i965: Remove some old texturing debug code.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122
123 enum brw_state_id {
124 BRW_STATE_URB_FENCE,
125 BRW_STATE_FRAGMENT_PROGRAM,
126 BRW_STATE_VERTEX_PROGRAM,
127 BRW_STATE_INPUT_DIMENSIONS,
128 BRW_STATE_CURBE_OFFSETS,
129 BRW_STATE_REDUCED_PRIMITIVE,
130 BRW_STATE_PRIMITIVE,
131 BRW_STATE_CONTEXT,
132 BRW_STATE_WM_INPUT_DIMENSIONS,
133 BRW_STATE_PSP,
134 BRW_STATE_WM_SURFACES,
135 BRW_STATE_VS_BINDING_TABLE,
136 BRW_STATE_GS_BINDING_TABLE,
137 BRW_STATE_PS_BINDING_TABLE,
138 BRW_STATE_INDICES,
139 BRW_STATE_VERTICES,
140 BRW_STATE_BATCH,
141 BRW_STATE_NR_WM_SURFACES,
142 BRW_STATE_NR_VS_SURFACES,
143 BRW_STATE_INDEX_BUFFER,
144 BRW_STATE_VS_CONSTBUF,
145 BRW_STATE_WM_CONSTBUF,
146 BRW_STATE_PROGRAM_CACHE,
147 BRW_STATE_STATE_BASE_ADDRESS,
148 };
149
150 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
151 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
152 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
153 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
154 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
155 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
156 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
157 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
158 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
159 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
160 #define BRW_NEW_WM_SURFACES (1 << BRW_STATE_WM_SURFACES)
161 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
162 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
163 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
164 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
165 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
166 /**
167 * Used for any batch entry with a relocated pointer that will be used
168 * by any 3D rendering.
169 */
170 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
171 /** \see brw.state.depth_region */
172 #define BRW_NEW_NR_WM_SURFACES (1 << BRW_STATE_NR_WM_SURFACES)
173 #define BRW_NEW_NR_VS_SURFACES (1 << BRW_STATE_NR_VS_SURFACES)
174 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
175 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
176 #define BRW_NEW_WM_CONSTBUF (1 << BRW_STATE_WM_CONSTBUF)
177 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
178 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
179
180 struct brw_state_flags {
181 /** State update flags signalled by mesa internals */
182 GLuint mesa;
183 /**
184 * State update flags signalled as the result of brw_tracked_state updates
185 */
186 GLuint brw;
187 /** State update flags signalled by brw_state_cache.c searches */
188 GLuint cache;
189 };
190
191 enum state_struct_type {
192 AUB_TRACE_VS_STATE = 1,
193 AUB_TRACE_GS_STATE = 2,
194 AUB_TRACE_CLIP_STATE = 3,
195 AUB_TRACE_SF_STATE = 4,
196 AUB_TRACE_WM_STATE = 5,
197 AUB_TRACE_CC_STATE = 6,
198 AUB_TRACE_CLIP_VP_STATE = 7,
199 AUB_TRACE_SF_VP_STATE = 8,
200 AUB_TRACE_CC_VP_STATE = 0x9,
201 AUB_TRACE_SAMPLER_STATE = 0xa,
202 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
203 AUB_TRACE_SCRATCH_SPACE = 0xc,
204 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
205
206 AUB_TRACE_SCISSOR_STATE = 0x15,
207 AUB_TRACE_BLEND_STATE = 0x16,
208 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
209
210 /* Not written to .aub files the same way the structures above are. */
211 AUB_TRACE_NO_TYPE = 0x100,
212 AUB_TRACE_BINDING_TABLE = 0x101,
213 AUB_TRACE_SURFACE_STATE = 0x102,
214 AUB_TRACE_VS_CONSTANTS = 0x103,
215 AUB_TRACE_WM_CONSTANTS = 0x104,
216 };
217
218 /** Subclass of Mesa vertex program */
219 struct brw_vertex_program {
220 struct gl_vertex_program program;
221 GLuint id;
222 bool use_const_buffer;
223 };
224
225
226 /** Subclass of Mesa fragment program */
227 struct brw_fragment_program {
228 struct gl_fragment_program program;
229 GLuint id; /**< serial no. to identify frag progs, never re-used */
230 };
231
232 struct brw_shader {
233 struct gl_shader base;
234
235 /** Shader IR transformed for native compile, at link time. */
236 struct exec_list *ir;
237 };
238
239 struct brw_shader_program {
240 struct gl_shader_program base;
241 };
242
243 enum param_conversion {
244 PARAM_NO_CONVERT,
245 PARAM_CONVERT_F2I,
246 PARAM_CONVERT_F2U,
247 PARAM_CONVERT_F2B,
248 PARAM_CONVERT_ZERO,
249 };
250
251 /* Data about a particular attempt to compile a program. Note that
252 * there can be many of these, each in a different GL state
253 * corresponding to a different brw_wm_prog_key struct, with different
254 * compiled programs:
255 */
256 struct brw_wm_prog_data {
257 GLuint curb_read_length;
258 GLuint urb_read_length;
259
260 GLuint first_curbe_grf;
261 GLuint first_curbe_grf_16;
262 GLuint reg_blocks;
263 GLuint reg_blocks_16;
264 GLuint total_scratch;
265
266 GLuint nr_params; /**< number of float params/constants */
267 GLuint nr_pull_params;
268 bool error;
269 int dispatch_width;
270 uint32_t prog_offset_16;
271
272 /* Pointer to tracked values (only valid once
273 * _mesa_load_state_parameters has been called at runtime).
274 */
275 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
276 enum param_conversion param_convert[MAX_UNIFORMS * 4];
277 const float *pull_param[MAX_UNIFORMS * 4];
278 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
279 };
280
281 /**
282 * Enum representing the i965-specific vertex results that don't correspond
283 * exactly to any element of gl_vert_result. The values of this enum are
284 * assigned such that they don't conflict with gl_vert_result.
285 */
286 typedef enum
287 {
288 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
289 BRW_VERT_RESULT_HPOS_DUPLICATE,
290 BRW_VERT_RESULT_PAD,
291 BRW_VERT_RESULT_MAX
292 } brw_vert_result;
293
294
295 /**
296 * Data structure recording the relationship between the gl_vert_result enum
297 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
298 * single octaword within the VUE (128 bits).
299 *
300 * Note that each BRW register contains 256 bits (2 octawords), so when
301 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
302 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
303 * in a vertex shader), each register corresponds to a single VUE slot, since
304 * it contains data for two separate vertices.
305 */
306 struct brw_vue_map {
307 /**
308 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
309 * not stored in a slot (because they are not written, or because
310 * additional processing is applied before storing them in the VUE), the
311 * value is -1.
312 */
313 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
314
315 /**
316 * Map from VUE slot to gl_vert_result value. For slots that do not
317 * directly correspond to a gl_vert_result, the value comes from
318 * brw_vert_result.
319 *
320 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
321 * simplifies code that uses the value stored in slot_to_vert_result to
322 * create a bit mask).
323 */
324 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
325
326 /**
327 * Total number of VUE slots in use
328 */
329 int num_slots;
330 };
331
332 /**
333 * Convert a VUE slot number into a byte offset within the VUE.
334 */
335 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
336 {
337 return 16*slot;
338 }
339
340 /**
341 * Convert a vert_result into a byte offset within the VUE.
342 */
343 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
344 GLuint vert_result)
345 {
346 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
347 }
348
349
350 struct brw_sf_prog_data {
351 GLuint urb_read_length;
352 GLuint total_grf;
353
354 /* Each vertex may have upto 12 attributes, 4 components each,
355 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
356 * rows.
357 *
358 * Actually we use 4 for each, so call it 12 rows.
359 */
360 GLuint urb_entry_size;
361 };
362
363 struct brw_clip_prog_data {
364 GLuint curb_read_length; /* user planes? */
365 GLuint clip_mode;
366 GLuint urb_read_length;
367 GLuint total_grf;
368 };
369
370 struct brw_gs_prog_data {
371 GLuint urb_read_length;
372 GLuint total_grf;
373 };
374
375 struct brw_vs_prog_data {
376 GLuint curb_read_length;
377 GLuint urb_read_length;
378 GLuint total_grf;
379 GLbitfield64 outputs_written;
380 GLuint nr_params; /**< number of float params/constants */
381 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
382 GLuint total_scratch;
383
384 GLuint inputs_read;
385
386 /* Used for calculating urb partitions:
387 */
388 GLuint urb_entry_size;
389
390 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
391 const float *pull_param[MAX_UNIFORMS * 4];
392
393 bool uses_new_param_layout;
394 };
395
396
397 /* Size == 0 if output either not written, or always [0,0,0,1]
398 */
399 struct brw_vs_ouput_sizes {
400 GLubyte output_size[VERT_RESULT_MAX];
401 };
402
403
404 /** Number of texture sampler units */
405 #define BRW_MAX_TEX_UNIT 16
406
407 /** Max number of render targets in a shader */
408 #define BRW_MAX_DRAW_BUFFERS 8
409
410 /**
411 * Size of our surface binding table for the WM.
412 * This contains pointers to the drawing surfaces and current texture
413 * objects and shader constant buffers (+2).
414 */
415 #define BRW_WM_MAX_SURF (BRW_MAX_DRAW_BUFFERS + BRW_MAX_TEX_UNIT + 1)
416
417 /**
418 * Helpers to convert drawing buffers, textures and constant buffers
419 * to surface binding table indexes, for WM.
420 */
421 #define SURF_INDEX_DRAW(d) (d)
422 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS)
423 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 1 + (t))
424
425 /**
426 * Size of surface binding table for the VS.
427 * Only one constant buffer for now.
428 */
429 #define BRW_VS_MAX_SURF 1
430
431 /**
432 * Only a VS constant buffer
433 */
434 #define SURF_INDEX_VERT_CONST_BUFFER 0
435
436
437 enum brw_cache_id {
438 BRW_BLEND_STATE,
439 BRW_DEPTH_STENCIL_STATE,
440 BRW_COLOR_CALC_STATE,
441 BRW_CC_VP,
442 BRW_CC_UNIT,
443 BRW_WM_PROG,
444 BRW_SAMPLER,
445 BRW_WM_UNIT,
446 BRW_SF_PROG,
447 BRW_SF_VP,
448 BRW_SF_UNIT, /* scissor state on gen6 */
449 BRW_VS_UNIT,
450 BRW_VS_PROG,
451 BRW_GS_UNIT,
452 BRW_GS_PROG,
453 BRW_CLIP_VP,
454 BRW_CLIP_UNIT,
455 BRW_CLIP_PROG,
456
457 BRW_MAX_CACHE
458 };
459
460 struct brw_cache_item {
461 /**
462 * Effectively part of the key, cache_id identifies what kind of state
463 * buffer is involved, and also which brw->state.dirty.cache flag should
464 * be set when this cache item is chosen.
465 */
466 enum brw_cache_id cache_id;
467 /** 32-bit hash of the key data */
468 GLuint hash;
469 GLuint key_size; /* for variable-sized keys */
470 GLuint aux_size;
471 const void *key;
472
473 uint32_t offset;
474 uint32_t size;
475
476 struct brw_cache_item *next;
477 };
478
479
480
481 struct brw_cache {
482 struct brw_context *brw;
483
484 struct brw_cache_item **items;
485 drm_intel_bo *bo;
486 GLuint size, n_items;
487
488 uint32_t next_offset;
489 bool bo_used_by_gpu;
490 };
491
492
493 /* Considered adding a member to this struct to document which flags
494 * an update might raise so that ordering of the state atoms can be
495 * checked or derived at runtime. Dropped the idea in favor of having
496 * a debug mode where the state is monitored for flags which are
497 * raised that have already been tested against.
498 */
499 struct brw_tracked_state {
500 struct brw_state_flags dirty;
501 void (*prepare)( struct brw_context *brw );
502 void (*emit)( struct brw_context *brw );
503 };
504
505 /* Flags for brw->state.cache.
506 */
507 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
508 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
509 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
510 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
511 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
512 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
513 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
514 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
515 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
516 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
517 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
518 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
519 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
520 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
521 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
522 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
523 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
524 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
525
526 struct brw_cached_batch_item {
527 struct header *header;
528 GLuint sz;
529 struct brw_cached_batch_item *next;
530 };
531
532
533
534 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
535 * be easier if C allowed arrays of packed elements?
536 */
537 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
538
539 struct brw_vertex_buffer {
540 /** Buffer object containing the uploaded vertex data */
541 drm_intel_bo *bo;
542 uint32_t offset;
543 /** Byte stride between elements in the uploaded array */
544 GLuint stride;
545 };
546 struct brw_vertex_element {
547 const struct gl_client_array *glarray;
548
549 int buffer;
550
551 /** The corresponding Mesa vertex attribute */
552 gl_vert_attrib attrib;
553 /** Size of a complete element */
554 GLuint element_size;
555 /** Offset of the first element within the buffer object */
556 unsigned int offset;
557 };
558
559
560
561 struct brw_vertex_info {
562 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
563 };
564
565 struct brw_query_object {
566 struct gl_query_object Base;
567
568 /** Last query BO associated with this query. */
569 drm_intel_bo *bo;
570 /** First index in bo with query data for this object. */
571 int first_index;
572 /** Last index in bo with query data for this object. */
573 int last_index;
574 };
575
576
577 /**
578 * brw_context is derived from intel_context.
579 */
580 struct brw_context
581 {
582 struct intel_context intel; /**< base class, must be first field */
583 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
584
585 bool emit_state_always;
586 bool has_surface_tile_offset;
587 bool has_compr4;
588 bool has_negative_rhw_bug;
589 bool has_aa_line_parameters;
590 bool has_pln;
591 bool new_vs_backend;
592
593 struct {
594 struct brw_state_flags dirty;
595 } state;
596
597 struct brw_cache cache;
598 struct brw_cached_batch_item *cached_batch_items;
599
600 struct {
601 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
602 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
603 struct {
604 uint32_t handle;
605 uint32_t offset;
606 uint32_t stride;
607 } current_buffers[VERT_ATTRIB_MAX];
608
609 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
610 GLuint nr_enabled;
611 GLuint nr_buffers, nr_current_buffers;
612
613 /* Summary of size and varying of active arrays, so we can check
614 * for changes to this state:
615 */
616 struct brw_vertex_info info;
617 unsigned int min_index, max_index;
618
619 /* Offset from start of vertex buffer so we can avoid redefining
620 * the same VB packed over and over again.
621 */
622 unsigned int start_vertex_bias;
623 } vb;
624
625 struct {
626 /**
627 * Index buffer for this draw_prims call.
628 *
629 * Updates are signaled by BRW_NEW_INDICES.
630 */
631 const struct _mesa_index_buffer *ib;
632
633 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
634 drm_intel_bo *bo;
635 GLuint type;
636
637 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
638 * avoid re-uploading the IB packet over and over if we're actually
639 * referencing the same index buffer.
640 */
641 unsigned int start_vertex_offset;
642 } ib;
643
644 /* Active vertex program:
645 */
646 const struct gl_vertex_program *vertex_program;
647 const struct gl_fragment_program *fragment_program;
648
649 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
650 uint32_t CMD_VF_STATISTICS;
651 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
652 uint32_t CMD_PIPELINE_SELECT;
653
654 /**
655 * Platform specific constants containing the maximum number of threads
656 * for each pipeline stage.
657 */
658 int max_vs_threads;
659 int max_gs_threads;
660 int max_wm_threads;
661
662 /* BRW_NEW_URB_ALLOCATIONS:
663 */
664 struct {
665 GLuint vsize; /* vertex size plus header in urb registers */
666 GLuint csize; /* constant buffer size in urb registers */
667 GLuint sfsize; /* setup data size in urb registers */
668
669 bool constrained;
670
671 GLuint max_vs_entries; /* Maximum number of VS entries */
672 GLuint max_gs_entries; /* Maximum number of GS entries */
673
674 GLuint nr_vs_entries;
675 GLuint nr_gs_entries;
676 GLuint nr_clip_entries;
677 GLuint nr_sf_entries;
678 GLuint nr_cs_entries;
679
680 /* gen6:
681 * The length of each URB entry owned by the VS (or GS), as
682 * a number of 1024-bit (128-byte) rows. Should be >= 1.
683 *
684 * gen7: Same meaning, but in 512-bit (64-byte) rows.
685 */
686 GLuint vs_size;
687 GLuint gs_size;
688
689 GLuint vs_start;
690 GLuint gs_start;
691 GLuint clip_start;
692 GLuint sf_start;
693 GLuint cs_start;
694 GLuint size; /* Hardware URB size, in KB. */
695 } urb;
696
697
698 /* BRW_NEW_CURBE_OFFSETS:
699 */
700 struct {
701 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
702 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
703 GLuint clip_start;
704 GLuint clip_size;
705 GLuint vs_start;
706 GLuint vs_size;
707 GLuint total_size;
708
709 drm_intel_bo *curbe_bo;
710 /** Offset within curbe_bo of space for current curbe entry */
711 GLuint curbe_offset;
712 /** Offset within curbe_bo of space for next curbe entry */
713 GLuint curbe_next_offset;
714
715 /**
716 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
717 * in brw_curbe.c with the same set of constant data to be uploaded,
718 * so we'd rather not upload new constants in that case (it can cause
719 * a pipeline bubble since only up to 4 can be pipelined at a time).
720 */
721 GLfloat *last_buf;
722 /**
723 * Allocation for where to calculate the next set of CURBEs.
724 * It's a hot enough path that malloc/free of that data matters.
725 */
726 GLfloat *next_buf;
727 GLuint last_bufsz;
728 } curbe;
729
730 struct {
731 struct brw_vs_prog_data *prog_data;
732 int8_t *constant_map; /* variable array following prog_data */
733
734 drm_intel_bo *scratch_bo;
735 drm_intel_bo *const_bo;
736 /** Offset in the program cache to the VS program */
737 uint32_t prog_offset;
738 uint32_t state_offset;
739
740 /** Binding table of pointers to surf_bo entries */
741 uint32_t bind_bo_offset;
742 uint32_t surf_offset[BRW_VS_MAX_SURF];
743 GLuint nr_surfaces;
744
745 uint32_t push_const_offset; /* Offset in the batchbuffer */
746 int push_const_size; /* in 256-bit register increments */
747
748 /** @{ register allocator */
749
750 struct ra_regs *regs;
751
752 /**
753 * Array of the ra classes for the unaligned contiguous register
754 * block sizes used.
755 */
756 int *classes;
757
758 /**
759 * Mapping for register-allocated objects in *regs to the first
760 * GRF for that object.
761 */
762 uint8_t *ra_reg_to_grf;
763 /** @} */
764 } vs;
765
766 struct {
767 struct brw_gs_prog_data *prog_data;
768
769 bool prog_active;
770 /** Offset in the program cache to the CLIP program pre-gen6 */
771 uint32_t prog_offset;
772 uint32_t state_offset;
773 } gs;
774
775 struct {
776 struct brw_clip_prog_data *prog_data;
777
778 /** Offset in the program cache to the CLIP program pre-gen6 */
779 uint32_t prog_offset;
780
781 /* Offset in the batch to the CLIP state on pre-gen6. */
782 uint32_t state_offset;
783
784 /* As of gen6, this is the offset in the batch to the CLIP VP,
785 * instead of vp_bo.
786 */
787 uint32_t vp_offset;
788 } clip;
789
790
791 struct {
792 struct brw_sf_prog_data *prog_data;
793
794 /** Offset in the program cache to the CLIP program pre-gen6 */
795 uint32_t prog_offset;
796 uint32_t state_offset;
797 uint32_t vp_offset;
798 } sf;
799
800 struct {
801 struct brw_wm_prog_data *prog_data;
802 struct brw_wm_compile *compile_data;
803
804 /** Input sizes, calculated from active vertex program.
805 * One bit per fragment program input attribute.
806 */
807 GLbitfield input_size_masks[4];
808
809 /** offsets in the batch to sampler default colors (texture border color)
810 */
811 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
812
813 GLuint render_surf;
814 GLuint nr_surfaces;
815
816 drm_intel_bo *scratch_bo;
817
818 GLuint sampler_count;
819 uint32_t sampler_offset;
820
821 /** Offset in the program cache to the WM program */
822 uint32_t prog_offset;
823
824 /** Binding table of pointers to surf_bo entries */
825 uint32_t bind_bo_offset;
826 uint32_t surf_offset[BRW_WM_MAX_SURF];
827 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
828
829 drm_intel_bo *const_bo; /* pull constant buffer. */
830 /**
831 * This is offset in the batch to the push constants on gen6.
832 *
833 * Pre-gen6, push constants live in the CURBE.
834 */
835 uint32_t push_const_offset;
836
837 /** @{ register allocator */
838
839 struct ra_regs *regs;
840
841 /** Array of the ra classes for the unaligned contiguous
842 * register block sizes used.
843 */
844 int *classes;
845
846 /**
847 * Mapping for register-allocated objects in *regs to the first
848 * GRF for that object.
849 */
850 uint8_t *ra_reg_to_grf;
851
852 /**
853 * ra class for the aligned pairs we use for PLN, which doesn't
854 * appear in *classes.
855 */
856 int aligned_pairs_class;
857
858 /** @} */
859 } wm;
860
861
862 struct {
863 uint32_t state_offset;
864 uint32_t blend_state_offset;
865 uint32_t depth_stencil_state_offset;
866 uint32_t vp_offset;
867 } cc;
868
869 struct {
870 struct brw_query_object *obj;
871 drm_intel_bo *bo;
872 int index;
873 bool active;
874 } query;
875 /* Used to give every program string a unique id
876 */
877 GLuint program_id;
878
879 int num_prepare_atoms, num_emit_atoms;
880 struct brw_tracked_state prepare_atoms[64], emit_atoms[64];
881
882 /* If (INTEL_DEBUG & DEBUG_BATCH) */
883 struct {
884 uint32_t offset;
885 uint32_t size;
886 enum state_struct_type type;
887 } *state_batch_list;
888 int state_batch_count;
889 };
890
891
892
893 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
894
895 struct brw_instruction_info {
896 char *name;
897 int nsrc;
898 int ndst;
899 bool is_arith;
900 };
901 extern const struct brw_instruction_info brw_opcodes[128];
902
903 /*======================================================================
904 * brw_vtbl.c
905 */
906 void brwInitVtbl( struct brw_context *brw );
907
908 /*======================================================================
909 * brw_context.c
910 */
911 bool brwCreateContext(int api,
912 const struct gl_config *mesaVis,
913 __DRIcontext *driContextPriv,
914 void *sharedContextPrivate);
915
916 /*======================================================================
917 * brw_queryobj.c
918 */
919 void brw_init_queryobj_functions(struct dd_function_table *functions);
920 void brw_prepare_query_begin(struct brw_context *brw);
921 void brw_emit_query_begin(struct brw_context *brw);
922 void brw_emit_query_end(struct brw_context *brw);
923
924 /*======================================================================
925 * brw_state_dump.c
926 */
927 void brw_debug_batch(struct intel_context *intel);
928
929 /*======================================================================
930 * brw_tex.c
931 */
932 void brw_validate_textures( struct brw_context *brw );
933
934
935 /*======================================================================
936 * brw_program.c
937 */
938 void brwInitFragProgFuncs( struct dd_function_table *functions );
939
940 int brw_get_scratch_size(int size);
941 void brw_get_scratch_bo(struct intel_context *intel,
942 drm_intel_bo **scratch_bo, int size);
943
944
945 /* brw_urb.c
946 */
947 void brw_upload_urb_fence(struct brw_context *brw);
948
949 /* brw_curbe.c
950 */
951 void brw_upload_cs_urb_state(struct brw_context *brw);
952
953 /* brw_disasm.c */
954 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
955
956 /* brw_vs.c */
957 void brw_compute_vue_map(struct brw_vue_map *vue_map,
958 const struct intel_context *intel,
959 bool userclip_active,
960 GLbitfield64 outputs_written);
961 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
962
963 /* brw_wm.c */
964 unsigned
965 brw_compute_barycentric_interp_modes(bool shade_model_flat,
966 const struct gl_fragment_program *fprog);
967
968 /* gen6_clip_state.c */
969 bool
970 brw_fprog_uses_noperspective(const struct gl_fragment_program *fprog);
971
972
973
974 /*======================================================================
975 * Inline conversion functions. These are better-typed than the
976 * macros used previously:
977 */
978 static INLINE struct brw_context *
979 brw_context( struct gl_context *ctx )
980 {
981 return (struct brw_context *)ctx;
982 }
983
984 static INLINE struct brw_vertex_program *
985 brw_vertex_program(struct gl_vertex_program *p)
986 {
987 return (struct brw_vertex_program *) p;
988 }
989
990 static INLINE const struct brw_vertex_program *
991 brw_vertex_program_const(const struct gl_vertex_program *p)
992 {
993 return (const struct brw_vertex_program *) p;
994 }
995
996 static INLINE struct brw_fragment_program *
997 brw_fragment_program(struct gl_fragment_program *p)
998 {
999 return (struct brw_fragment_program *) p;
1000 }
1001
1002 static INLINE const struct brw_fragment_program *
1003 brw_fragment_program_const(const struct gl_fragment_program *p)
1004 {
1005 return (const struct brw_fragment_program *) p;
1006 }
1007
1008 static inline
1009 float convert_param(enum param_conversion conversion, const float *param)
1010 {
1011 union {
1012 float f;
1013 uint32_t u;
1014 int32_t i;
1015 } fi;
1016
1017 switch (conversion) {
1018 case PARAM_NO_CONVERT:
1019 return *param;
1020 case PARAM_CONVERT_F2I:
1021 fi.i = *param;
1022 return fi.f;
1023 case PARAM_CONVERT_F2U:
1024 fi.u = *param;
1025 return fi.f;
1026 case PARAM_CONVERT_F2B:
1027 if (*param != 0.0)
1028 fi.i = 1;
1029 else
1030 fi.i = 0;
1031 return fi.f;
1032 case PARAM_CONVERT_ZERO:
1033 return 0.0;
1034 default:
1035 return *param;
1036 }
1037 }
1038
1039 /**
1040 * Pre-gen6, the register file of the EUs was shared between threads,
1041 * and each thread used some subset allocated on a 16-register block
1042 * granularity. The unit states wanted these block counts.
1043 */
1044 static inline int
1045 brw_register_blocks(int reg_count)
1046 {
1047 return ALIGN(reg_count, 16) / 16 - 1;
1048 }
1049
1050 static inline uint32_t
1051 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1052 uint32_t prog_offset)
1053 {
1054 struct intel_context *intel = &brw->intel;
1055
1056 if (intel->gen >= 5) {
1057 /* Using state base address. */
1058 return prog_offset;
1059 }
1060
1061 drm_intel_bo_emit_reloc(intel->batch.bo,
1062 state_offset,
1063 brw->cache.bo,
1064 prog_offset,
1065 I915_GEM_DOMAIN_INSTRUCTION, 0);
1066
1067 return brw->cache.bo->offset + prog_offset;
1068 }
1069
1070 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1071
1072 #endif