i965: Move intel_context's framerate throttling fields to brw_context.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_VUE_MAP_GEOM_OUT,
152 BRW_STATE_TRANSFORM_FEEDBACK,
153 BRW_STATE_RASTERIZER_DISCARD,
154 BRW_STATE_STATS_WM,
155 BRW_STATE_UNIFORM_BUFFER,
156 BRW_STATE_META_IN_PROGRESS,
157 };
158
159 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
160 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
161 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
162 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
163 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
164 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
165 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
184 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
185 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
186 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
187 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
188 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
189
190 struct brw_state_flags {
191 /** State update flags signalled by mesa internals */
192 GLuint mesa;
193 /**
194 * State update flags signalled as the result of brw_tracked_state updates
195 */
196 GLuint brw;
197 /** State update flags signalled by brw_state_cache.c searches */
198 GLuint cache;
199 };
200
201 #define AUB_TRACE_TYPE_MASK 0x0000ff00
202 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
203 #define AUB_TRACE_TYPE_BATCH (1 << 8)
204 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
205 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
206 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
207 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
208 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
209 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
210 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
211 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
212 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
213 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
214
215 /**
216 * state_struct_type enum values are encoded with the top 16 bits representing
217 * the type to be delivered to the .aub file, and the bottom 16 bits
218 * representing the subtype. This macro performs the encoding.
219 */
220 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
221
222 enum state_struct_type {
223 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
224 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
225 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
226 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
227 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
228 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
229 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
230 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
231 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
232 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
233 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
234 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
235 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
236
237 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
238 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
239 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
240
241 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
242 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
243 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
244 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
245 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
246 };
247
248 /**
249 * Decode a state_struct_type value to determine the type that should be
250 * stored in the .aub file.
251 */
252 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
253 {
254 return (ss_type & 0xFFFF0000) >> 16;
255 }
256
257 /**
258 * Decode a state_struct_type value to determine the subtype that should be
259 * stored in the .aub file.
260 */
261 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
262 {
263 return ss_type & 0xFFFF;
264 }
265
266 /** Subclass of Mesa vertex program */
267 struct brw_vertex_program {
268 struct gl_vertex_program program;
269 GLuint id;
270 };
271
272
273 /** Subclass of Mesa fragment program */
274 struct brw_fragment_program {
275 struct gl_fragment_program program;
276 GLuint id; /**< serial no. to identify frag progs, never re-used */
277 };
278
279 struct brw_shader {
280 struct gl_shader base;
281
282 bool compiled_once;
283
284 /** Shader IR transformed for native compile, at link time. */
285 struct exec_list *ir;
286 };
287
288 /* Data about a particular attempt to compile a program. Note that
289 * there can be many of these, each in a different GL state
290 * corresponding to a different brw_wm_prog_key struct, with different
291 * compiled programs.
292 *
293 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
294 * struct!
295 */
296 struct brw_wm_prog_data {
297 GLuint curb_read_length;
298 GLuint urb_read_length;
299
300 GLuint first_curbe_grf;
301 GLuint first_curbe_grf_16;
302 GLuint reg_blocks;
303 GLuint reg_blocks_16;
304 GLuint total_scratch;
305
306 GLuint nr_params; /**< number of float params/constants */
307 GLuint nr_pull_params;
308 bool dual_src_blend;
309 int dispatch_width;
310 uint32_t prog_offset_16;
311
312 /**
313 * Mask of which interpolation modes are required by the fragment shader.
314 * Used in hardware setup on gen6+.
315 */
316 uint32_t barycentric_interp_modes;
317
318 /* Pointers to tracked values (only valid once
319 * _mesa_load_state_parameters has been called at runtime).
320 *
321 * These must be the last fields of the struct (see
322 * brw_wm_prog_data_compare()).
323 */
324 const float **param;
325 const float **pull_param;
326 };
327
328 /**
329 * Enum representing the i965-specific vertex results that don't correspond
330 * exactly to any element of gl_varying_slot. The values of this enum are
331 * assigned such that they don't conflict with gl_varying_slot.
332 */
333 typedef enum
334 {
335 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
336 BRW_VARYING_SLOT_PAD,
337 /**
338 * Technically this is not a varying but just a placeholder that
339 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
340 * builtin variable to be compiled correctly. see compile_sf_prog() for
341 * more info.
342 */
343 BRW_VARYING_SLOT_PNTC,
344 BRW_VARYING_SLOT_COUNT
345 } brw_varying_slot;
346
347
348 /**
349 * Data structure recording the relationship between the gl_varying_slot enum
350 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
351 * single octaword within the VUE (128 bits).
352 *
353 * Note that each BRW register contains 256 bits (2 octawords), so when
354 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
355 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
356 * in a vertex shader), each register corresponds to a single VUE slot, since
357 * it contains data for two separate vertices.
358 */
359 struct brw_vue_map {
360 /**
361 * Bitfield representing all varying slots that are (a) stored in this VUE
362 * map, and (b) actually written by the shader. Does not include any of
363 * the additional varying slots defined in brw_varying_slot.
364 */
365 GLbitfield64 slots_valid;
366
367 /**
368 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
369 * not stored in a slot (because they are not written, or because
370 * additional processing is applied before storing them in the VUE), the
371 * value is -1.
372 */
373 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
374
375 /**
376 * Map from VUE slot to gl_varying_slot value. For slots that do not
377 * directly correspond to a gl_varying_slot, the value comes from
378 * brw_varying_slot.
379 *
380 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
381 * simplifies code that uses the value stored in slot_to_varying to
382 * create a bit mask).
383 */
384 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
385
386 /**
387 * Total number of VUE slots in use
388 */
389 int num_slots;
390 };
391
392 /**
393 * Convert a VUE slot number into a byte offset within the VUE.
394 */
395 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
396 {
397 return 16*slot;
398 }
399
400 /**
401 * Convert a vertex output (brw_varying_slot) into a byte offset within the
402 * VUE.
403 */
404 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
405 GLuint varying)
406 {
407 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
408 }
409
410 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
411 GLbitfield64 slots_valid, bool userclip_active);
412
413
414 struct brw_sf_prog_data {
415 GLuint urb_read_length;
416 GLuint total_grf;
417
418 /* Each vertex may have upto 12 attributes, 4 components each,
419 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
420 * rows.
421 *
422 * Actually we use 4 for each, so call it 12 rows.
423 */
424 GLuint urb_entry_size;
425 };
426
427 struct brw_clip_prog_data {
428 GLuint curb_read_length; /* user planes? */
429 GLuint clip_mode;
430 GLuint urb_read_length;
431 GLuint total_grf;
432 };
433
434 struct brw_gs_prog_data {
435 GLuint urb_read_length;
436 GLuint total_grf;
437
438 /**
439 * Gen6 transform feedback: Amount by which the streaming vertex buffer
440 * indices should be incremented each time the GS is invoked.
441 */
442 unsigned svbi_postincrement_value;
443 };
444
445
446 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
447 * this struct!
448 */
449 struct brw_vec4_prog_data {
450 struct brw_vue_map vue_map;
451
452 GLuint curb_read_length;
453 GLuint urb_read_length;
454 GLuint total_grf;
455 GLuint nr_params; /**< number of float params/constants */
456 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
457 GLuint total_scratch;
458
459 /* Used for calculating urb partitions. In the VS, this is the size of the
460 * URB entry used for both input and output to the thread. In the GS, this
461 * is the size of the URB entry used for output.
462 */
463 GLuint urb_entry_size;
464
465 int num_surfaces;
466
467 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
468 const float **param;
469 const float **pull_param;
470 };
471
472
473 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
474 * struct!
475 */
476 struct brw_vs_prog_data {
477 struct brw_vec4_prog_data base;
478
479 GLbitfield64 inputs_read;
480
481 bool uses_vertexid;
482 };
483
484 /** Number of texture sampler units */
485 #define BRW_MAX_TEX_UNIT 16
486
487 /** Max number of render targets in a shader */
488 #define BRW_MAX_DRAW_BUFFERS 8
489
490 /**
491 * Max number of binding table entries used for stream output.
492 *
493 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
494 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
495 *
496 * On Gen6, the size of transform feedback data is limited not by the number
497 * of components but by the number of binding table entries we set aside. We
498 * use one binding table entry for a float, one entry for a vector, and one
499 * entry per matrix column. Since the only way we can communicate our
500 * transform feedback capabilities to the client is via
501 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
502 * worst case, in which all the varyings are floats, so we use up one binding
503 * table entry per component. Therefore we need to set aside at least 64
504 * binding table entries for use by transform feedback.
505 *
506 * Note: since we don't currently pack varyings, it is currently impossible
507 * for the client to actually use up all of these binding table entries--if
508 * all of their varyings were floats, they would run out of varying slots and
509 * fail to link. But that's a bug, so it seems prudent to go ahead and
510 * allocate the number of binding table entries we will need once the bug is
511 * fixed.
512 */
513 #define BRW_MAX_SOL_BINDINGS 64
514
515 /** Maximum number of actual buffers used for stream output */
516 #define BRW_MAX_SOL_BUFFERS 4
517
518 #define BRW_MAX_WM_UBOS 12
519 #define BRW_MAX_VS_UBOS 12
520
521 /**
522 * Helpers to create Surface Binding Table indexes for draw buffers,
523 * textures, and constant buffers.
524 *
525 * Shader threads access surfaces via numeric handles, rather than directly
526 * using pointers. The binding table maps these numeric handles to the
527 * address of the actual buffer.
528 *
529 * For example, a shader might ask to sample from "surface 7." In this case,
530 * bind[7] would contain a pointer to a texture.
531 *
532 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
533 *
534 * +-------------------------------+
535 * | 0 | Draw buffer 0 |
536 * | . | . |
537 * | : | : |
538 * | 7 | Draw buffer 7 |
539 * |-----|-------------------------|
540 * | 8 | WM Pull Constant Buffer |
541 * |-----|-------------------------|
542 * | 9 | Texture 0 |
543 * | . | . |
544 * | : | : |
545 * | 24 | Texture 15 |
546 * |-----|-------------------------|
547 * | 25 | UBO 0 |
548 * | . | . |
549 * | : | : |
550 * | 36 | UBO 11 |
551 * +-------------------------------+
552 *
553 * Our VS binding tables are programmed as follows:
554 *
555 * +-----+-------------------------+
556 * | 0 | VS Pull Constant Buffer |
557 * +-----+-------------------------+
558 * | 1 | Texture 0 |
559 * | . | . |
560 * | : | : |
561 * | 16 | Texture 15 |
562 * +-----+-------------------------+
563 * | 17 | UBO 0 |
564 * | . | . |
565 * | : | : |
566 * | 28 | UBO 11 |
567 * +-------------------------------+
568 *
569 * Our (gen6) GS binding tables are programmed as follows:
570 *
571 * +-----+-------------------------+
572 * | 0 | SOL Binding 0 |
573 * | . | . |
574 * | : | : |
575 * | 63 | SOL Binding 63 |
576 * +-----+-------------------------+
577 *
578 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
579 * the identity function or things will break. We do want to keep draw buffers
580 * first so we can use headerless render target writes for RT 0.
581 */
582 #define SURF_INDEX_DRAW(d) (d)
583 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
584 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
585 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
586 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
587 /** Maximum size of the binding table. */
588 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
589
590 #define SURF_INDEX_VERT_CONST_BUFFER (0)
591 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
592 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
593 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
594 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
595
596 #define SURF_INDEX_SOL_BINDING(t) ((t))
597 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
598
599 /**
600 * Stride in bytes between shader_time entries.
601 *
602 * We separate entries by a cacheline to reduce traffic between EUs writing to
603 * different entries.
604 */
605 #define SHADER_TIME_STRIDE 64
606
607 enum brw_cache_id {
608 BRW_CC_VP,
609 BRW_CC_UNIT,
610 BRW_WM_PROG,
611 BRW_BLORP_BLIT_PROG,
612 BRW_BLORP_CONST_COLOR_PROG,
613 BRW_SAMPLER,
614 BRW_WM_UNIT,
615 BRW_SF_PROG,
616 BRW_SF_VP,
617 BRW_SF_UNIT, /* scissor state on gen6 */
618 BRW_VS_UNIT,
619 BRW_VS_PROG,
620 BRW_GS_UNIT,
621 BRW_GS_PROG,
622 BRW_CLIP_VP,
623 BRW_CLIP_UNIT,
624 BRW_CLIP_PROG,
625
626 BRW_MAX_CACHE
627 };
628
629 struct brw_cache_item {
630 /**
631 * Effectively part of the key, cache_id identifies what kind of state
632 * buffer is involved, and also which brw->state.dirty.cache flag should
633 * be set when this cache item is chosen.
634 */
635 enum brw_cache_id cache_id;
636 /** 32-bit hash of the key data */
637 GLuint hash;
638 GLuint key_size; /* for variable-sized keys */
639 GLuint aux_size;
640 const void *key;
641
642 uint32_t offset;
643 uint32_t size;
644
645 struct brw_cache_item *next;
646 };
647
648
649 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
650 int aux_size, const void *key);
651 typedef void (*cache_aux_free_func)(const void *aux);
652
653 struct brw_cache {
654 struct brw_context *brw;
655
656 struct brw_cache_item **items;
657 drm_intel_bo *bo;
658 GLuint size, n_items;
659
660 uint32_t next_offset;
661 bool bo_used_by_gpu;
662
663 /**
664 * Optional functions used in determining whether the prog_data for a new
665 * cache item matches an existing cache item (in case there's relevant data
666 * outside of the prog_data). If NULL, a plain memcmp is done.
667 */
668 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
669 /** Optional functions for freeing other pointers attached to a prog_data. */
670 cache_aux_free_func aux_free[BRW_MAX_CACHE];
671 };
672
673
674 /* Considered adding a member to this struct to document which flags
675 * an update might raise so that ordering of the state atoms can be
676 * checked or derived at runtime. Dropped the idea in favor of having
677 * a debug mode where the state is monitored for flags which are
678 * raised that have already been tested against.
679 */
680 struct brw_tracked_state {
681 struct brw_state_flags dirty;
682 void (*emit)( struct brw_context *brw );
683 };
684
685 enum shader_time_shader_type {
686 ST_NONE,
687 ST_VS,
688 ST_VS_WRITTEN,
689 ST_VS_RESET,
690 ST_FS8,
691 ST_FS8_WRITTEN,
692 ST_FS8_RESET,
693 ST_FS16,
694 ST_FS16_WRITTEN,
695 ST_FS16_RESET,
696 };
697
698 /* Flags for brw->state.cache.
699 */
700 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
701 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
702 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
703 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
704 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
705 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
706 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
707 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
708 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
709 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
710 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
711 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
712 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
713 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
714 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
715
716 struct brw_cached_batch_item {
717 struct header *header;
718 GLuint sz;
719 struct brw_cached_batch_item *next;
720 };
721
722
723
724 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
725 * be easier if C allowed arrays of packed elements?
726 */
727 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
728
729 struct brw_vertex_buffer {
730 /** Buffer object containing the uploaded vertex data */
731 drm_intel_bo *bo;
732 uint32_t offset;
733 /** Byte stride between elements in the uploaded array */
734 GLuint stride;
735 GLuint step_rate;
736 };
737 struct brw_vertex_element {
738 const struct gl_client_array *glarray;
739
740 int buffer;
741
742 /** The corresponding Mesa vertex attribute */
743 gl_vert_attrib attrib;
744 /** Offset of the first element within the buffer object */
745 unsigned int offset;
746 };
747
748 struct brw_query_object {
749 struct gl_query_object Base;
750
751 /** Last query BO associated with this query. */
752 drm_intel_bo *bo;
753
754 /** Last index in bo with query data for this object. */
755 int last_index;
756 };
757
758
759 /**
760 * brw_context is derived from intel_context.
761 */
762 struct brw_context
763 {
764 struct intel_context intel; /**< base class, must be first field */
765
766 struct
767 {
768 void (*destroy) (struct brw_context * brw);
769 void (*finish_batch) (struct brw_context * brw);
770 void (*new_batch) (struct brw_context * brw);
771
772 void (*update_texture_surface)(struct gl_context *ctx,
773 unsigned unit,
774 uint32_t *binding_table,
775 unsigned surf_index);
776 void (*update_renderbuffer_surface)(struct brw_context *brw,
777 struct gl_renderbuffer *rb,
778 bool layered,
779 unsigned unit);
780 void (*update_null_renderbuffer_surface)(struct brw_context *brw,
781 unsigned unit);
782 void (*create_constant_surface)(struct brw_context *brw,
783 drm_intel_bo *bo,
784 uint32_t offset,
785 uint32_t size,
786 uint32_t *out_offset,
787 bool dword_pitch);
788
789 /**
790 * Send the appropriate state packets to configure depth, stencil, and
791 * HiZ buffers (i965+ only)
792 */
793 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
794 struct intel_mipmap_tree *depth_mt,
795 uint32_t depth_offset,
796 uint32_t depthbuffer_format,
797 uint32_t depth_surface_type,
798 struct intel_mipmap_tree *stencil_mt,
799 bool hiz, bool separate_stencil,
800 uint32_t width, uint32_t height,
801 uint32_t tile_x, uint32_t tile_y);
802
803 } vtbl;
804
805 dri_bufmgr *bufmgr;
806
807 drm_intel_context *hw_ctx;
808
809 struct intel_batchbuffer batch;
810
811 /**
812 * Set if rendering has occured to the drawable's front buffer.
813 *
814 * This is used in the DRI2 case to detect that glFlush should also copy
815 * the contents of the fake front buffer to the real front buffer.
816 */
817 bool front_buffer_dirty;
818
819 /**
820 * Track whether front-buffer rendering is currently enabled
821 *
822 * A separate flag is used to track this in order to support MRT more
823 * easily.
824 */
825 bool is_front_buffer_rendering;
826
827 /**
828 * Track whether front-buffer is the current read target.
829 *
830 * This is closely associated with is_front_buffer_rendering, but may
831 * be set separately. The DRI2 fake front buffer must be referenced
832 * either way.
833 */
834 bool is_front_buffer_reading;
835
836 /** Framerate throttling: @{ */
837 drm_intel_bo *first_post_swapbuffers_batch;
838 bool need_throttle;
839 /** @} */
840
841 GLuint stats_wm;
842
843 /**
844 * drirc options:
845 * @{
846 */
847 bool no_rast;
848 bool always_flush_batch;
849 bool always_flush_cache;
850 bool disable_throttling;
851 bool precompile;
852
853 driOptionCache optionCache;
854 /** @} */
855
856 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
857
858 GLenum reduced_primitive;
859
860 bool emit_state_always;
861 bool has_surface_tile_offset;
862 bool has_compr4;
863 bool has_negative_rhw_bug;
864 bool has_aa_line_parameters;
865 bool has_pln;
866
867 /**
868 * Some versions of Gen hardware don't do centroid interpolation correctly
869 * on unlit pixels, causing incorrect values for derivatives near triangle
870 * edges. Enabling this flag causes the fragment shader to use
871 * non-centroid interpolation for unlit pixels, at the expense of two extra
872 * fragment shader instructions.
873 */
874 bool needs_unlit_centroid_workaround;
875
876 struct {
877 struct brw_state_flags dirty;
878 } state;
879
880 struct brw_cache cache;
881 struct brw_cached_batch_item *cached_batch_items;
882
883 /* Whether a meta-operation is in progress. */
884 bool meta_in_progress;
885
886 struct {
887 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
888 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
889
890 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
891 GLuint nr_enabled;
892 GLuint nr_buffers;
893
894 /* Summary of size and varying of active arrays, so we can check
895 * for changes to this state:
896 */
897 unsigned int min_index, max_index;
898
899 /* Offset from start of vertex buffer so we can avoid redefining
900 * the same VB packed over and over again.
901 */
902 unsigned int start_vertex_bias;
903 } vb;
904
905 struct {
906 /**
907 * Index buffer for this draw_prims call.
908 *
909 * Updates are signaled by BRW_NEW_INDICES.
910 */
911 const struct _mesa_index_buffer *ib;
912
913 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
914 drm_intel_bo *bo;
915 GLuint type;
916
917 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
918 * avoid re-uploading the IB packet over and over if we're actually
919 * referencing the same index buffer.
920 */
921 unsigned int start_vertex_offset;
922 } ib;
923
924 /* Active vertex program:
925 */
926 const struct gl_vertex_program *vertex_program;
927 const struct gl_fragment_program *fragment_program;
928
929 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
930 uint32_t CMD_VF_STATISTICS;
931 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
932 uint32_t CMD_PIPELINE_SELECT;
933
934 /**
935 * Platform specific constants containing the maximum number of threads
936 * for each pipeline stage.
937 */
938 int max_vs_threads;
939 int max_gs_threads;
940 int max_wm_threads;
941
942 /* BRW_NEW_URB_ALLOCATIONS:
943 */
944 struct {
945 GLuint vsize; /* vertex size plus header in urb registers */
946 GLuint csize; /* constant buffer size in urb registers */
947 GLuint sfsize; /* setup data size in urb registers */
948
949 bool constrained;
950
951 GLuint max_vs_entries; /* Maximum number of VS entries */
952 GLuint max_gs_entries; /* Maximum number of GS entries */
953
954 GLuint nr_vs_entries;
955 GLuint nr_gs_entries;
956 GLuint nr_clip_entries;
957 GLuint nr_sf_entries;
958 GLuint nr_cs_entries;
959
960 GLuint vs_start;
961 GLuint gs_start;
962 GLuint clip_start;
963 GLuint sf_start;
964 GLuint cs_start;
965 GLuint size; /* Hardware URB size, in KB. */
966
967 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
968 * URB space for the GS.
969 */
970 bool gen6_gs_previously_active;
971 } urb;
972
973
974 /* BRW_NEW_CURBE_OFFSETS:
975 */
976 struct {
977 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
978 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
979 GLuint clip_start;
980 GLuint clip_size;
981 GLuint vs_start;
982 GLuint vs_size;
983 GLuint total_size;
984
985 drm_intel_bo *curbe_bo;
986 /** Offset within curbe_bo of space for current curbe entry */
987 GLuint curbe_offset;
988 /** Offset within curbe_bo of space for next curbe entry */
989 GLuint curbe_next_offset;
990
991 /**
992 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
993 * in brw_curbe.c with the same set of constant data to be uploaded,
994 * so we'd rather not upload new constants in that case (it can cause
995 * a pipeline bubble since only up to 4 can be pipelined at a time).
996 */
997 GLfloat *last_buf;
998 /**
999 * Allocation for where to calculate the next set of CURBEs.
1000 * It's a hot enough path that malloc/free of that data matters.
1001 */
1002 GLfloat *next_buf;
1003 GLuint last_bufsz;
1004 } curbe;
1005
1006 /** SAMPLER_STATE count and offset */
1007 struct {
1008 GLuint count;
1009 uint32_t offset;
1010 } sampler;
1011
1012 /**
1013 * Layout of vertex data exiting the geometry portion of the pipleine.
1014 * This comes from the geometry shader if one exists, otherwise from the
1015 * vertex shader.
1016 *
1017 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1018 */
1019 struct brw_vue_map vue_map_geom_out;
1020
1021 struct {
1022 struct brw_vs_prog_data *prog_data;
1023
1024 drm_intel_bo *scratch_bo;
1025 drm_intel_bo *const_bo;
1026 /** Offset in the program cache to the VS program */
1027 uint32_t prog_offset;
1028 uint32_t state_offset;
1029
1030 uint32_t push_const_offset; /* Offset in the batchbuffer */
1031 int push_const_size; /* in 256-bit register increments */
1032
1033 /** @{ register allocator */
1034
1035 struct ra_regs *regs;
1036
1037 /**
1038 * Array of the ra classes for the unaligned contiguous register
1039 * block sizes used.
1040 */
1041 int *classes;
1042
1043 /**
1044 * Mapping for register-allocated objects in *regs to the first
1045 * GRF for that object.
1046 */
1047 uint8_t *ra_reg_to_grf;
1048 /** @} */
1049
1050 uint32_t bind_bo_offset;
1051 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
1052 } vs;
1053
1054 struct {
1055 struct brw_gs_prog_data *prog_data;
1056
1057 bool prog_active;
1058 /** Offset in the program cache to the CLIP program pre-gen6 */
1059 uint32_t prog_offset;
1060 uint32_t state_offset;
1061
1062 uint32_t bind_bo_offset;
1063 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
1064 } gs;
1065
1066 struct {
1067 struct brw_clip_prog_data *prog_data;
1068
1069 /** Offset in the program cache to the CLIP program pre-gen6 */
1070 uint32_t prog_offset;
1071
1072 /* Offset in the batch to the CLIP state on pre-gen6. */
1073 uint32_t state_offset;
1074
1075 /* As of gen6, this is the offset in the batch to the CLIP VP,
1076 * instead of vp_bo.
1077 */
1078 uint32_t vp_offset;
1079 } clip;
1080
1081
1082 struct {
1083 struct brw_sf_prog_data *prog_data;
1084
1085 /** Offset in the program cache to the CLIP program pre-gen6 */
1086 uint32_t prog_offset;
1087 uint32_t state_offset;
1088 uint32_t vp_offset;
1089 } sf;
1090
1091 struct {
1092 struct brw_wm_prog_data *prog_data;
1093
1094 /** offsets in the batch to sampler default colors (texture border color)
1095 */
1096 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1097
1098 GLuint render_surf;
1099
1100 drm_intel_bo *scratch_bo;
1101
1102 /**
1103 * Buffer object used in place of multisampled null render targets on
1104 * Gen6. See brw_update_null_renderbuffer_surface().
1105 */
1106 drm_intel_bo *multisampled_null_render_target_bo;
1107
1108 /** Offset in the program cache to the WM program */
1109 uint32_t prog_offset;
1110
1111 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1112
1113 drm_intel_bo *const_bo; /* pull constant buffer. */
1114 /**
1115 * This is offset in the batch to the push constants on gen6.
1116 *
1117 * Pre-gen6, push constants live in the CURBE.
1118 */
1119 uint32_t push_const_offset;
1120
1121 /** Binding table of pointers to surf_bo entries */
1122 uint32_t bind_bo_offset;
1123 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1124
1125 struct {
1126 struct ra_regs *regs;
1127
1128 /** Array of the ra classes for the unaligned contiguous
1129 * register block sizes used.
1130 */
1131 int *classes;
1132
1133 /**
1134 * Mapping for register-allocated objects in *regs to the first
1135 * GRF for that object.
1136 */
1137 uint8_t *ra_reg_to_grf;
1138
1139 /**
1140 * ra class for the aligned pairs we use for PLN, which doesn't
1141 * appear in *classes.
1142 */
1143 int aligned_pairs_class;
1144 } reg_sets[2];
1145 } wm;
1146
1147
1148 struct {
1149 uint32_t state_offset;
1150 uint32_t blend_state_offset;
1151 uint32_t depth_stencil_state_offset;
1152 uint32_t vp_offset;
1153 } cc;
1154
1155 struct {
1156 struct brw_query_object *obj;
1157 bool begin_emitted;
1158 } query;
1159
1160 int num_atoms;
1161 const struct brw_tracked_state **atoms;
1162
1163 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1164 struct {
1165 uint32_t offset;
1166 uint32_t size;
1167 enum state_struct_type type;
1168 } *state_batch_list;
1169 int state_batch_count;
1170
1171 uint32_t render_target_format[MESA_FORMAT_COUNT];
1172 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1173
1174 /* PrimitiveRestart */
1175 struct {
1176 bool in_progress;
1177 bool enable_cut_index;
1178 } prim_restart;
1179
1180 /** Computed depth/stencil/hiz state from the current attached
1181 * renderbuffers, valid only during the drawing state upload loop after
1182 * brw_workaround_depthstencil_alignment().
1183 */
1184 struct {
1185 struct intel_mipmap_tree *depth_mt;
1186 struct intel_mipmap_tree *stencil_mt;
1187
1188 /* Inter-tile (page-aligned) byte offsets. */
1189 uint32_t depth_offset, hiz_offset, stencil_offset;
1190 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1191 uint32_t tile_x, tile_y;
1192 } depthstencil;
1193
1194 uint32_t num_instances;
1195 int basevertex;
1196
1197 struct {
1198 drm_intel_bo *bo;
1199 struct gl_shader_program **shader_programs;
1200 struct gl_program **programs;
1201 enum shader_time_shader_type *types;
1202 uint64_t *cumulative;
1203 int num_entries;
1204 int max_entries;
1205 double report_time;
1206 } shader_time;
1207 };
1208
1209 /*======================================================================
1210 * brw_vtbl.c
1211 */
1212 void brwInitVtbl( struct brw_context *brw );
1213
1214 /*======================================================================
1215 * brw_context.c
1216 */
1217 bool brwCreateContext(int api,
1218 const struct gl_config *mesaVis,
1219 __DRIcontext *driContextPriv,
1220 unsigned major_version,
1221 unsigned minor_version,
1222 uint32_t flags,
1223 unsigned *error,
1224 void *sharedContextPrivate);
1225
1226 /*======================================================================
1227 * brw_misc_state.c
1228 */
1229 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1230 uint32_t depth_level,
1231 uint32_t depth_layer,
1232 struct intel_mipmap_tree *stencil_mt,
1233 uint32_t *out_tile_mask_x,
1234 uint32_t *out_tile_mask_y);
1235 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1236 GLbitfield clear_mask);
1237
1238 /*======================================================================
1239 * brw_queryobj.c
1240 */
1241 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1242 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1243 void brw_emit_query_begin(struct brw_context *brw);
1244 void brw_emit_query_end(struct brw_context *brw);
1245
1246 /** gen6_queryobj.c */
1247 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1248
1249 /*======================================================================
1250 * brw_state_dump.c
1251 */
1252 void brw_debug_batch(struct brw_context *brw);
1253 void brw_annotate_aub(struct brw_context *brw);
1254
1255 /*======================================================================
1256 * brw_tex.c
1257 */
1258 void brw_validate_textures( struct brw_context *brw );
1259
1260
1261 /*======================================================================
1262 * brw_program.c
1263 */
1264 void brwInitFragProgFuncs( struct dd_function_table *functions );
1265
1266 int brw_get_scratch_size(int size);
1267 void brw_get_scratch_bo(struct brw_context *brw,
1268 drm_intel_bo **scratch_bo, int size);
1269 void brw_init_shader_time(struct brw_context *brw);
1270 int brw_get_shader_time_index(struct brw_context *brw,
1271 struct gl_shader_program *shader_prog,
1272 struct gl_program *prog,
1273 enum shader_time_shader_type type);
1274 void brw_collect_and_report_shader_time(struct brw_context *brw);
1275 void brw_destroy_shader_time(struct brw_context *brw);
1276
1277 /* brw_urb.c
1278 */
1279 void brw_upload_urb_fence(struct brw_context *brw);
1280
1281 /* brw_curbe.c
1282 */
1283 void brw_upload_cs_urb_state(struct brw_context *brw);
1284
1285 /* brw_fs_reg_allocate.cpp
1286 */
1287 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1288
1289 /* brw_disasm.c */
1290 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1291
1292 /* brw_vs.c */
1293 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1294
1295 /* brw_wm_surface_state.c */
1296 void brw_init_surface_formats(struct brw_context *brw);
1297 void
1298 brw_update_sol_surface(struct brw_context *brw,
1299 struct gl_buffer_object *buffer_obj,
1300 uint32_t *out_offset, unsigned num_vector_components,
1301 unsigned stride_dwords, unsigned offset_dwords);
1302 void brw_upload_ubo_surfaces(struct brw_context *brw,
1303 struct gl_shader *shader,
1304 uint32_t *surf_offsets);
1305
1306 /* brw_surface_formats.c */
1307 bool brw_is_hiz_depth_format(struct brw_context *ctx, gl_format format);
1308 bool brw_render_target_supported(struct brw_context *brw,
1309 struct gl_renderbuffer *rb);
1310
1311 /* gen6_sol.c */
1312 void
1313 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1314 struct gl_transform_feedback_object *obj);
1315 void
1316 brw_end_transform_feedback(struct gl_context *ctx,
1317 struct gl_transform_feedback_object *obj);
1318
1319 /* gen7_sol_state.c */
1320 void
1321 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1322 struct gl_transform_feedback_object *obj);
1323 void
1324 gen7_end_transform_feedback(struct gl_context *ctx,
1325 struct gl_transform_feedback_object *obj);
1326
1327 /* brw_blorp_blit.cpp */
1328 GLbitfield
1329 brw_blorp_framebuffer(struct brw_context *brw,
1330 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1331 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1332 GLbitfield mask, GLenum filter);
1333
1334 bool
1335 brw_blorp_copytexsubimage(struct brw_context *brw,
1336 struct gl_renderbuffer *src_rb,
1337 struct gl_texture_image *dst_image,
1338 int slice,
1339 int srcX0, int srcY0,
1340 int dstX0, int dstY0,
1341 int width, int height);
1342
1343 /* gen6_multisample_state.c */
1344 void
1345 gen6_emit_3dstate_multisample(struct brw_context *brw,
1346 unsigned num_samples);
1347 void
1348 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1349 unsigned num_samples, float coverage,
1350 bool coverage_invert, unsigned sample_mask);
1351 void
1352 gen6_get_sample_position(struct gl_context *ctx,
1353 struct gl_framebuffer *fb,
1354 GLuint index,
1355 GLfloat *result);
1356
1357 /* gen7_urb.c */
1358 void
1359 gen7_allocate_push_constants(struct brw_context *brw);
1360
1361 void
1362 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1363 GLuint vs_size, GLuint vs_start);
1364
1365
1366
1367 /*======================================================================
1368 * Inline conversion functions. These are better-typed than the
1369 * macros used previously:
1370 */
1371 static INLINE struct brw_context *
1372 brw_context( struct gl_context *ctx )
1373 {
1374 return (struct brw_context *)ctx;
1375 }
1376
1377 static INLINE struct brw_vertex_program *
1378 brw_vertex_program(struct gl_vertex_program *p)
1379 {
1380 return (struct brw_vertex_program *) p;
1381 }
1382
1383 static INLINE const struct brw_vertex_program *
1384 brw_vertex_program_const(const struct gl_vertex_program *p)
1385 {
1386 return (const struct brw_vertex_program *) p;
1387 }
1388
1389 static INLINE struct brw_fragment_program *
1390 brw_fragment_program(struct gl_fragment_program *p)
1391 {
1392 return (struct brw_fragment_program *) p;
1393 }
1394
1395 static INLINE const struct brw_fragment_program *
1396 brw_fragment_program_const(const struct gl_fragment_program *p)
1397 {
1398 return (const struct brw_fragment_program *) p;
1399 }
1400
1401 /**
1402 * Pre-gen6, the register file of the EUs was shared between threads,
1403 * and each thread used some subset allocated on a 16-register block
1404 * granularity. The unit states wanted these block counts.
1405 */
1406 static inline int
1407 brw_register_blocks(int reg_count)
1408 {
1409 return ALIGN(reg_count, 16) / 16 - 1;
1410 }
1411
1412 static inline uint32_t
1413 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1414 uint32_t prog_offset)
1415 {
1416 struct intel_context *intel = &brw->intel;
1417
1418 if (intel->gen >= 5) {
1419 /* Using state base address. */
1420 return prog_offset;
1421 }
1422
1423 drm_intel_bo_emit_reloc(brw->batch.bo,
1424 state_offset,
1425 brw->cache.bo,
1426 prog_offset,
1427 I915_GEM_DOMAIN_INSTRUCTION, 0);
1428
1429 return brw->cache.bo->offset + prog_offset;
1430 }
1431
1432 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1433 bool brw_lower_texture_gradients(struct brw_context *brw,
1434 struct exec_list *instructions);
1435
1436 struct opcode_desc {
1437 char *name;
1438 int nsrc;
1439 int ndst;
1440 };
1441
1442 extern const struct opcode_desc opcode_descs[128];
1443
1444 void
1445 brw_emit_depthbuffer(struct brw_context *brw);
1446
1447 void
1448 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1449 struct intel_mipmap_tree *depth_mt,
1450 uint32_t depth_offset, uint32_t depthbuffer_format,
1451 uint32_t depth_surface_type,
1452 struct intel_mipmap_tree *stencil_mt,
1453 bool hiz, bool separate_stencil,
1454 uint32_t width, uint32_t height,
1455 uint32_t tile_x, uint32_t tile_y);
1456
1457 void
1458 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1459 struct intel_mipmap_tree *depth_mt,
1460 uint32_t depth_offset, uint32_t depthbuffer_format,
1461 uint32_t depth_surface_type,
1462 struct intel_mipmap_tree *stencil_mt,
1463 bool hiz, bool separate_stencil,
1464 uint32_t width, uint32_t height,
1465 uint32_t tile_x, uint32_t tile_y);
1466
1467 #ifdef __cplusplus
1468 }
1469 #endif
1470
1471 #endif