i965: Add helper functions for interpolation map
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_VUE_MAP_GEOM_OUT,
152 BRW_STATE_TRANSFORM_FEEDBACK,
153 BRW_STATE_RASTERIZER_DISCARD,
154 BRW_STATE_STATS_WM,
155 BRW_STATE_UNIFORM_BUFFER,
156 BRW_STATE_META_IN_PROGRESS,
157 BRW_STATE_INTERPOLATION_MAP,
158 };
159
160 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
161 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
162 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
163 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
164 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
165 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
166 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
167 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
168 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
169 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
170 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
171 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
172 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
173 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
174 /**
175 * Used for any batch entry with a relocated pointer that will be used
176 * by any 3D rendering.
177 */
178 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
179 /** \see brw.state.depth_region */
180 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
181 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
182 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
183 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
184 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
185 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
186 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
187 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
188 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
189 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
190 #define BRW_NEW_INTERPOLATION_MAP (1 << BRW_STATE_INTERPOLATION_MAP)
191
192 struct brw_state_flags {
193 /** State update flags signalled by mesa internals */
194 GLuint mesa;
195 /**
196 * State update flags signalled as the result of brw_tracked_state updates
197 */
198 GLuint brw;
199 /** State update flags signalled by brw_state_cache.c searches */
200 GLuint cache;
201 };
202
203 #define AUB_TRACE_TYPE_MASK 0x0000ff00
204 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
205 #define AUB_TRACE_TYPE_BATCH (1 << 8)
206 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
207 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
208 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
209 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
210 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
211 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
212 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
213 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
214 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
215 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
216
217 /**
218 * state_struct_type enum values are encoded with the top 16 bits representing
219 * the type to be delivered to the .aub file, and the bottom 16 bits
220 * representing the subtype. This macro performs the encoding.
221 */
222 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
223
224 enum state_struct_type {
225 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
226 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
227 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
228 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
229 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
230 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
231 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
232 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
233 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
234 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
235 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
236 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
237 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
238
239 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
240 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
241 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
242
243 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
244 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
245 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
246 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
247 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
248 };
249
250 /**
251 * Decode a state_struct_type value to determine the type that should be
252 * stored in the .aub file.
253 */
254 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
255 {
256 return (ss_type & 0xFFFF0000) >> 16;
257 }
258
259 /**
260 * Decode a state_struct_type value to determine the subtype that should be
261 * stored in the .aub file.
262 */
263 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
264 {
265 return ss_type & 0xFFFF;
266 }
267
268 /** Subclass of Mesa vertex program */
269 struct brw_vertex_program {
270 struct gl_vertex_program program;
271 GLuint id;
272 };
273
274
275 /** Subclass of Mesa fragment program */
276 struct brw_fragment_program {
277 struct gl_fragment_program program;
278 GLuint id; /**< serial no. to identify frag progs, never re-used */
279 };
280
281 struct brw_shader {
282 struct gl_shader base;
283
284 bool compiled_once;
285
286 /** Shader IR transformed for native compile, at link time. */
287 struct exec_list *ir;
288 };
289
290 /* Data about a particular attempt to compile a program. Note that
291 * there can be many of these, each in a different GL state
292 * corresponding to a different brw_wm_prog_key struct, with different
293 * compiled programs.
294 *
295 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
296 * struct!
297 */
298 struct brw_wm_prog_data {
299 GLuint curb_read_length;
300 GLuint urb_read_length;
301
302 GLuint first_curbe_grf;
303 GLuint first_curbe_grf_16;
304 GLuint reg_blocks;
305 GLuint reg_blocks_16;
306 GLuint total_scratch;
307
308 GLuint nr_params; /**< number of float params/constants */
309 GLuint nr_pull_params;
310 bool dual_src_blend;
311 int dispatch_width;
312 uint32_t prog_offset_16;
313
314 /**
315 * Mask of which interpolation modes are required by the fragment shader.
316 * Used in hardware setup on gen6+.
317 */
318 uint32_t barycentric_interp_modes;
319
320 /* Pointers to tracked values (only valid once
321 * _mesa_load_state_parameters has been called at runtime).
322 *
323 * These must be the last fields of the struct (see
324 * brw_wm_prog_data_compare()).
325 */
326 const float **param;
327 const float **pull_param;
328 };
329
330 /**
331 * Enum representing the i965-specific vertex results that don't correspond
332 * exactly to any element of gl_varying_slot. The values of this enum are
333 * assigned such that they don't conflict with gl_varying_slot.
334 */
335 typedef enum
336 {
337 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
338 BRW_VARYING_SLOT_PAD,
339 /**
340 * Technically this is not a varying but just a placeholder that
341 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
342 * builtin variable to be compiled correctly. see compile_sf_prog() for
343 * more info.
344 */
345 BRW_VARYING_SLOT_PNTC,
346 BRW_VARYING_SLOT_COUNT
347 } brw_varying_slot;
348
349
350 /**
351 * Data structure recording the relationship between the gl_varying_slot enum
352 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
353 * single octaword within the VUE (128 bits).
354 *
355 * Note that each BRW register contains 256 bits (2 octawords), so when
356 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
357 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
358 * in a vertex shader), each register corresponds to a single VUE slot, since
359 * it contains data for two separate vertices.
360 */
361 struct brw_vue_map {
362 /**
363 * Bitfield representing all varying slots that are (a) stored in this VUE
364 * map, and (b) actually written by the shader. Does not include any of
365 * the additional varying slots defined in brw_varying_slot.
366 */
367 GLbitfield64 slots_valid;
368
369 /**
370 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
371 * not stored in a slot (because they are not written, or because
372 * additional processing is applied before storing them in the VUE), the
373 * value is -1.
374 */
375 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
376
377 /**
378 * Map from VUE slot to gl_varying_slot value. For slots that do not
379 * directly correspond to a gl_varying_slot, the value comes from
380 * brw_varying_slot.
381 *
382 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
383 * simplifies code that uses the value stored in slot_to_varying to
384 * create a bit mask).
385 */
386 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
387
388 /**
389 * Total number of VUE slots in use
390 */
391 int num_slots;
392 };
393
394 /**
395 * Convert a VUE slot number into a byte offset within the VUE.
396 */
397 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
398 {
399 return 16*slot;
400 }
401
402 /**
403 * Convert a vertex output (brw_varying_slot) into a byte offset within the
404 * VUE.
405 */
406 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
407 GLuint varying)
408 {
409 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
410 }
411
412 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
413 GLbitfield64 slots_valid, bool userclip_active);
414
415
416 /*
417 * Mapping of VUE map slots to interpolation modes.
418 */
419 struct interpolation_mode_map {
420 unsigned char mode[BRW_VARYING_SLOT_COUNT];
421 };
422
423 static inline bool brw_any_flat_varyings(struct interpolation_mode_map *map)
424 {
425 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
426 if (map->mode[i] == INTERP_QUALIFIER_FLAT)
427 return true;
428
429 return false;
430 }
431
432 static inline bool brw_any_noperspective_varyings(struct interpolation_mode_map *map)
433 {
434 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
435 if (map->mode[i] == INTERP_QUALIFIER_NOPERSPECTIVE)
436 return true;
437
438 return false;
439 }
440
441
442 struct brw_sf_prog_data {
443 GLuint urb_read_length;
444 GLuint total_grf;
445
446 /* Each vertex may have upto 12 attributes, 4 components each,
447 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
448 * rows.
449 *
450 * Actually we use 4 for each, so call it 12 rows.
451 */
452 GLuint urb_entry_size;
453 };
454
455 struct brw_clip_prog_data {
456 GLuint curb_read_length; /* user planes? */
457 GLuint clip_mode;
458 GLuint urb_read_length;
459 GLuint total_grf;
460 };
461
462 struct brw_gs_prog_data {
463 GLuint urb_read_length;
464 GLuint total_grf;
465
466 /**
467 * Gen6 transform feedback: Amount by which the streaming vertex buffer
468 * indices should be incremented each time the GS is invoked.
469 */
470 unsigned svbi_postincrement_value;
471 };
472
473
474 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
475 * this struct!
476 */
477 struct brw_vec4_prog_data {
478 struct brw_vue_map vue_map;
479
480 GLuint curb_read_length;
481 GLuint urb_read_length;
482 GLuint total_grf;
483 GLuint nr_params; /**< number of float params/constants */
484 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
485 GLuint total_scratch;
486
487 /* Used for calculating urb partitions. In the VS, this is the size of the
488 * URB entry used for both input and output to the thread. In the GS, this
489 * is the size of the URB entry used for output.
490 */
491 GLuint urb_entry_size;
492
493 int num_surfaces;
494
495 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
496 const float **param;
497 const float **pull_param;
498 };
499
500
501 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
502 * struct!
503 */
504 struct brw_vs_prog_data {
505 struct brw_vec4_prog_data base;
506
507 GLbitfield64 inputs_read;
508
509 bool uses_vertexid;
510 };
511
512 /** Number of texture sampler units */
513 #define BRW_MAX_TEX_UNIT 16
514
515 /** Max number of render targets in a shader */
516 #define BRW_MAX_DRAW_BUFFERS 8
517
518 /**
519 * Max number of binding table entries used for stream output.
520 *
521 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
522 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
523 *
524 * On Gen6, the size of transform feedback data is limited not by the number
525 * of components but by the number of binding table entries we set aside. We
526 * use one binding table entry for a float, one entry for a vector, and one
527 * entry per matrix column. Since the only way we can communicate our
528 * transform feedback capabilities to the client is via
529 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
530 * worst case, in which all the varyings are floats, so we use up one binding
531 * table entry per component. Therefore we need to set aside at least 64
532 * binding table entries for use by transform feedback.
533 *
534 * Note: since we don't currently pack varyings, it is currently impossible
535 * for the client to actually use up all of these binding table entries--if
536 * all of their varyings were floats, they would run out of varying slots and
537 * fail to link. But that's a bug, so it seems prudent to go ahead and
538 * allocate the number of binding table entries we will need once the bug is
539 * fixed.
540 */
541 #define BRW_MAX_SOL_BINDINGS 64
542
543 /** Maximum number of actual buffers used for stream output */
544 #define BRW_MAX_SOL_BUFFERS 4
545
546 #define BRW_MAX_WM_UBOS 12
547 #define BRW_MAX_VS_UBOS 12
548
549 /**
550 * Helpers to create Surface Binding Table indexes for draw buffers,
551 * textures, and constant buffers.
552 *
553 * Shader threads access surfaces via numeric handles, rather than directly
554 * using pointers. The binding table maps these numeric handles to the
555 * address of the actual buffer.
556 *
557 * For example, a shader might ask to sample from "surface 7." In this case,
558 * bind[7] would contain a pointer to a texture.
559 *
560 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
561 *
562 * +-------------------------------+
563 * | 0 | Draw buffer 0 |
564 * | . | . |
565 * | : | : |
566 * | 7 | Draw buffer 7 |
567 * |-----|-------------------------|
568 * | 8 | WM Pull Constant Buffer |
569 * |-----|-------------------------|
570 * | 9 | Texture 0 |
571 * | . | . |
572 * | : | : |
573 * | 24 | Texture 15 |
574 * |-----|-------------------------|
575 * | 25 | UBO 0 |
576 * | . | . |
577 * | : | : |
578 * | 36 | UBO 11 |
579 * +-------------------------------+
580 *
581 * Our VS binding tables are programmed as follows:
582 *
583 * +-----+-------------------------+
584 * | 0 | VS Pull Constant Buffer |
585 * +-----+-------------------------+
586 * | 1 | Texture 0 |
587 * | . | . |
588 * | : | : |
589 * | 16 | Texture 15 |
590 * +-----+-------------------------+
591 * | 17 | UBO 0 |
592 * | . | . |
593 * | : | : |
594 * | 28 | UBO 11 |
595 * +-------------------------------+
596 *
597 * Our (gen6) GS binding tables are programmed as follows:
598 *
599 * +-----+-------------------------+
600 * | 0 | SOL Binding 0 |
601 * | . | . |
602 * | : | : |
603 * | 63 | SOL Binding 63 |
604 * +-----+-------------------------+
605 *
606 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
607 * the identity function or things will break. We do want to keep draw buffers
608 * first so we can use headerless render target writes for RT 0.
609 */
610 #define SURF_INDEX_DRAW(d) (d)
611 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
612 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
613 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
614 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
615 /** Maximum size of the binding table. */
616 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
617
618 #define SURF_INDEX_VERT_CONST_BUFFER (0)
619 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
620 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
621 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
622 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
623
624 #define SURF_INDEX_SOL_BINDING(t) ((t))
625 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
626
627 /**
628 * Stride in bytes between shader_time entries.
629 *
630 * We separate entries by a cacheline to reduce traffic between EUs writing to
631 * different entries.
632 */
633 #define SHADER_TIME_STRIDE 64
634
635 enum brw_cache_id {
636 BRW_CC_VP,
637 BRW_CC_UNIT,
638 BRW_WM_PROG,
639 BRW_BLORP_BLIT_PROG,
640 BRW_BLORP_CONST_COLOR_PROG,
641 BRW_SAMPLER,
642 BRW_WM_UNIT,
643 BRW_SF_PROG,
644 BRW_SF_VP,
645 BRW_SF_UNIT, /* scissor state on gen6 */
646 BRW_VS_UNIT,
647 BRW_VS_PROG,
648 BRW_GS_UNIT,
649 BRW_GS_PROG,
650 BRW_CLIP_VP,
651 BRW_CLIP_UNIT,
652 BRW_CLIP_PROG,
653
654 BRW_MAX_CACHE
655 };
656
657 struct brw_cache_item {
658 /**
659 * Effectively part of the key, cache_id identifies what kind of state
660 * buffer is involved, and also which brw->state.dirty.cache flag should
661 * be set when this cache item is chosen.
662 */
663 enum brw_cache_id cache_id;
664 /** 32-bit hash of the key data */
665 GLuint hash;
666 GLuint key_size; /* for variable-sized keys */
667 GLuint aux_size;
668 const void *key;
669
670 uint32_t offset;
671 uint32_t size;
672
673 struct brw_cache_item *next;
674 };
675
676
677 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
678 int aux_size, const void *key);
679 typedef void (*cache_aux_free_func)(const void *aux);
680
681 struct brw_cache {
682 struct brw_context *brw;
683
684 struct brw_cache_item **items;
685 drm_intel_bo *bo;
686 GLuint size, n_items;
687
688 uint32_t next_offset;
689 bool bo_used_by_gpu;
690
691 /**
692 * Optional functions used in determining whether the prog_data for a new
693 * cache item matches an existing cache item (in case there's relevant data
694 * outside of the prog_data). If NULL, a plain memcmp is done.
695 */
696 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
697 /** Optional functions for freeing other pointers attached to a prog_data. */
698 cache_aux_free_func aux_free[BRW_MAX_CACHE];
699 };
700
701
702 /* Considered adding a member to this struct to document which flags
703 * an update might raise so that ordering of the state atoms can be
704 * checked or derived at runtime. Dropped the idea in favor of having
705 * a debug mode where the state is monitored for flags which are
706 * raised that have already been tested against.
707 */
708 struct brw_tracked_state {
709 struct brw_state_flags dirty;
710 void (*emit)( struct brw_context *brw );
711 };
712
713 enum shader_time_shader_type {
714 ST_NONE,
715 ST_VS,
716 ST_VS_WRITTEN,
717 ST_VS_RESET,
718 ST_FS8,
719 ST_FS8_WRITTEN,
720 ST_FS8_RESET,
721 ST_FS16,
722 ST_FS16_WRITTEN,
723 ST_FS16_RESET,
724 };
725
726 /* Flags for brw->state.cache.
727 */
728 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
729 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
730 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
731 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
732 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
733 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
734 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
735 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
736 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
737 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
738 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
739 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
740 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
741 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
742 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
743
744 struct brw_cached_batch_item {
745 struct header *header;
746 GLuint sz;
747 struct brw_cached_batch_item *next;
748 };
749
750
751
752 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
753 * be easier if C allowed arrays of packed elements?
754 */
755 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
756
757 struct brw_vertex_buffer {
758 /** Buffer object containing the uploaded vertex data */
759 drm_intel_bo *bo;
760 uint32_t offset;
761 /** Byte stride between elements in the uploaded array */
762 GLuint stride;
763 GLuint step_rate;
764 };
765 struct brw_vertex_element {
766 const struct gl_client_array *glarray;
767
768 int buffer;
769
770 /** The corresponding Mesa vertex attribute */
771 gl_vert_attrib attrib;
772 /** Offset of the first element within the buffer object */
773 unsigned int offset;
774 };
775
776 struct brw_query_object {
777 struct gl_query_object Base;
778
779 /** Last query BO associated with this query. */
780 drm_intel_bo *bo;
781
782 /** Last index in bo with query data for this object. */
783 int last_index;
784 };
785
786
787 /**
788 * brw_context is derived from gl_context.
789 */
790 struct brw_context
791 {
792 struct gl_context ctx; /**< base class, must be first field */
793
794 struct
795 {
796 void (*destroy) (struct brw_context * brw);
797 void (*finish_batch) (struct brw_context * brw);
798 void (*new_batch) (struct brw_context * brw);
799
800 void (*update_texture_surface)(struct gl_context *ctx,
801 unsigned unit,
802 uint32_t *binding_table,
803 unsigned surf_index);
804 void (*update_renderbuffer_surface)(struct brw_context *brw,
805 struct gl_renderbuffer *rb,
806 bool layered,
807 unsigned unit);
808 void (*update_null_renderbuffer_surface)(struct brw_context *brw,
809 unsigned unit);
810 void (*create_constant_surface)(struct brw_context *brw,
811 drm_intel_bo *bo,
812 uint32_t offset,
813 uint32_t size,
814 uint32_t *out_offset,
815 bool dword_pitch);
816
817 /**
818 * Send the appropriate state packets to configure depth, stencil, and
819 * HiZ buffers (i965+ only)
820 */
821 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
822 struct intel_mipmap_tree *depth_mt,
823 uint32_t depth_offset,
824 uint32_t depthbuffer_format,
825 uint32_t depth_surface_type,
826 struct intel_mipmap_tree *stencil_mt,
827 bool hiz, bool separate_stencil,
828 uint32_t width, uint32_t height,
829 uint32_t tile_x, uint32_t tile_y);
830
831 } vtbl;
832
833 dri_bufmgr *bufmgr;
834
835 drm_intel_context *hw_ctx;
836
837 struct intel_batchbuffer batch;
838 bool no_batch_wrap;
839
840 struct {
841 drm_intel_bo *bo;
842 GLuint offset;
843 uint32_t buffer_len;
844 uint32_t buffer_offset;
845 char buffer[4096];
846 } upload;
847
848 /**
849 * Set if rendering has occured to the drawable's front buffer.
850 *
851 * This is used in the DRI2 case to detect that glFlush should also copy
852 * the contents of the fake front buffer to the real front buffer.
853 */
854 bool front_buffer_dirty;
855
856 /**
857 * Track whether front-buffer rendering is currently enabled
858 *
859 * A separate flag is used to track this in order to support MRT more
860 * easily.
861 */
862 bool is_front_buffer_rendering;
863
864 /**
865 * Track whether front-buffer is the current read target.
866 *
867 * This is closely associated with is_front_buffer_rendering, but may
868 * be set separately. The DRI2 fake front buffer must be referenced
869 * either way.
870 */
871 bool is_front_buffer_reading;
872
873 /** Framerate throttling: @{ */
874 drm_intel_bo *first_post_swapbuffers_batch;
875 bool need_throttle;
876 /** @} */
877
878 GLuint stats_wm;
879
880 /**
881 * drirc options:
882 * @{
883 */
884 bool no_rast;
885 bool always_flush_batch;
886 bool always_flush_cache;
887 bool disable_throttling;
888 bool precompile;
889
890 driOptionCache optionCache;
891 /** @} */
892
893 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
894
895 GLenum reduced_primitive;
896
897 /**
898 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
899 * variable is set, this is the flag indicating to do expensive work that
900 * might lead to a perf_debug() call.
901 */
902 bool perf_debug;
903
904 uint32_t max_gtt_map_object_size;
905
906 bool emit_state_always;
907
908 int gen;
909 int gt;
910
911 bool is_g4x;
912 bool is_baytrail;
913 bool is_haswell;
914
915 bool has_hiz;
916 bool has_separate_stencil;
917 bool must_use_separate_stencil;
918 bool has_llc;
919 bool has_swizzling;
920 bool has_surface_tile_offset;
921 bool has_compr4;
922 bool has_negative_rhw_bug;
923 bool has_aa_line_parameters;
924 bool has_pln;
925
926 /**
927 * Some versions of Gen hardware don't do centroid interpolation correctly
928 * on unlit pixels, causing incorrect values for derivatives near triangle
929 * edges. Enabling this flag causes the fragment shader to use
930 * non-centroid interpolation for unlit pixels, at the expense of two extra
931 * fragment shader instructions.
932 */
933 bool needs_unlit_centroid_workaround;
934
935 GLuint NewGLState;
936 struct {
937 struct brw_state_flags dirty;
938 } state;
939
940 struct brw_cache cache;
941 struct brw_cached_batch_item *cached_batch_items;
942
943 /* Whether a meta-operation is in progress. */
944 bool meta_in_progress;
945
946 struct {
947 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
948 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
949
950 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
951 GLuint nr_enabled;
952 GLuint nr_buffers;
953
954 /* Summary of size and varying of active arrays, so we can check
955 * for changes to this state:
956 */
957 unsigned int min_index, max_index;
958
959 /* Offset from start of vertex buffer so we can avoid redefining
960 * the same VB packed over and over again.
961 */
962 unsigned int start_vertex_bias;
963 } vb;
964
965 struct {
966 /**
967 * Index buffer for this draw_prims call.
968 *
969 * Updates are signaled by BRW_NEW_INDICES.
970 */
971 const struct _mesa_index_buffer *ib;
972
973 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
974 drm_intel_bo *bo;
975 GLuint type;
976
977 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
978 * avoid re-uploading the IB packet over and over if we're actually
979 * referencing the same index buffer.
980 */
981 unsigned int start_vertex_offset;
982 } ib;
983
984 /* Active vertex program:
985 */
986 const struct gl_vertex_program *vertex_program;
987 const struct gl_fragment_program *fragment_program;
988
989 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
990 uint32_t CMD_VF_STATISTICS;
991 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
992 uint32_t CMD_PIPELINE_SELECT;
993
994 /**
995 * Platform specific constants containing the maximum number of threads
996 * for each pipeline stage.
997 */
998 int max_vs_threads;
999 int max_gs_threads;
1000 int max_wm_threads;
1001
1002 /* BRW_NEW_URB_ALLOCATIONS:
1003 */
1004 struct {
1005 GLuint vsize; /* vertex size plus header in urb registers */
1006 GLuint csize; /* constant buffer size in urb registers */
1007 GLuint sfsize; /* setup data size in urb registers */
1008
1009 bool constrained;
1010
1011 GLuint max_vs_entries; /* Maximum number of VS entries */
1012 GLuint max_gs_entries; /* Maximum number of GS entries */
1013
1014 GLuint nr_vs_entries;
1015 GLuint nr_gs_entries;
1016 GLuint nr_clip_entries;
1017 GLuint nr_sf_entries;
1018 GLuint nr_cs_entries;
1019
1020 GLuint vs_start;
1021 GLuint gs_start;
1022 GLuint clip_start;
1023 GLuint sf_start;
1024 GLuint cs_start;
1025 GLuint size; /* Hardware URB size, in KB. */
1026
1027 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
1028 * URB space for the GS.
1029 */
1030 bool gen6_gs_previously_active;
1031 } urb;
1032
1033
1034 /* BRW_NEW_CURBE_OFFSETS:
1035 */
1036 struct {
1037 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
1038 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
1039 GLuint clip_start;
1040 GLuint clip_size;
1041 GLuint vs_start;
1042 GLuint vs_size;
1043 GLuint total_size;
1044
1045 drm_intel_bo *curbe_bo;
1046 /** Offset within curbe_bo of space for current curbe entry */
1047 GLuint curbe_offset;
1048 /** Offset within curbe_bo of space for next curbe entry */
1049 GLuint curbe_next_offset;
1050
1051 /**
1052 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
1053 * in brw_curbe.c with the same set of constant data to be uploaded,
1054 * so we'd rather not upload new constants in that case (it can cause
1055 * a pipeline bubble since only up to 4 can be pipelined at a time).
1056 */
1057 GLfloat *last_buf;
1058 /**
1059 * Allocation for where to calculate the next set of CURBEs.
1060 * It's a hot enough path that malloc/free of that data matters.
1061 */
1062 GLfloat *next_buf;
1063 GLuint last_bufsz;
1064 } curbe;
1065
1066 /** SAMPLER_STATE count and offset */
1067 struct {
1068 GLuint count;
1069 uint32_t offset;
1070 } sampler;
1071
1072 /**
1073 * Layout of vertex data exiting the geometry portion of the pipleine.
1074 * This comes from the geometry shader if one exists, otherwise from the
1075 * vertex shader.
1076 *
1077 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1078 */
1079 struct brw_vue_map vue_map_geom_out;
1080
1081 struct {
1082 struct brw_vs_prog_data *prog_data;
1083
1084 drm_intel_bo *scratch_bo;
1085 drm_intel_bo *const_bo;
1086 /** Offset in the program cache to the VS program */
1087 uint32_t prog_offset;
1088 uint32_t state_offset;
1089
1090 uint32_t push_const_offset; /* Offset in the batchbuffer */
1091 int push_const_size; /* in 256-bit register increments */
1092
1093 /** @{ register allocator */
1094
1095 struct ra_regs *regs;
1096
1097 /**
1098 * Array of the ra classes for the unaligned contiguous register
1099 * block sizes used.
1100 */
1101 int *classes;
1102
1103 /**
1104 * Mapping for register-allocated objects in *regs to the first
1105 * GRF for that object.
1106 */
1107 uint8_t *ra_reg_to_grf;
1108 /** @} */
1109
1110 uint32_t bind_bo_offset;
1111 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
1112 } vs;
1113
1114 struct {
1115 struct brw_gs_prog_data *prog_data;
1116
1117 bool prog_active;
1118 /** Offset in the program cache to the CLIP program pre-gen6 */
1119 uint32_t prog_offset;
1120 uint32_t state_offset;
1121
1122 uint32_t bind_bo_offset;
1123 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
1124 } gs;
1125
1126 struct {
1127 struct brw_clip_prog_data *prog_data;
1128
1129 /** Offset in the program cache to the CLIP program pre-gen6 */
1130 uint32_t prog_offset;
1131
1132 /* Offset in the batch to the CLIP state on pre-gen6. */
1133 uint32_t state_offset;
1134
1135 /* As of gen6, this is the offset in the batch to the CLIP VP,
1136 * instead of vp_bo.
1137 */
1138 uint32_t vp_offset;
1139 } clip;
1140
1141
1142 struct {
1143 struct brw_sf_prog_data *prog_data;
1144
1145 /** Offset in the program cache to the CLIP program pre-gen6 */
1146 uint32_t prog_offset;
1147 uint32_t state_offset;
1148 uint32_t vp_offset;
1149 } sf;
1150
1151 struct {
1152 struct brw_wm_prog_data *prog_data;
1153
1154 /** offsets in the batch to sampler default colors (texture border color)
1155 */
1156 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1157
1158 GLuint render_surf;
1159
1160 drm_intel_bo *scratch_bo;
1161
1162 /**
1163 * Buffer object used in place of multisampled null render targets on
1164 * Gen6. See brw_update_null_renderbuffer_surface().
1165 */
1166 drm_intel_bo *multisampled_null_render_target_bo;
1167
1168 /** Offset in the program cache to the WM program */
1169 uint32_t prog_offset;
1170
1171 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1172
1173 drm_intel_bo *const_bo; /* pull constant buffer. */
1174 /**
1175 * This is offset in the batch to the push constants on gen6.
1176 *
1177 * Pre-gen6, push constants live in the CURBE.
1178 */
1179 uint32_t push_const_offset;
1180
1181 /** Binding table of pointers to surf_bo entries */
1182 uint32_t bind_bo_offset;
1183 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1184
1185 struct {
1186 struct ra_regs *regs;
1187
1188 /** Array of the ra classes for the unaligned contiguous
1189 * register block sizes used.
1190 */
1191 int *classes;
1192
1193 /**
1194 * Mapping for register-allocated objects in *regs to the first
1195 * GRF for that object.
1196 */
1197 uint8_t *ra_reg_to_grf;
1198
1199 /**
1200 * ra class for the aligned pairs we use for PLN, which doesn't
1201 * appear in *classes.
1202 */
1203 int aligned_pairs_class;
1204 } reg_sets[2];
1205 } wm;
1206
1207
1208 struct {
1209 uint32_t state_offset;
1210 uint32_t blend_state_offset;
1211 uint32_t depth_stencil_state_offset;
1212 uint32_t vp_offset;
1213 } cc;
1214
1215 struct {
1216 struct brw_query_object *obj;
1217 bool begin_emitted;
1218 } query;
1219
1220 int num_atoms;
1221 const struct brw_tracked_state **atoms;
1222
1223 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1224 struct {
1225 uint32_t offset;
1226 uint32_t size;
1227 enum state_struct_type type;
1228 } *state_batch_list;
1229 int state_batch_count;
1230
1231 uint32_t render_target_format[MESA_FORMAT_COUNT];
1232 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1233
1234 /* Interpolation modes, one byte per vue slot.
1235 * Used Gen4/5 by the clip|sf|wm stages. Ignored on Gen6+.
1236 */
1237 struct interpolation_mode_map interpolation_mode;
1238
1239 /* PrimitiveRestart */
1240 struct {
1241 bool in_progress;
1242 bool enable_cut_index;
1243 } prim_restart;
1244
1245 /** Computed depth/stencil/hiz state from the current attached
1246 * renderbuffers, valid only during the drawing state upload loop after
1247 * brw_workaround_depthstencil_alignment().
1248 */
1249 struct {
1250 struct intel_mipmap_tree *depth_mt;
1251 struct intel_mipmap_tree *stencil_mt;
1252
1253 /* Inter-tile (page-aligned) byte offsets. */
1254 uint32_t depth_offset, hiz_offset, stencil_offset;
1255 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1256 uint32_t tile_x, tile_y;
1257 } depthstencil;
1258
1259 uint32_t num_instances;
1260 int basevertex;
1261
1262 struct {
1263 drm_intel_bo *bo;
1264 struct gl_shader_program **shader_programs;
1265 struct gl_program **programs;
1266 enum shader_time_shader_type *types;
1267 uint64_t *cumulative;
1268 int num_entries;
1269 int max_entries;
1270 double report_time;
1271 } shader_time;
1272
1273 __DRIcontext *driContext;
1274 struct intel_screen *intelScreen;
1275 void (*saved_viewport)(struct gl_context *ctx,
1276 GLint x, GLint y, GLsizei width, GLsizei height);
1277 };
1278
1279 /*======================================================================
1280 * brw_vtbl.c
1281 */
1282 void brwInitVtbl( struct brw_context *brw );
1283
1284 /*======================================================================
1285 * brw_context.c
1286 */
1287 bool brwCreateContext(int api,
1288 const struct gl_config *mesaVis,
1289 __DRIcontext *driContextPriv,
1290 unsigned major_version,
1291 unsigned minor_version,
1292 uint32_t flags,
1293 unsigned *error,
1294 void *sharedContextPrivate);
1295
1296 /*======================================================================
1297 * brw_misc_state.c
1298 */
1299 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1300 uint32_t depth_level,
1301 uint32_t depth_layer,
1302 struct intel_mipmap_tree *stencil_mt,
1303 uint32_t *out_tile_mask_x,
1304 uint32_t *out_tile_mask_y);
1305 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1306 GLbitfield clear_mask);
1307
1308 /*======================================================================
1309 * brw_queryobj.c
1310 */
1311 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1312 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1313 void brw_emit_query_begin(struct brw_context *brw);
1314 void brw_emit_query_end(struct brw_context *brw);
1315
1316 /** gen6_queryobj.c */
1317 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1318
1319 /*======================================================================
1320 * brw_state_dump.c
1321 */
1322 void brw_debug_batch(struct brw_context *brw);
1323 void brw_annotate_aub(struct brw_context *brw);
1324
1325 /*======================================================================
1326 * brw_tex.c
1327 */
1328 void brw_validate_textures( struct brw_context *brw );
1329
1330
1331 /*======================================================================
1332 * brw_program.c
1333 */
1334 void brwInitFragProgFuncs( struct dd_function_table *functions );
1335
1336 int brw_get_scratch_size(int size);
1337 void brw_get_scratch_bo(struct brw_context *brw,
1338 drm_intel_bo **scratch_bo, int size);
1339 void brw_init_shader_time(struct brw_context *brw);
1340 int brw_get_shader_time_index(struct brw_context *brw,
1341 struct gl_shader_program *shader_prog,
1342 struct gl_program *prog,
1343 enum shader_time_shader_type type);
1344 void brw_collect_and_report_shader_time(struct brw_context *brw);
1345 void brw_destroy_shader_time(struct brw_context *brw);
1346
1347 /* brw_urb.c
1348 */
1349 void brw_upload_urb_fence(struct brw_context *brw);
1350
1351 /* brw_curbe.c
1352 */
1353 void brw_upload_cs_urb_state(struct brw_context *brw);
1354
1355 /* brw_fs_reg_allocate.cpp
1356 */
1357 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1358
1359 /* brw_disasm.c */
1360 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1361
1362 /* brw_vs.c */
1363 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1364
1365 /* brw_wm_surface_state.c */
1366 void brw_init_surface_formats(struct brw_context *brw);
1367 void
1368 brw_update_sol_surface(struct brw_context *brw,
1369 struct gl_buffer_object *buffer_obj,
1370 uint32_t *out_offset, unsigned num_vector_components,
1371 unsigned stride_dwords, unsigned offset_dwords);
1372 void brw_upload_ubo_surfaces(struct brw_context *brw,
1373 struct gl_shader *shader,
1374 uint32_t *surf_offsets);
1375
1376 /* brw_surface_formats.c */
1377 bool brw_is_hiz_depth_format(struct brw_context *ctx, gl_format format);
1378 bool brw_render_target_supported(struct brw_context *brw,
1379 struct gl_renderbuffer *rb);
1380
1381 /* gen6_sol.c */
1382 void
1383 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1384 struct gl_transform_feedback_object *obj);
1385 void
1386 brw_end_transform_feedback(struct gl_context *ctx,
1387 struct gl_transform_feedback_object *obj);
1388
1389 /* gen7_sol_state.c */
1390 void
1391 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1392 struct gl_transform_feedback_object *obj);
1393 void
1394 gen7_end_transform_feedback(struct gl_context *ctx,
1395 struct gl_transform_feedback_object *obj);
1396
1397 /* brw_blorp_blit.cpp */
1398 GLbitfield
1399 brw_blorp_framebuffer(struct brw_context *brw,
1400 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1401 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1402 GLbitfield mask, GLenum filter);
1403
1404 bool
1405 brw_blorp_copytexsubimage(struct brw_context *brw,
1406 struct gl_renderbuffer *src_rb,
1407 struct gl_texture_image *dst_image,
1408 int slice,
1409 int srcX0, int srcY0,
1410 int dstX0, int dstY0,
1411 int width, int height);
1412
1413 /* gen6_multisample_state.c */
1414 void
1415 gen6_emit_3dstate_multisample(struct brw_context *brw,
1416 unsigned num_samples);
1417 void
1418 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1419 unsigned num_samples, float coverage,
1420 bool coverage_invert, unsigned sample_mask);
1421 void
1422 gen6_get_sample_position(struct gl_context *ctx,
1423 struct gl_framebuffer *fb,
1424 GLuint index,
1425 GLfloat *result);
1426
1427 /* gen7_urb.c */
1428 void
1429 gen7_allocate_push_constants(struct brw_context *brw);
1430
1431 void
1432 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1433 GLuint vs_size, GLuint vs_start);
1434
1435
1436
1437 /*======================================================================
1438 * Inline conversion functions. These are better-typed than the
1439 * macros used previously:
1440 */
1441 static INLINE struct brw_context *
1442 brw_context( struct gl_context *ctx )
1443 {
1444 return (struct brw_context *)ctx;
1445 }
1446
1447 static INLINE struct brw_vertex_program *
1448 brw_vertex_program(struct gl_vertex_program *p)
1449 {
1450 return (struct brw_vertex_program *) p;
1451 }
1452
1453 static INLINE const struct brw_vertex_program *
1454 brw_vertex_program_const(const struct gl_vertex_program *p)
1455 {
1456 return (const struct brw_vertex_program *) p;
1457 }
1458
1459 static INLINE struct brw_fragment_program *
1460 brw_fragment_program(struct gl_fragment_program *p)
1461 {
1462 return (struct brw_fragment_program *) p;
1463 }
1464
1465 static INLINE const struct brw_fragment_program *
1466 brw_fragment_program_const(const struct gl_fragment_program *p)
1467 {
1468 return (const struct brw_fragment_program *) p;
1469 }
1470
1471 /**
1472 * Pre-gen6, the register file of the EUs was shared between threads,
1473 * and each thread used some subset allocated on a 16-register block
1474 * granularity. The unit states wanted these block counts.
1475 */
1476 static inline int
1477 brw_register_blocks(int reg_count)
1478 {
1479 return ALIGN(reg_count, 16) / 16 - 1;
1480 }
1481
1482 static inline uint32_t
1483 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1484 uint32_t prog_offset)
1485 {
1486 if (brw->gen >= 5) {
1487 /* Using state base address. */
1488 return prog_offset;
1489 }
1490
1491 drm_intel_bo_emit_reloc(brw->batch.bo,
1492 state_offset,
1493 brw->cache.bo,
1494 prog_offset,
1495 I915_GEM_DOMAIN_INSTRUCTION, 0);
1496
1497 return brw->cache.bo->offset + prog_offset;
1498 }
1499
1500 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1501 bool brw_lower_texture_gradients(struct brw_context *brw,
1502 struct exec_list *instructions);
1503
1504 struct opcode_desc {
1505 char *name;
1506 int nsrc;
1507 int ndst;
1508 };
1509
1510 extern const struct opcode_desc opcode_descs[128];
1511
1512 void
1513 brw_emit_depthbuffer(struct brw_context *brw);
1514
1515 void
1516 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1517 struct intel_mipmap_tree *depth_mt,
1518 uint32_t depth_offset, uint32_t depthbuffer_format,
1519 uint32_t depth_surface_type,
1520 struct intel_mipmap_tree *stencil_mt,
1521 bool hiz, bool separate_stencil,
1522 uint32_t width, uint32_t height,
1523 uint32_t tile_x, uint32_t tile_y);
1524
1525 void
1526 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1527 struct intel_mipmap_tree *depth_mt,
1528 uint32_t depth_offset, uint32_t depthbuffer_format,
1529 uint32_t depth_surface_type,
1530 struct intel_mipmap_tree *stencil_mt,
1531 bool hiz, bool separate_stencil,
1532 uint32_t width, uint32_t height,
1533 uint32_t tile_x, uint32_t tile_y);
1534
1535 #ifdef __cplusplus
1536 }
1537 #endif
1538
1539 #endif