4 components each,
401 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
402 * rows.
403 *
404 * Actually we use 4 for each, so call it 12 rows.
405 */
406 GLuint urb_entry_size;
407 };
408
409 struct brw_clip_prog_data {
410 GLuint curb_read_length; /* user planes? */
411 GLuint clip_mode;
412 GLuint urb_read_length;
413 GLuint total_grf;
414 };
415
416 struct brw_gs_prog_data {
417 GLuint urb_read_length;
418 GLuint total_grf;
419
420 /**
421 * Gen6 transform feedback: Amount by which the streaming vertex buffer
422 * indices should be incremented each time the GS is invoked.
423 */
424 unsigned svbi_postincrement_value;
425 };
426
427 struct brw_vs_prog_data {
428 struct brw_vue_map vue_map;
429
430 GLuint curb_read_length;
431 GLuint urb_read_length;
432 GLuint total_grf;
433 GLbitfield64 outputs_written;
434 GLuint nr_params; /**< number of float params/constants */
435 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
436 GLuint total_scratch;
437
438 GLbitfield64 inputs_read;
439
440 /* Used for calculating urb partitions:
441 */
442 GLuint urb_entry_size;
443
444 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
445 const float *pull_param[MAX_UNIFORMS * 4];
446
447 bool uses_new_param_layout;
448 bool uses_vertexid;
449 bool userclip;
450
451 int num_surfaces;
452 };
453
454
455 /* Size == 0 if output either not written, or always [0,0,0,1]
456 */
457 struct brw_vs_ouput_sizes {
458 GLubyte output_size[VERT_RESULT_MAX];
459 };
460
461
462 /** Number of texture sampler units */
463 #define BRW_MAX_TEX_UNIT 16
464
465 /** Max number of render targets in a shader */
466 #define BRW_MAX_DRAW_BUFFERS 8
467
468 /**
469 * Max number of binding table entries used for stream output.
470 *
471 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
472 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
473 *
474 * On Gen6, the size of transform feedback data is limited not by the number
475 * of components but by the number of binding table entries we set aside. We
476 * use one binding table entry for a float, one entry for a vector, and one
477 * entry per matrix column. Since the only way we can communicate our
478 * transform feedback capabilities to the client is via
479 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
480 * worst case, in which all the varyings are floats, so we use up one binding
481 * table entry per component. Therefore we need to set aside at least 64
482 * binding table entries for use by transform feedback.
483 *
484 * Note: since we don't currently pack varyings, it is currently impossible
485 * for the client to actually use up all of these binding table entries--if
486 * all of their varyings were floats, they would run out of varying slots and
487 * fail to link. But that's a bug, so it seems prudent to go ahead and
488 * allocate the number of binding table entries we will need once the bug is
489 * fixed.
490 */
491 #define BRW_MAX_SOL_BINDINGS 64
492
493 /** Maximum number of actual buffers used for stream output */
494 #define BRW_MAX_SOL_BUFFERS 4
495
496 #define BRW_MAX_WM_UBOS 12
497 #define BRW_MAX_VS_UBOS 12
498
499 /**
500 * Helpers to create Surface Binding Table indexes for draw buffers,
501 * textures, and constant buffers.
502 *
503 * Shader threads access surfaces via numeric handles, rather than directly
504 * using pointers. The binding table maps these numeric handles to the
505 * address of the actual buffer.
506 *
507 * For example, a shader might ask to sample from "surface 7." In this case,
508 * bind[7] would contain a pointer to a texture.
509 *
510 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
511 *
512 * +-------------------------------+
513 * | 0 | Draw buffer 0 |
514 * | . | . |
515 * | : | : |
516 * | 7 | Draw buffer 7 |
517 * |-----|-------------------------|
518 * | 8 | WM Pull Constant Buffer |
519 * |-----|-------------------------|
520 * | 9 | Texture 0 |
521 * | . | . |
522 * | : | : |
523 * | 24 | Texture 15 |
524 * |-----|-------------------------|
525 * | 25 | UBO 0 |
526 * | . | . |
527 * | : | : |
528 * | 36 | UBO 11 |
529 * +-------------------------------+
530 *
531 * Our VS binding tables are programmed as follows:
532 *
533 * +-----+-------------------------+
534 * | 0 | VS Pull Constant Buffer |
535 * +-----+-------------------------+
536 * | 1 | Texture 0 |
537 * | . | . |
538 * | : | : |
539 * | 16 | Texture 15 |
540 * +-----+-------------------------+
541 * | 17 | UBO 0 |
542 * | . | . |
543 * | : | : |
544 * | 28 | UBO 11 |
545 * +-------------------------------+
546 *
547 * Our (gen6) GS binding tables are programmed as follows:
548 *
549 * +-----+-------------------------+
550 * | 0 | SOL Binding 0 |
551 * | . | . |
552 * | : | : |
553 * | 63 | SOL Binding 63 |
554 * +-----+-------------------------+
555 *
556 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
557 * the identity function or things will break. We do want to keep draw buffers
558 * first so we can use headerless render target writes for RT 0.
559 */
560 #define SURF_INDEX_DRAW(d) (d)
561 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
562 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
563 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
564
565 /** Maximum size of the binding table. */
566 #define BRW_MAX_WM_SURFACES SURF_INDEX_WM_UBO(BRW_MAX_WM_UBOS)
567
568 #define SURF_INDEX_VERT_CONST_BUFFER (0)
569 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
570 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
571 #define BRW_MAX_VS_SURFACES SURF_INDEX_VS_UBO(BRW_MAX_VS_UBOS)
572
573 #define SURF_INDEX_SOL_BINDING(t) ((t))
574 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
575
576 enum brw_cache_id {
577 BRW_BLEND_STATE,
578 BRW_DEPTH_STENCIL_STATE,
579 BRW_COLOR_CALC_STATE,
580 BRW_CC_VP,
581 BRW_CC_UNIT,
582 BRW_WM_PROG,
583 BRW_BLORP_BLIT_PROG,
584 BRW_SAMPLER,
585 BRW_WM_UNIT,
586 BRW_SF_PROG,
587 BRW_SF_VP,
588 BRW_SF_UNIT, /* scissor state on gen6 */
589 BRW_VS_UNIT,
590 BRW_VS_PROG,
591 BRW_GS_UNIT,
592 BRW_GS_PROG,
593 BRW_CLIP_VP,
594 BRW_CLIP_UNIT,
595 BRW_CLIP_PROG,
596
597 BRW_MAX_CACHE
598 };
599
600 struct brw_cache_item {
601 /**
602 * Effectively part of the key, cache_id identifies what kind of state
603 * buffer is involved, and also which brw->state.dirty.cache flag should
604 * be set when this cache item is chosen.
605 */
606 enum brw_cache_id cache_id;
607 /** 32-bit hash of the key data */
608 GLuint hash;
609 GLuint key_size; /* for variable-sized keys */
610 GLuint aux_size;
611 const void *key;
612
613 uint32_t offset;
614 uint32_t size;
615
616 struct brw_cache_item *next;
617 };
618
619
620
621 struct brw_cache {
622 struct brw_context *brw;
623
624 struct brw_cache_item **items;
625 drm_intel_bo *bo;
626 GLuint size, n_items;
627
628 uint32_t next_offset;
629 bool bo_used_by_gpu;
630 };
631
632
633 /* Considered adding a member to this struct to document which flags
634 * an update might raise so that ordering of the state atoms can be
635 * checked or derived at runtime. Dropped the idea in favor of having
636 * a debug mode where the state is monitored for flags which are
637 * raised that have already been tested against.
638 */
639 struct brw_tracked_state {
640 struct brw_state_flags dirty;
641 void (*emit)( struct brw_context *brw );
642 };
643
644 /* Flags for brw->state.cache.
645 */
646 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
647 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
648 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
649 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
650 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
651 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
652 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
653 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
654 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
655 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
656 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
657 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
658 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
659 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
660 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
661 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
662 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
663 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
664
665 struct brw_cached_batch_item {
666 struct header *header;
667 GLuint sz;
668 struct brw_cached_batch_item *next;
669 };
670
671
672
673 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
674 * be easier if C allowed arrays of packed elements?
675 */
676 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
677
678 struct brw_vertex_buffer {
679 /** Buffer object containing the uploaded vertex data */
680 drm_intel_bo *bo;
681 uint32_t offset;
682 /** Byte stride between elements in the uploaded array */
683 GLuint stride;
684 GLuint step_rate;
685 };
686 struct brw_vertex_element {
687 const struct gl_client_array *glarray;
688
689 int buffer;
690
691 /** The corresponding Mesa vertex attribute */
692 gl_vert_attrib attrib;
693 /** Size of a complete element */
694 GLuint element_size;
695 /** Offset of the first element within the buffer object */
696 unsigned int offset;
697 };
698
699
700
701 struct brw_vertex_info {
702 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
703 };
704
705 struct brw_query_object {
706 struct gl_query_object Base;
707
708 /** Last query BO associated with this query. */
709 drm_intel_bo *bo;
710 /** First index in bo with query data for this object. */
711 int first_index;
712 /** Last index in bo with query data for this object. */
713 int last_index;
714 };
715
716
717 /**
718 * brw_context is derived from intel_context.
719 */
720 struct brw_context
721 {
722 struct intel_context intel; /**< base class, must be first field */
723 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
724
725 bool emit_state_always;
726 bool has_surface_tile_offset;
727 bool has_compr4;
728 bool has_negative_rhw_bug;
729 bool has_aa_line_parameters;
730 bool has_pln;
731 bool precompile;
732
733 /**
734 * Some versions of Gen hardware don't do centroid interpolation correctly
735 * on unlit pixels, causing incorrect values for derivatives near triangle
736 * edges. Enabling this flag causes the fragment shader to use
737 * non-centroid interpolation for unlit pixels, at the expense of two extra
738 * fragment shader instructions.
739 */
740 bool needs_unlit_centroid_workaround;
741
742 struct {
743 struct brw_state_flags dirty;
744 } state;
745
746 struct brw_cache cache;
747 struct brw_cached_batch_item *cached_batch_items;
748
749 struct {
750 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
751 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
752 struct {
753 uint32_t handle;
754 uint32_t offset;
755 uint32_t stride;
756 uint32_t step_rate;
757 } current_buffers[VERT_ATTRIB_MAX];
758
759 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
760 GLuint nr_enabled;
761 GLuint nr_buffers, nr_current_buffers;
762
763 /* Summary of size and varying of active arrays, so we can check
764 * for changes to this state:
765 */
766 struct brw_vertex_info info;
767 unsigned int min_index, max_index;
768
769 /* Offset from start of vertex buffer so we can avoid redefining
770 * the same VB packed over and over again.
771 */
772 unsigned int start_vertex_bias;
773 } vb;
774
775 struct {
776 /**
777 * Index buffer for this draw_prims call.
778 *
779 * Updates are signaled by BRW_NEW_INDICES.
780 */
781 const struct _mesa_index_buffer *ib;
782
783 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
784 drm_intel_bo *bo;
785 GLuint type;
786
787 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
788 * avoid re-uploading the IB packet over and over if we're actually
789 * referencing the same index buffer.
790 */
791 unsigned int start_vertex_offset;
792 } ib;
793
794 /* Active vertex program:
795 */
796 const struct gl_vertex_program *vertex_program;
797 const struct gl_fragment_program *fragment_program;
798
799 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
800 uint32_t CMD_VF_STATISTICS;
801 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
802 uint32_t CMD_PIPELINE_SELECT;
803
804 /**
805 * Platform specific constants containing the maximum number of threads
806 * for each pipeline stage.
807 */
808 int max_vs_threads;
809 int max_gs_threads;
810 int max_wm_threads;
811
812 /* BRW_NEW_URB_ALLOCATIONS:
813 */
814 struct {
815 GLuint vsize; /* vertex size plus header in urb registers */
816 GLuint csize; /* constant buffer size in urb registers */
817 GLuint sfsize; /* setup data size in urb registers */
818
819 bool constrained;
820
821 GLuint max_vs_entries; /* Maximum number of VS entries */
822 GLuint max_gs_entries; /* Maximum number of GS entries */
823
824 GLuint nr_vs_entries;
825 GLuint nr_gs_entries;
826 GLuint nr_clip_entries;
827 GLuint nr_sf_entries;
828 GLuint nr_cs_entries;
829
830 /* gen6:
831 * The length of each URB entry owned by the VS (or GS), as
832 * a number of 1024-bit (128-byte) rows. Should be >= 1.
833 *
834 * gen7: Same meaning, but in 512-bit (64-byte) rows.
835 */
836 GLuint vs_size;
837 GLuint gs_size;
838
839 GLuint vs_start;
840 GLuint gs_start;
841 GLuint clip_start;
842 GLuint sf_start;
843 GLuint cs_start;
844 GLuint size; /* Hardware URB size, in KB. */
845
846 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
847 * URB space for the GS.
848 */
849 bool gen6_gs_previously_active;
850 } urb;
851
852
853 /* BRW_NEW_CURBE_OFFSETS:
854 */
855 struct {
856 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
857 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
858 GLuint clip_start;
859 GLuint clip_size;
860 GLuint vs_start;
861 GLuint vs_size;
862 GLuint total_size;
863
864 drm_intel_bo *curbe_bo;
865 /** Offset within curbe_bo of space for current curbe entry */
866 GLuint curbe_offset;
867 /** Offset within curbe_bo of space for next curbe entry */
868 GLuint curbe_next_offset;
869
870 /**
871 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
872 * in brw_curbe.c with the same set of constant data to be uploaded,
873 * so we'd rather not upload new constants in that case (it can cause
874 * a pipeline bubble since only up to 4 can be pipelined at a time).
875 */
876 GLfloat *last_buf;
877 /**
878 * Allocation for where to calculate the next set of CURBEs.
879 * It's a hot enough path that malloc/free of that data matters.
880 */
881 GLfloat *next_buf;
882 GLuint last_bufsz;
883 } curbe;
884
885 /** SAMPLER_STATE count and offset */
886 struct {
887 GLuint count;
888 uint32_t offset;
889 } sampler;
890
891 struct {
892 struct brw_vs_prog_data *prog_data;
893 int8_t *constant_map; /* variable array following prog_data */
894
895 drm_intel_bo *scratch_bo;
896 drm_intel_bo *const_bo;
897 /** Offset in the program cache to the VS program */
898 uint32_t prog_offset;
899 uint32_t state_offset;
900
901 uint32_t push_const_offset; /* Offset in the batchbuffer */
902 int push_const_size; /* in 256-bit register increments */
903
904 /** @{ register allocator */
905
906 struct ra_regs *regs;
907
908 /**
909 * Array of the ra classes for the unaligned contiguous register
910 * block sizes used.
911 */
912 int *classes;
913
914 /**
915 * Mapping for register-allocated objects in *regs to the first
916 * GRF for that object.
917 */
918 uint8_t *ra_reg_to_grf;
919 /** @} */
920
921 uint32_t bind_bo_offset;
922 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
923 } vs;
924
925 struct {
926 struct brw_gs_prog_data *prog_data;
927
928 bool prog_active;
929 /** Offset in the program cache to the CLIP program pre-gen6 */
930 uint32_t prog_offset;
931 uint32_t state_offset;
932
933 uint32_t bind_bo_offset;
934 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
935 } gs;
936
937 struct {
938 struct brw_clip_prog_data *prog_data;
939
940 /** Offset in the program cache to the CLIP program pre-gen6 */
941 uint32_t prog_offset;
942
943 /* Offset in the batch to the CLIP state on pre-gen6. */
944 uint32_t state_offset;
945
946 /* As of gen6, this is the offset in the batch to the CLIP VP,
947 * instead of vp_bo.
948 */
949 uint32_t vp_offset;
950 } clip;
951
952
953 struct {
954 struct brw_sf_prog_data *prog_data;
955
956 /** Offset in the program cache to the CLIP program pre-gen6 */
957 uint32_t prog_offset;
958 uint32_t state_offset;
959 uint32_t vp_offset;
960 } sf;
961
962 struct {
963 struct brw_wm_prog_data *prog_data;
964 struct brw_wm_compile *compile_data;
965
966 /** Input sizes, calculated from active vertex program.
967 * One bit per fragment program input attribute.
968 */
969 GLbitfield input_size_masks[4];
970
971 /** offsets in the batch to sampler default colors (texture border color)
972 */
973 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
974
975 GLuint render_surf;
976
977 drm_intel_bo *scratch_bo;
978
979 /**
980 * Buffer object used in place of multisampled null render targets on
981 * Gen6. See brw_update_null_renderbuffer_surface().
982 */
983 drm_intel_bo *multisampled_null_render_target_bo;
984
985 /** Offset in the program cache to the WM program */
986 uint32_t prog_offset;
987
988 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
989
990 drm_intel_bo *const_bo; /* pull constant buffer. */
991 /**
992 * This is offset in the batch to the push constants on gen6.
993 *
994 * Pre-gen6, push constants live in the CURBE.
995 */
996 uint32_t push_const_offset;
997
998 /** Binding table of pointers to surf_bo entries */
999 uint32_t bind_bo_offset;
1000 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1001
1002 /** @{ register allocator */
1003
1004 struct ra_regs *regs;
1005
1006 /** Array of the ra classes for the unaligned contiguous
1007 * register block sizes used.
1008 */
1009 int *classes;
1010
1011 /**
1012 * Mapping for register-allocated objects in *regs to the first
1013 * GRF for that object.
1014 */
1015 uint8_t *ra_reg_to_grf;
1016
1017 /**
1018 * ra class for the aligned pairs we use for PLN, which doesn't
1019 * appear in *classes.
1020 */
1021 int aligned_pairs_class;
1022
1023 /** @} */
1024 } wm;
1025
1026
1027 struct {
1028 uint32_t state_offset;
1029 uint32_t blend_state_offset;
1030 uint32_t depth_stencil_state_offset;
1031 uint32_t vp_offset;
1032 } cc;
1033
1034 struct {
1035 struct brw_query_object *obj;
1036 drm_intel_bo *bo;
1037 int index;
1038 bool active;
1039 } query;
1040 /* Used to give every program string a unique id
1041 */
1042 GLuint program_id;
1043
1044 int num_atoms;
1045 const struct brw_tracked_state **atoms;
1046
1047 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1048 struct {
1049 uint32_t offset;
1050 uint32_t size;
1051 enum state_struct_type type;
1052 } *state_batch_list;
1053 int state_batch_count;
1054
1055 struct brw_sol_state {
1056 uint32_t svbi_0_starting_index;
1057 uint32_t svbi_0_max_index;
1058 uint32_t offset_0_batch_start;
1059 uint32_t primitives_generated;
1060 uint32_t primitives_written;
1061 bool counting_primitives_generated;
1062 bool counting_primitives_written;
1063 } sol;
1064
1065 uint32_t render_target_format[MESA_FORMAT_COUNT];
1066 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1067
1068 /* PrimitiveRestart */
1069 struct {
1070 bool in_progress;
1071 bool enable_cut_index;
1072 } prim_restart;
1073
1074 uint32_t num_instances;
1075 };
1076
1077
1078
1079 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1080
1081 struct brw_instruction_info {
1082 char *name;
1083 int nsrc;
1084 int ndst;
1085 bool is_arith;
1086 };
1087 extern const struct brw_instruction_info brw_opcodes[128];
1088
1089 /*======================================================================
1090 * brw_vtbl.c
1091 */
1092 void brwInitVtbl( struct brw_context *brw );
1093
1094 /*======================================================================
1095 * brw_context.c
1096 */
1097 bool brwCreateContext(int api,
1098 const struct gl_config *mesaVis,
1099 __DRIcontext *driContextPriv,
1100 void *sharedContextPrivate);
1101
1102 /*======================================================================
1103 * brw_queryobj.c
1104 */
1105 void brw_init_queryobj_functions(struct dd_function_table *functions);
1106 void brw_prepare_query_begin(struct brw_context *brw);
1107 void brw_emit_query_begin(struct brw_context *brw);
1108 void brw_emit_query_end(struct brw_context *brw);
1109
1110 /*======================================================================
1111 * brw_state_dump.c
1112 */
1113 void brw_debug_batch(struct intel_context *intel);
1114 void brw_annotate_aub(struct intel_context *intel);
1115
1116 /*======================================================================
1117 * brw_tex.c
1118 */
1119 void brw_validate_textures( struct brw_context *brw );
1120
1121
1122 /*======================================================================
1123 * brw_program.c
1124 */
1125 void brwInitFragProgFuncs( struct dd_function_table *functions );
1126
1127 int brw_get_scratch_size(int size);
1128 void brw_get_scratch_bo(struct intel_context *intel,
1129 drm_intel_bo **scratch_bo, int size);
1130
1131
1132 /* brw_urb.c
1133 */
1134 void brw_upload_urb_fence(struct brw_context *brw);
1135
1136 /* brw_curbe.c
1137 */
1138 void brw_upload_cs_urb_state(struct brw_context *brw);
1139
1140 /* brw_disasm.c */
1141 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1142
1143 /* brw_vs.c */
1144 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1145
1146 /* brw_wm_surface_state.c */
1147 void brw_init_surface_formats(struct brw_context *brw);
1148 void
1149 brw_update_sol_surface(struct brw_context *brw,
1150 struct gl_buffer_object *buffer_obj,
1151 uint32_t *out_offset, unsigned num_vector_components,
1152 unsigned stride_dwords, unsigned offset_dwords);
1153 void brw_upload_ubo_surfaces(struct brw_context *brw,
1154 struct gl_shader *shader,
1155 uint32_t *surf_offsets);
1156
1157 /* gen6_sol.c */
1158 void
1159 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1160 struct gl_transform_feedback_object *obj);
1161 void
1162 brw_end_transform_feedback(struct gl_context *ctx,
1163 struct gl_transform_feedback_object *obj);
1164
1165 /* gen7_sol_state.c */
1166 void
1167 gen7_end_transform_feedback(struct gl_context *ctx,
1168 struct gl_transform_feedback_object *obj);
1169
1170 /* brw_blorp_blit.cpp */
1171 GLbitfield
1172 brw_blorp_framebuffer(struct intel_context *intel,
1173 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1174 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1175 GLbitfield mask, GLenum filter);
1176
1177 /* gen6_multisample_state.c */
1178 void
1179 gen6_emit_3dstate_multisample(struct brw_context *brw,
1180 unsigned num_samples);
1181 void
1182 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1183 unsigned num_samples, float coverage,
1184 bool coverage_invert);
1185
1186 /* gen7_urb.c */
1187 void
1188 gen7_allocate_push_constants(struct brw_context *brw);
1189
1190 void
1191 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1192 GLuint vs_size, GLuint vs_start);
1193
1194
1195
1196 /*======================================================================
1197 * Inline conversion functions. These are better-typed than the
1198 * macros used previously:
1199 */
1200 static INLINE struct brw_context *
1201 brw_context( struct gl_context *ctx )
1202 {
1203 return (struct brw_context *)ctx;
1204 }
1205
1206 static INLINE struct brw_vertex_program *
1207 brw_vertex_program(struct gl_vertex_program *p)
1208 {
1209 return (struct brw_vertex_program *) p;
1210 }
1211
1212 static INLINE const struct brw_vertex_program *
1213 brw_vertex_program_const(const struct gl_vertex_program *p)
1214 {
1215 return (const struct brw_vertex_program *) p;
1216 }
1217
1218 static INLINE struct brw_fragment_program *
1219 brw_fragment_program(struct gl_fragment_program *p)
1220 {
1221 return (struct brw_fragment_program *) p;
1222 }
1223
1224 static INLINE const struct brw_fragment_program *
1225 brw_fragment_program_const(const struct gl_fragment_program *p)
1226 {
1227 return (const struct brw_fragment_program *) p;
1228 }
1229
1230 /**
1231 * Pre-gen6, the register file of the EUs was shared between threads,
1232 * and each thread used some subset allocated on a 16-register block
1233 * granularity. The unit states wanted these block counts.
1234 */
1235 static inline int
1236 brw_register_blocks(int reg_count)
1237 {
1238 return ALIGN(reg_count, 16) / 16 - 1;
1239 }
1240
1241 static inline uint32_t
1242 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1243 uint32_t prog_offset)
1244 {
1245 struct intel_context *intel = &brw->intel;
1246
1247 if (intel->gen >= 5) {
1248 /* Using state base address. */
1249 return prog_offset;
1250 }
1251
1252 drm_intel_bo_emit_reloc(intel->batch.bo,
1253 state_offset,
1254 brw->cache.bo,
1255 prog_offset,
1256 I915_GEM_DOMAIN_INSTRUCTION, 0);
1257
1258 return brw->cache.bo->offset + prog_offset;
1259 }
1260
1261 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1262 bool brw_lower_texture_gradients(struct exec_list *instructions);
1263
1264 #ifdef __cplusplus
1265 }
1266 #endif
1267
1268 #endif