i965: Write code to compute a VUE map.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122
123 enum brw_state_id {
124 BRW_STATE_URB_FENCE,
125 BRW_STATE_FRAGMENT_PROGRAM,
126 BRW_STATE_VERTEX_PROGRAM,
127 BRW_STATE_INPUT_DIMENSIONS,
128 BRW_STATE_CURBE_OFFSETS,
129 BRW_STATE_REDUCED_PRIMITIVE,
130 BRW_STATE_PRIMITIVE,
131 BRW_STATE_CONTEXT,
132 BRW_STATE_WM_INPUT_DIMENSIONS,
133 BRW_STATE_PSP,
134 BRW_STATE_WM_SURFACES,
135 BRW_STATE_VS_BINDING_TABLE,
136 BRW_STATE_GS_BINDING_TABLE,
137 BRW_STATE_PS_BINDING_TABLE,
138 BRW_STATE_INDICES,
139 BRW_STATE_VERTICES,
140 BRW_STATE_BATCH,
141 BRW_STATE_NR_WM_SURFACES,
142 BRW_STATE_NR_VS_SURFACES,
143 BRW_STATE_INDEX_BUFFER,
144 BRW_STATE_VS_CONSTBUF,
145 BRW_STATE_WM_CONSTBUF,
146 BRW_STATE_PROGRAM_CACHE,
147 BRW_STATE_STATE_BASE_ADDRESS,
148 };
149
150 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
151 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
152 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
153 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
154 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
155 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
156 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
157 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
158 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
159 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
160 #define BRW_NEW_WM_SURFACES (1 << BRW_STATE_WM_SURFACES)
161 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
162 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
163 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
164 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
165 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
166 /**
167 * Used for any batch entry with a relocated pointer that will be used
168 * by any 3D rendering.
169 */
170 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
171 /** \see brw.state.depth_region */
172 #define BRW_NEW_NR_WM_SURFACES (1 << BRW_STATE_NR_WM_SURFACES)
173 #define BRW_NEW_NR_VS_SURFACES (1 << BRW_STATE_NR_VS_SURFACES)
174 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
175 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
176 #define BRW_NEW_WM_CONSTBUF (1 << BRW_STATE_WM_CONSTBUF)
177 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
178 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
179
180 struct brw_state_flags {
181 /** State update flags signalled by mesa internals */
182 GLuint mesa;
183 /**
184 * State update flags signalled as the result of brw_tracked_state updates
185 */
186 GLuint brw;
187 /** State update flags signalled by brw_state_cache.c searches */
188 GLuint cache;
189 };
190
191 enum state_struct_type {
192 AUB_TRACE_VS_STATE = 1,
193 AUB_TRACE_GS_STATE = 2,
194 AUB_TRACE_CLIP_STATE = 3,
195 AUB_TRACE_SF_STATE = 4,
196 AUB_TRACE_WM_STATE = 5,
197 AUB_TRACE_CC_STATE = 6,
198 AUB_TRACE_CLIP_VP_STATE = 7,
199 AUB_TRACE_SF_VP_STATE = 8,
200 AUB_TRACE_CC_VP_STATE = 0x9,
201 AUB_TRACE_SAMPLER_STATE = 0xa,
202 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
203 AUB_TRACE_SCRATCH_SPACE = 0xc,
204 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
205
206 AUB_TRACE_SCISSOR_STATE = 0x15,
207 AUB_TRACE_BLEND_STATE = 0x16,
208 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
209
210 /* Not written to .aub files the same way the structures above are. */
211 AUB_TRACE_NO_TYPE = 0x100,
212 AUB_TRACE_BINDING_TABLE = 0x101,
213 AUB_TRACE_SURFACE_STATE = 0x102,
214 AUB_TRACE_VS_CONSTANTS = 0x103,
215 AUB_TRACE_WM_CONSTANTS = 0x104,
216 };
217
218 /** Subclass of Mesa vertex program */
219 struct brw_vertex_program {
220 struct gl_vertex_program program;
221 GLuint id;
222 GLboolean use_const_buffer;
223 };
224
225
226 /** Subclass of Mesa fragment program */
227 struct brw_fragment_program {
228 struct gl_fragment_program program;
229 GLuint id; /**< serial no. to identify frag progs, never re-used */
230
231 /** for debugging, which texture units are referenced */
232 GLbitfield tex_units_used;
233 };
234
235 struct brw_shader {
236 struct gl_shader base;
237
238 /** Shader IR transformed for native compile, at link time. */
239 struct exec_list *ir;
240 };
241
242 struct brw_shader_program {
243 struct gl_shader_program base;
244 };
245
246 enum param_conversion {
247 PARAM_NO_CONVERT,
248 PARAM_CONVERT_F2I,
249 PARAM_CONVERT_F2U,
250 PARAM_CONVERT_F2B,
251 PARAM_CONVERT_ZERO,
252 };
253
254 /* Data about a particular attempt to compile a program. Note that
255 * there can be many of these, each in a different GL state
256 * corresponding to a different brw_wm_prog_key struct, with different
257 * compiled programs:
258 */
259 struct brw_wm_prog_data {
260 GLuint curb_read_length;
261 GLuint urb_read_length;
262
263 GLuint first_curbe_grf;
264 GLuint first_curbe_grf_16;
265 GLuint reg_blocks;
266 GLuint reg_blocks_16;
267 GLuint total_scratch;
268
269 GLuint nr_params; /**< number of float params/constants */
270 GLuint nr_pull_params;
271 GLboolean error;
272 int dispatch_width;
273 uint32_t prog_offset_16;
274
275 /* Pointer to tracked values (only valid once
276 * _mesa_load_state_parameters has been called at runtime).
277 */
278 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
279 enum param_conversion param_convert[MAX_UNIFORMS * 4];
280 const float *pull_param[MAX_UNIFORMS * 4];
281 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
282 };
283
284 /**
285 * Enum representing the i965-specific vertex results that don't correspond
286 * exactly to any element of gl_vert_result. The values of this enum are
287 * assigned such that they don't conflict with gl_vert_result.
288 */
289 typedef enum
290 {
291 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
292 BRW_VERT_RESULT_HPOS_DUPLICATE,
293 BRW_VERT_RESULT_CLIP0,
294 BRW_VERT_RESULT_CLIP1,
295 BRW_VERT_RESULT_PAD,
296 BRW_VERT_RESULT_MAX
297 } brw_vert_result;
298
299
300 /**
301 * Data structure recording the relationship between the gl_vert_result enum
302 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
303 * single octaword within the VUE (128 bits).
304 *
305 * Note that each BRW register contains 256 bits (2 octawords), so when
306 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
307 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
308 * in a vertex shader), each register corresponds to a single VUE slot, since
309 * it contains data for two separate vertices.
310 */
311 struct brw_vue_map {
312 /**
313 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
314 * not stored in a slot (because they are not written, or because
315 * additional processing is applied before storing them in the VUE), the
316 * value is -1.
317 */
318 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
319
320 /**
321 * Map from VUE slot to gl_vert_result value. For slots that do not
322 * directly correspond to a gl_vert_result, the value comes from
323 * brw_vert_result.
324 *
325 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
326 * simplifies code that uses the value stored in slot_to_vert_result to
327 * create a bit mask).
328 */
329 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
330
331 /**
332 * Total number of VUE slots in use
333 */
334 int num_slots;
335 };
336
337 struct brw_sf_prog_data {
338 GLuint urb_read_length;
339 GLuint total_grf;
340
341 /* Each vertex may have upto 12 attributes, 4 components each,
342 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
343 * rows.
344 *
345 * Actually we use 4 for each, so call it 12 rows.
346 */
347 GLuint urb_entry_size;
348 };
349
350 struct brw_clip_prog_data {
351 GLuint curb_read_length; /* user planes? */
352 GLuint clip_mode;
353 GLuint urb_read_length;
354 GLuint total_grf;
355 };
356
357 struct brw_gs_prog_data {
358 GLuint urb_read_length;
359 GLuint total_grf;
360 };
361
362 struct brw_vs_prog_data {
363 GLuint curb_read_length;
364 GLuint urb_read_length;
365 GLuint total_grf;
366 GLbitfield64 outputs_written;
367 GLuint nr_params; /**< number of float params/constants */
368 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
369 GLuint total_scratch;
370
371 GLuint inputs_read;
372
373 /* Used for calculating urb partitions:
374 */
375 GLuint urb_entry_size;
376
377 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
378 const float *pull_param[MAX_UNIFORMS * 4];
379
380 bool uses_new_param_layout;
381 };
382
383
384 /* Size == 0 if output either not written, or always [0,0,0,1]
385 */
386 struct brw_vs_ouput_sizes {
387 GLubyte output_size[VERT_RESULT_MAX];
388 };
389
390
391 /** Number of texture sampler units */
392 #define BRW_MAX_TEX_UNIT 16
393
394 /** Max number of render targets in a shader */
395 #define BRW_MAX_DRAW_BUFFERS 8
396
397 /**
398 * Size of our surface binding table for the WM.
399 * This contains pointers to the drawing surfaces and current texture
400 * objects and shader constant buffers (+2).
401 */
402 #define BRW_WM_MAX_SURF (BRW_MAX_DRAW_BUFFERS + BRW_MAX_TEX_UNIT + 1)
403
404 /**
405 * Helpers to convert drawing buffers, textures and constant buffers
406 * to surface binding table indexes, for WM.
407 */
408 #define SURF_INDEX_DRAW(d) (d)
409 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS)
410 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 1 + (t))
411
412 /**
413 * Size of surface binding table for the VS.
414 * Only one constant buffer for now.
415 */
416 #define BRW_VS_MAX_SURF 1
417
418 /**
419 * Only a VS constant buffer
420 */
421 #define SURF_INDEX_VERT_CONST_BUFFER 0
422
423
424 enum brw_cache_id {
425 BRW_BLEND_STATE,
426 BRW_DEPTH_STENCIL_STATE,
427 BRW_COLOR_CALC_STATE,
428 BRW_CC_VP,
429 BRW_CC_UNIT,
430 BRW_WM_PROG,
431 BRW_SAMPLER,
432 BRW_WM_UNIT,
433 BRW_SF_PROG,
434 BRW_SF_VP,
435 BRW_SF_UNIT, /* scissor state on gen6 */
436 BRW_VS_UNIT,
437 BRW_VS_PROG,
438 BRW_GS_UNIT,
439 BRW_GS_PROG,
440 BRW_CLIP_VP,
441 BRW_CLIP_UNIT,
442 BRW_CLIP_PROG,
443
444 BRW_MAX_CACHE
445 };
446
447 struct brw_cache_item {
448 /**
449 * Effectively part of the key, cache_id identifies what kind of state
450 * buffer is involved, and also which brw->state.dirty.cache flag should
451 * be set when this cache item is chosen.
452 */
453 enum brw_cache_id cache_id;
454 /** 32-bit hash of the key data */
455 GLuint hash;
456 GLuint key_size; /* for variable-sized keys */
457 GLuint aux_size;
458 const void *key;
459
460 uint32_t offset;
461 uint32_t size;
462
463 struct brw_cache_item *next;
464 };
465
466
467
468 struct brw_cache {
469 struct brw_context *brw;
470
471 struct brw_cache_item **items;
472 drm_intel_bo *bo;
473 GLuint size, n_items;
474
475 uint32_t next_offset;
476 bool bo_used_by_gpu;
477 };
478
479
480 /* Considered adding a member to this struct to document which flags
481 * an update might raise so that ordering of the state atoms can be
482 * checked or derived at runtime. Dropped the idea in favor of having
483 * a debug mode where the state is monitored for flags which are
484 * raised that have already been tested against.
485 */
486 struct brw_tracked_state {
487 struct brw_state_flags dirty;
488 void (*prepare)( struct brw_context *brw );
489 void (*emit)( struct brw_context *brw );
490 };
491
492 /* Flags for brw->state.cache.
493 */
494 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
495 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
496 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
497 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
498 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
499 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
500 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
501 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
502 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
503 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
504 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
505 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
506 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
507 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
508 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
509 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
510 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
511 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
512
513 struct brw_cached_batch_item {
514 struct header *header;
515 GLuint sz;
516 struct brw_cached_batch_item *next;
517 };
518
519
520
521 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
522 * be easier if C allowed arrays of packed elements?
523 */
524 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
525
526 struct brw_vertex_buffer {
527 /** Buffer object containing the uploaded vertex data */
528 drm_intel_bo *bo;
529 uint32_t offset;
530 /** Byte stride between elements in the uploaded array */
531 GLuint stride;
532 };
533 struct brw_vertex_element {
534 const struct gl_client_array *glarray;
535
536 int buffer;
537
538 /** The corresponding Mesa vertex attribute */
539 gl_vert_attrib attrib;
540 /** Size of a complete element */
541 GLuint element_size;
542 /** Offset of the first element within the buffer object */
543 unsigned int offset;
544 };
545
546
547
548 struct brw_vertex_info {
549 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
550 };
551
552 struct brw_query_object {
553 struct gl_query_object Base;
554
555 /** Last query BO associated with this query. */
556 drm_intel_bo *bo;
557 /** First index in bo with query data for this object. */
558 int first_index;
559 /** Last index in bo with query data for this object. */
560 int last_index;
561 };
562
563
564 /**
565 * brw_context is derived from intel_context.
566 */
567 struct brw_context
568 {
569 struct intel_context intel; /**< base class, must be first field */
570 GLuint primitive;
571
572 GLboolean emit_state_always;
573 GLboolean has_surface_tile_offset;
574 GLboolean has_compr4;
575 GLboolean has_negative_rhw_bug;
576 GLboolean has_aa_line_parameters;
577 GLboolean has_pln;
578 GLboolean new_vs_backend;
579
580 struct {
581 struct brw_state_flags dirty;
582 /**
583 * List of buffers accumulated in brw_validate_state to receive
584 * drm_intel_bo_check_aperture treatment before exec, so we can
585 * know if we should flush the batch and try again before
586 * emitting primitives.
587 *
588 * This can be a fixed number as we only have a limited number of
589 * objects referenced from the batchbuffer in a primitive emit,
590 * consisting of the vertex buffers, pipelined state pointers,
591 * the CURBE, the depth buffer, and a query BO.
592 */
593 drm_intel_bo *validated_bos[VERT_ATTRIB_MAX + BRW_WM_MAX_SURF + 16];
594 unsigned int validated_bo_count;
595 } state;
596
597 struct brw_cache cache;
598 struct brw_cached_batch_item *cached_batch_items;
599
600 struct {
601 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
602 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
603 struct {
604 uint32_t handle;
605 uint32_t offset;
606 uint32_t stride;
607 } current_buffers[VERT_ATTRIB_MAX];
608
609 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
610 GLuint nr_enabled;
611 GLuint nr_buffers, nr_current_buffers;
612
613 /* Summary of size and varying of active arrays, so we can check
614 * for changes to this state:
615 */
616 struct brw_vertex_info info;
617 unsigned int min_index, max_index;
618
619 /* Offset from start of vertex buffer so we can avoid redefining
620 * the same VB packed over and over again.
621 */
622 unsigned int start_vertex_bias;
623 } vb;
624
625 struct {
626 /**
627 * Index buffer for this draw_prims call.
628 *
629 * Updates are signaled by BRW_NEW_INDICES.
630 */
631 const struct _mesa_index_buffer *ib;
632
633 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
634 drm_intel_bo *bo;
635 GLuint type;
636
637 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
638 * avoid re-uploading the IB packet over and over if we're actually
639 * referencing the same index buffer.
640 */
641 unsigned int start_vertex_offset;
642 } ib;
643
644 /* Active vertex program:
645 */
646 const struct gl_vertex_program *vertex_program;
647 const struct gl_fragment_program *fragment_program;
648
649 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
650 uint32_t CMD_VF_STATISTICS;
651 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
652 uint32_t CMD_PIPELINE_SELECT;
653 int vs_max_threads;
654 int wm_max_threads;
655
656 /* BRW_NEW_URB_ALLOCATIONS:
657 */
658 struct {
659 GLuint vsize; /* vertex size plus header in urb registers */
660 GLuint csize; /* constant buffer size in urb registers */
661 GLuint sfsize; /* setup data size in urb registers */
662
663 GLboolean constrained;
664
665 GLuint max_vs_entries; /* Maximum number of VS entries */
666 GLuint max_gs_entries; /* Maximum number of GS entries */
667
668 GLuint nr_vs_entries;
669 GLuint nr_gs_entries;
670 GLuint nr_clip_entries;
671 GLuint nr_sf_entries;
672 GLuint nr_cs_entries;
673
674 /* gen6:
675 * The length of each URB entry owned by the VS (or GS), as
676 * a number of 1024-bit (128-byte) rows. Should be >= 1.
677 *
678 * gen7: Same meaning, but in 512-bit (64-byte) rows.
679 */
680 GLuint vs_size;
681 GLuint gs_size;
682
683 GLuint vs_start;
684 GLuint gs_start;
685 GLuint clip_start;
686 GLuint sf_start;
687 GLuint cs_start;
688 GLuint size; /* Hardware URB size, in KB. */
689 } urb;
690
691
692 /* BRW_NEW_CURBE_OFFSETS:
693 */
694 struct {
695 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
696 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
697 GLuint clip_start;
698 GLuint clip_size;
699 GLuint vs_start;
700 GLuint vs_size;
701 GLuint total_size;
702
703 drm_intel_bo *curbe_bo;
704 /** Offset within curbe_bo of space for current curbe entry */
705 GLuint curbe_offset;
706 /** Offset within curbe_bo of space for next curbe entry */
707 GLuint curbe_next_offset;
708
709 /**
710 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
711 * in brw_curbe.c with the same set of constant data to be uploaded,
712 * so we'd rather not upload new constants in that case (it can cause
713 * a pipeline bubble since only up to 4 can be pipelined at a time).
714 */
715 GLfloat *last_buf;
716 /**
717 * Allocation for where to calculate the next set of CURBEs.
718 * It's a hot enough path that malloc/free of that data matters.
719 */
720 GLfloat *next_buf;
721 GLuint last_bufsz;
722 } curbe;
723
724 struct {
725 struct brw_vs_prog_data *prog_data;
726 int8_t *constant_map; /* variable array following prog_data */
727
728 drm_intel_bo *scratch_bo;
729 drm_intel_bo *const_bo;
730 /** Offset in the program cache to the VS program */
731 uint32_t prog_offset;
732 uint32_t state_offset;
733
734 /** Binding table of pointers to surf_bo entries */
735 uint32_t bind_bo_offset;
736 uint32_t surf_offset[BRW_VS_MAX_SURF];
737 GLuint nr_surfaces;
738
739 uint32_t push_const_offset; /* Offset in the batchbuffer */
740 int push_const_size; /* in 256-bit register increments */
741
742 /** @{ register allocator */
743
744 struct ra_regs *regs;
745
746 /**
747 * Array of the ra classes for the unaligned contiguous register
748 * block sizes used.
749 */
750 int *classes;
751
752 /**
753 * Mapping for register-allocated objects in *regs to the first
754 * GRF for that object.
755 */
756 uint8_t *ra_reg_to_grf;
757 /** @} */
758 } vs;
759
760 struct {
761 struct brw_gs_prog_data *prog_data;
762
763 GLboolean prog_active;
764 /** Offset in the program cache to the CLIP program pre-gen6 */
765 uint32_t prog_offset;
766 uint32_t state_offset;
767 } gs;
768
769 struct {
770 struct brw_clip_prog_data *prog_data;
771
772 /** Offset in the program cache to the CLIP program pre-gen6 */
773 uint32_t prog_offset;
774
775 /* Offset in the batch to the CLIP state on pre-gen6. */
776 uint32_t state_offset;
777
778 /* As of gen6, this is the offset in the batch to the CLIP VP,
779 * instead of vp_bo.
780 */
781 uint32_t vp_offset;
782 } clip;
783
784
785 struct {
786 struct brw_sf_prog_data *prog_data;
787
788 /** Offset in the program cache to the CLIP program pre-gen6 */
789 uint32_t prog_offset;
790 uint32_t state_offset;
791 uint32_t vp_offset;
792 } sf;
793
794 struct {
795 struct brw_wm_prog_data *prog_data;
796 struct brw_wm_compile *compile_data;
797
798 /** Input sizes, calculated from active vertex program.
799 * One bit per fragment program input attribute.
800 */
801 GLbitfield input_size_masks[4];
802
803 /** offsets in the batch to sampler default colors (texture border color)
804 */
805 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
806
807 GLuint render_surf;
808 GLuint nr_surfaces;
809
810 drm_intel_bo *scratch_bo;
811
812 GLuint sampler_count;
813 uint32_t sampler_offset;
814
815 /** Offset in the program cache to the WM program */
816 uint32_t prog_offset;
817
818 /** Binding table of pointers to surf_bo entries */
819 uint32_t bind_bo_offset;
820 uint32_t surf_offset[BRW_WM_MAX_SURF];
821 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
822
823 drm_intel_bo *const_bo; /* pull constant buffer. */
824 /**
825 * This is offset in the batch to the push constants on gen6.
826 *
827 * Pre-gen6, push constants live in the CURBE.
828 */
829 uint32_t push_const_offset;
830
831 /** @{ register allocator */
832
833 struct ra_regs *regs;
834
835 /** Array of the ra classes for the unaligned contiguous
836 * register block sizes used.
837 */
838 int *classes;
839
840 /**
841 * Mapping for register-allocated objects in *regs to the first
842 * GRF for that object.
843 */
844 uint8_t *ra_reg_to_grf;
845
846 /**
847 * ra class for the aligned pairs we use for PLN, which doesn't
848 * appear in *classes.
849 */
850 int aligned_pairs_class;
851
852 /** @} */
853 } wm;
854
855
856 struct {
857 uint32_t state_offset;
858 uint32_t blend_state_offset;
859 uint32_t depth_stencil_state_offset;
860 uint32_t vp_offset;
861 } cc;
862
863 struct {
864 struct brw_query_object *obj;
865 drm_intel_bo *bo;
866 int index;
867 GLboolean active;
868 } query;
869 /* Used to give every program string a unique id
870 */
871 GLuint program_id;
872
873 int num_prepare_atoms, num_emit_atoms;
874 struct brw_tracked_state prepare_atoms[64], emit_atoms[64];
875
876 /* If (INTEL_DEBUG & DEBUG_BATCH) */
877 struct {
878 uint32_t offset;
879 uint32_t size;
880 enum state_struct_type type;
881 } *state_batch_list;
882 int state_batch_count;
883 };
884
885
886 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
887
888 struct brw_instruction_info {
889 char *name;
890 int nsrc;
891 int ndst;
892 GLboolean is_arith;
893 };
894 extern const struct brw_instruction_info brw_opcodes[128];
895
896 /*======================================================================
897 * brw_vtbl.c
898 */
899 void brwInitVtbl( struct brw_context *brw );
900
901 /*======================================================================
902 * brw_context.c
903 */
904 GLboolean brwCreateContext( int api,
905 const struct gl_config *mesaVis,
906 __DRIcontext *driContextPriv,
907 void *sharedContextPrivate);
908
909 /*======================================================================
910 * brw_queryobj.c
911 */
912 void brw_init_queryobj_functions(struct dd_function_table *functions);
913 void brw_prepare_query_begin(struct brw_context *brw);
914 void brw_emit_query_begin(struct brw_context *brw);
915 void brw_emit_query_end(struct brw_context *brw);
916
917 /*======================================================================
918 * brw_state_dump.c
919 */
920 void brw_debug_batch(struct intel_context *intel);
921
922 /*======================================================================
923 * brw_tex.c
924 */
925 void brw_validate_textures( struct brw_context *brw );
926
927
928 /*======================================================================
929 * brw_program.c
930 */
931 void brwInitFragProgFuncs( struct dd_function_table *functions );
932
933 int brw_get_scratch_size(int size);
934 void brw_get_scratch_bo(struct intel_context *intel,
935 drm_intel_bo **scratch_bo, int size);
936
937
938 /* brw_urb.c
939 */
940 void brw_upload_urb_fence(struct brw_context *brw);
941
942 /* brw_curbe.c
943 */
944 void brw_upload_cs_urb_state(struct brw_context *brw);
945
946 /* brw_disasm.c */
947 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
948
949 /* brw_vs.c */
950 void brw_compute_vue_map(struct brw_vue_map *vue_map,
951 const struct intel_context *intel, int nr_userclip,
952 bool two_side_color, GLbitfield64 outputs_written);
953
954 /*======================================================================
955 * Inline conversion functions. These are better-typed than the
956 * macros used previously:
957 */
958 static INLINE struct brw_context *
959 brw_context( struct gl_context *ctx )
960 {
961 return (struct brw_context *)ctx;
962 }
963
964 static INLINE struct brw_vertex_program *
965 brw_vertex_program(struct gl_vertex_program *p)
966 {
967 return (struct brw_vertex_program *) p;
968 }
969
970 static INLINE const struct brw_vertex_program *
971 brw_vertex_program_const(const struct gl_vertex_program *p)
972 {
973 return (const struct brw_vertex_program *) p;
974 }
975
976 static INLINE struct brw_fragment_program *
977 brw_fragment_program(struct gl_fragment_program *p)
978 {
979 return (struct brw_fragment_program *) p;
980 }
981
982 static INLINE const struct brw_fragment_program *
983 brw_fragment_program_const(const struct gl_fragment_program *p)
984 {
985 return (const struct brw_fragment_program *) p;
986 }
987
988 static inline
989 float convert_param(enum param_conversion conversion, const float *param)
990 {
991 union {
992 float f;
993 uint32_t u;
994 int32_t i;
995 } fi;
996
997 switch (conversion) {
998 case PARAM_NO_CONVERT:
999 return *param;
1000 case PARAM_CONVERT_F2I:
1001 fi.i = *param;
1002 return fi.f;
1003 case PARAM_CONVERT_F2U:
1004 fi.u = *param;
1005 return fi.f;
1006 case PARAM_CONVERT_F2B:
1007 if (*param != 0.0)
1008 fi.i = 1;
1009 else
1010 fi.i = 0;
1011 return fi.f;
1012 case PARAM_CONVERT_ZERO:
1013 return 0.0;
1014 default:
1015 return *param;
1016 }
1017 }
1018
1019 /**
1020 * Pre-gen6, the register file of the EUs was shared between threads,
1021 * and each thread used some subset allocated on a 16-register block
1022 * granularity. The unit states wanted these block counts.
1023 */
1024 static inline int
1025 brw_register_blocks(int reg_count)
1026 {
1027 return ALIGN(reg_count, 16) / 16 - 1;
1028 }
1029
1030 static inline uint32_t
1031 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1032 uint32_t prog_offset)
1033 {
1034 struct intel_context *intel = &brw->intel;
1035
1036 if (intel->gen >= 5) {
1037 /* Using state base address. */
1038 return prog_offset;
1039 }
1040
1041 drm_intel_bo_emit_reloc(intel->batch.bo,
1042 state_offset,
1043 brw->cache.bo,
1044 prog_offset,
1045 I915_GEM_DOMAIN_INSTRUCTION, 0);
1046
1047 return brw->cache.bo->offset + prog_offset;
1048 }
1049
1050 GLboolean brw_do_cubemap_normalize(struct exec_list *instructions);
1051
1052 #endif