i965: Rewrite the HiZ op
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122 struct brw_instruction;
123 struct brw_vs_prog_key;
124 struct brw_wm_prog_key;
125 struct brw_wm_prog_data;
126
127 enum brw_state_id {
128 BRW_STATE_URB_FENCE,
129 BRW_STATE_FRAGMENT_PROGRAM,
130 BRW_STATE_VERTEX_PROGRAM,
131 BRW_STATE_INPUT_DIMENSIONS,
132 BRW_STATE_CURBE_OFFSETS,
133 BRW_STATE_REDUCED_PRIMITIVE,
134 BRW_STATE_PRIMITIVE,
135 BRW_STATE_CONTEXT,
136 BRW_STATE_WM_INPUT_DIMENSIONS,
137 BRW_STATE_PSP,
138 BRW_STATE_SURFACES,
139 BRW_STATE_VS_BINDING_TABLE,
140 BRW_STATE_GS_BINDING_TABLE,
141 BRW_STATE_PS_BINDING_TABLE,
142 BRW_STATE_INDICES,
143 BRW_STATE_VERTICES,
144 BRW_STATE_BATCH,
145 BRW_STATE_NR_WM_SURFACES,
146 BRW_STATE_NR_VS_SURFACES,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 };
153
154 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
155 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
156 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
157 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
158 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
159 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
160 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
161 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
162 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
163 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
164 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
165 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
166 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
167 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
168 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
169 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
170 /**
171 * Used for any batch entry with a relocated pointer that will be used
172 * by any 3D rendering.
173 */
174 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
175 /** \see brw.state.depth_region */
176 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
177 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
178 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
179 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
180 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
181
182 struct brw_state_flags {
183 /** State update flags signalled by mesa internals */
184 GLuint mesa;
185 /**
186 * State update flags signalled as the result of brw_tracked_state updates
187 */
188 GLuint brw;
189 /** State update flags signalled by brw_state_cache.c searches */
190 GLuint cache;
191 };
192
193 enum state_struct_type {
194 AUB_TRACE_VS_STATE = 1,
195 AUB_TRACE_GS_STATE = 2,
196 AUB_TRACE_CLIP_STATE = 3,
197 AUB_TRACE_SF_STATE = 4,
198 AUB_TRACE_WM_STATE = 5,
199 AUB_TRACE_CC_STATE = 6,
200 AUB_TRACE_CLIP_VP_STATE = 7,
201 AUB_TRACE_SF_VP_STATE = 8,
202 AUB_TRACE_CC_VP_STATE = 0x9,
203 AUB_TRACE_SAMPLER_STATE = 0xa,
204 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
205 AUB_TRACE_SCRATCH_SPACE = 0xc,
206 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
207
208 AUB_TRACE_SCISSOR_STATE = 0x15,
209 AUB_TRACE_BLEND_STATE = 0x16,
210 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
211
212 /* Not written to .aub files the same way the structures above are. */
213 AUB_TRACE_NO_TYPE = 0x100,
214 AUB_TRACE_BINDING_TABLE = 0x101,
215 AUB_TRACE_SURFACE_STATE = 0x102,
216 AUB_TRACE_VS_CONSTANTS = 0x103,
217 AUB_TRACE_WM_CONSTANTS = 0x104,
218 };
219
220 /** Subclass of Mesa vertex program */
221 struct brw_vertex_program {
222 struct gl_vertex_program program;
223 GLuint id;
224 bool use_const_buffer;
225 };
226
227
228 /** Subclass of Mesa fragment program */
229 struct brw_fragment_program {
230 struct gl_fragment_program program;
231 GLuint id; /**< serial no. to identify frag progs, never re-used */
232 };
233
234 struct brw_shader {
235 struct gl_shader base;
236
237 /** Shader IR transformed for native compile, at link time. */
238 struct exec_list *ir;
239 };
240
241 struct brw_shader_program {
242 struct gl_shader_program base;
243 };
244
245 enum param_conversion {
246 PARAM_NO_CONVERT,
247 PARAM_CONVERT_F2I,
248 PARAM_CONVERT_F2U,
249 PARAM_CONVERT_F2B,
250 PARAM_CONVERT_ZERO,
251 };
252
253 /* Data about a particular attempt to compile a program. Note that
254 * there can be many of these, each in a different GL state
255 * corresponding to a different brw_wm_prog_key struct, with different
256 * compiled programs:
257 */
258 struct brw_wm_prog_data {
259 GLuint curb_read_length;
260 GLuint urb_read_length;
261
262 GLuint first_curbe_grf;
263 GLuint first_curbe_grf_16;
264 GLuint reg_blocks;
265 GLuint reg_blocks_16;
266 GLuint total_scratch;
267
268 GLuint nr_params; /**< number of float params/constants */
269 GLuint nr_pull_params;
270 bool error;
271 int dispatch_width;
272 uint32_t prog_offset_16;
273
274 /* Pointer to tracked values (only valid once
275 * _mesa_load_state_parameters has been called at runtime).
276 */
277 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
278 enum param_conversion param_convert[MAX_UNIFORMS * 4];
279 const float *pull_param[MAX_UNIFORMS * 4];
280 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
281 };
282
283 /**
284 * Enum representing the i965-specific vertex results that don't correspond
285 * exactly to any element of gl_vert_result. The values of this enum are
286 * assigned such that they don't conflict with gl_vert_result.
287 */
288 typedef enum
289 {
290 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
291 BRW_VERT_RESULT_HPOS_DUPLICATE,
292 BRW_VERT_RESULT_PAD,
293 BRW_VERT_RESULT_MAX
294 } brw_vert_result;
295
296
297 /**
298 * Data structure recording the relationship between the gl_vert_result enum
299 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
300 * single octaword within the VUE (128 bits).
301 *
302 * Note that each BRW register contains 256 bits (2 octawords), so when
303 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
304 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
305 * in a vertex shader), each register corresponds to a single VUE slot, since
306 * it contains data for two separate vertices.
307 */
308 struct brw_vue_map {
309 /**
310 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
311 * not stored in a slot (because they are not written, or because
312 * additional processing is applied before storing them in the VUE), the
313 * value is -1.
314 */
315 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
316
317 /**
318 * Map from VUE slot to gl_vert_result value. For slots that do not
319 * directly correspond to a gl_vert_result, the value comes from
320 * brw_vert_result.
321 *
322 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
323 * simplifies code that uses the value stored in slot_to_vert_result to
324 * create a bit mask).
325 */
326 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
327
328 /**
329 * Total number of VUE slots in use
330 */
331 int num_slots;
332 };
333
334 /**
335 * Convert a VUE slot number into a byte offset within the VUE.
336 */
337 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
338 {
339 return 16*slot;
340 }
341
342 /**
343 * Convert a vert_result into a byte offset within the VUE.
344 */
345 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
346 GLuint vert_result)
347 {
348 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
349 }
350
351
352 struct brw_sf_prog_data {
353 GLuint urb_read_length;
354 GLuint total_grf;
355
356 /* Each vertex may have upto 12 attributes, 4 components each,
357 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
358 * rows.
359 *
360 * Actually we use 4 for each, so call it 12 rows.
361 */
362 GLuint urb_entry_size;
363 };
364
365 struct brw_clip_prog_data {
366 GLuint curb_read_length; /* user planes? */
367 GLuint clip_mode;
368 GLuint urb_read_length;
369 GLuint total_grf;
370 };
371
372 struct brw_gs_prog_data {
373 GLuint urb_read_length;
374 GLuint total_grf;
375
376 /**
377 * Gen6 transform feedback: Amount by which the streaming vertex buffer
378 * indices should be incremented each time the GS is invoked.
379 */
380 unsigned svbi_postincrement_value;
381 };
382
383 struct brw_vs_prog_data {
384 GLuint curb_read_length;
385 GLuint urb_read_length;
386 GLuint total_grf;
387 GLbitfield64 outputs_written;
388 GLuint nr_params; /**< number of float params/constants */
389 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
390 GLuint total_scratch;
391
392 GLbitfield64 inputs_read;
393
394 /* Used for calculating urb partitions:
395 */
396 GLuint urb_entry_size;
397
398 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
399 const float *pull_param[MAX_UNIFORMS * 4];
400
401 bool uses_new_param_layout;
402 bool uses_vertexid;
403 };
404
405
406 /* Size == 0 if output either not written, or always [0,0,0,1]
407 */
408 struct brw_vs_ouput_sizes {
409 GLubyte output_size[VERT_RESULT_MAX];
410 };
411
412
413 /** Number of texture sampler units */
414 #define BRW_MAX_TEX_UNIT 16
415
416 /** Max number of render targets in a shader */
417 #define BRW_MAX_DRAW_BUFFERS 8
418
419 /**
420 * Max number of binding table entries used for stream output.
421 *
422 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
423 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
424 *
425 * On Gen6, the size of transform feedback data is limited not by the number
426 * of components but by the number of binding table entries we set aside. We
427 * use one binding table entry for a float, one entry for a vector, and one
428 * entry per matrix column. Since the only way we can communicate our
429 * transform feedback capabilities to the client is via
430 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
431 * worst case, in which all the varyings are floats, so we use up one binding
432 * table entry per component. Therefore we need to set aside at least 64
433 * binding table entries for use by transform feedback.
434 *
435 * Note: since we don't currently pack varyings, it is currently impossible
436 * for the client to actually use up all of these binding table entries--if
437 * all of their varyings were floats, they would run out of varying slots and
438 * fail to link. But that's a bug, so it seems prudent to go ahead and
439 * allocate the number of binding table entries we will need once the bug is
440 * fixed.
441 */
442 #define BRW_MAX_SOL_BINDINGS 64
443
444 /** Maximum number of actual buffers used for stream output */
445 #define BRW_MAX_SOL_BUFFERS 4
446
447 /**
448 * Helpers to create Surface Binding Table indexes for draw buffers,
449 * textures, and constant buffers.
450 *
451 * Shader threads access surfaces via numeric handles, rather than directly
452 * using pointers. The binding table maps these numeric handles to the
453 * address of the actual buffer.
454 *
455 * For example, a shader might ask to sample from "surface 7." In this case,
456 * bind[7] would contain a pointer to a texture.
457 *
458 * Although the hardware supports separate binding tables per pipeline stage
459 * (VS, HS, DS, GS, PS), we currently share a single binding table for all of
460 * them. This is purely for convenience.
461 *
462 * Currently our binding tables are (arbitrarily) programmed as follows:
463 *
464 * +-------------------------------+
465 * | 0 | Draw buffer 0 | .
466 * | . | . | \
467 * | : | : | > Only relevant to the WM.
468 * | 7 | Draw buffer 7 | /
469 * |-----|-------------------------| `
470 * | 8 | VS Pull Constant Buffer |
471 * | 9 | WM Pull Constant Buffer |
472 * |-----|-------------------------|
473 * | 10 | Texture 0 |
474 * | . | . |
475 * | : | : |
476 * | 25 | Texture 15 |
477 * +-----|-------------------------+
478 * | 26 | SOL Binding 0 |
479 * | . | . |
480 * | : | : |
481 * | 89 | SOL Binding 63 |
482 * +-------------------------------+
483 *
484 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
485 * the identity function or things will break. We do want to keep draw buffers
486 * first so we can use headerless render target writes for RT 0.
487 */
488 #define SURF_INDEX_DRAW(d) (d)
489 #define SURF_INDEX_VERT_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 0)
490 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
491 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
492 #define SURF_INDEX_SOL_BINDING(t) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + (t))
493
494 /** Maximum size of the binding table. */
495 #define BRW_MAX_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
496
497 enum brw_cache_id {
498 BRW_BLEND_STATE,
499 BRW_DEPTH_STENCIL_STATE,
500 BRW_COLOR_CALC_STATE,
501 BRW_CC_VP,
502 BRW_CC_UNIT,
503 BRW_WM_PROG,
504 BRW_SAMPLER,
505 BRW_WM_UNIT,
506 BRW_SF_PROG,
507 BRW_SF_VP,
508 BRW_SF_UNIT, /* scissor state on gen6 */
509 BRW_VS_UNIT,
510 BRW_VS_PROG,
511 BRW_GS_UNIT,
512 BRW_GS_PROG,
513 BRW_CLIP_VP,
514 BRW_CLIP_UNIT,
515 BRW_CLIP_PROG,
516
517 BRW_MAX_CACHE
518 };
519
520 struct brw_cache_item {
521 /**
522 * Effectively part of the key, cache_id identifies what kind of state
523 * buffer is involved, and also which brw->state.dirty.cache flag should
524 * be set when this cache item is chosen.
525 */
526 enum brw_cache_id cache_id;
527 /** 32-bit hash of the key data */
528 GLuint hash;
529 GLuint key_size; /* for variable-sized keys */
530 GLuint aux_size;
531 const void *key;
532
533 uint32_t offset;
534 uint32_t size;
535
536 struct brw_cache_item *next;
537 };
538
539
540
541 struct brw_cache {
542 struct brw_context *brw;
543
544 struct brw_cache_item **items;
545 drm_intel_bo *bo;
546 GLuint size, n_items;
547
548 uint32_t next_offset;
549 bool bo_used_by_gpu;
550 };
551
552
553 /* Considered adding a member to this struct to document which flags
554 * an update might raise so that ordering of the state atoms can be
555 * checked or derived at runtime. Dropped the idea in favor of having
556 * a debug mode where the state is monitored for flags which are
557 * raised that have already been tested against.
558 */
559 struct brw_tracked_state {
560 struct brw_state_flags dirty;
561 void (*emit)( struct brw_context *brw );
562 };
563
564 /* Flags for brw->state.cache.
565 */
566 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
567 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
568 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
569 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
570 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
571 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
572 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
573 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
574 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
575 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
576 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
577 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
578 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
579 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
580 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
581 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
582 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
583 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
584
585 struct brw_cached_batch_item {
586 struct header *header;
587 GLuint sz;
588 struct brw_cached_batch_item *next;
589 };
590
591
592
593 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
594 * be easier if C allowed arrays of packed elements?
595 */
596 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
597
598 struct brw_vertex_buffer {
599 /** Buffer object containing the uploaded vertex data */
600 drm_intel_bo *bo;
601 uint32_t offset;
602 /** Byte stride between elements in the uploaded array */
603 GLuint stride;
604 };
605 struct brw_vertex_element {
606 const struct gl_client_array *glarray;
607
608 int buffer;
609
610 /** The corresponding Mesa vertex attribute */
611 gl_vert_attrib attrib;
612 /** Size of a complete element */
613 GLuint element_size;
614 /** Offset of the first element within the buffer object */
615 unsigned int offset;
616 };
617
618
619
620 struct brw_vertex_info {
621 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
622 };
623
624 struct brw_query_object {
625 struct gl_query_object Base;
626
627 /** Last query BO associated with this query. */
628 drm_intel_bo *bo;
629 /** First index in bo with query data for this object. */
630 int first_index;
631 /** Last index in bo with query data for this object. */
632 int last_index;
633 };
634
635
636 /**
637 * brw_context is derived from intel_context.
638 */
639 struct brw_context
640 {
641 struct intel_context intel; /**< base class, must be first field */
642 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
643
644 bool emit_state_always;
645 bool has_surface_tile_offset;
646 bool has_compr4;
647 bool has_negative_rhw_bug;
648 bool has_aa_line_parameters;
649 bool has_pln;
650 bool precompile;
651
652 struct {
653 struct brw_state_flags dirty;
654 } state;
655
656 struct brw_cache cache;
657 struct brw_cached_batch_item *cached_batch_items;
658
659 struct {
660 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
661 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
662 struct {
663 uint32_t handle;
664 uint32_t offset;
665 uint32_t stride;
666 } current_buffers[VERT_ATTRIB_MAX];
667
668 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
669 GLuint nr_enabled;
670 GLuint nr_buffers, nr_current_buffers;
671
672 /* Summary of size and varying of active arrays, so we can check
673 * for changes to this state:
674 */
675 struct brw_vertex_info info;
676 unsigned int min_index, max_index;
677
678 /* Offset from start of vertex buffer so we can avoid redefining
679 * the same VB packed over and over again.
680 */
681 unsigned int start_vertex_bias;
682 } vb;
683
684 struct {
685 /**
686 * Index buffer for this draw_prims call.
687 *
688 * Updates are signaled by BRW_NEW_INDICES.
689 */
690 const struct _mesa_index_buffer *ib;
691
692 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
693 drm_intel_bo *bo;
694 GLuint type;
695
696 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
697 * avoid re-uploading the IB packet over and over if we're actually
698 * referencing the same index buffer.
699 */
700 unsigned int start_vertex_offset;
701 } ib;
702
703 /* Active vertex program:
704 */
705 const struct gl_vertex_program *vertex_program;
706 const struct gl_fragment_program *fragment_program;
707
708 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
709 uint32_t CMD_VF_STATISTICS;
710 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
711 uint32_t CMD_PIPELINE_SELECT;
712
713 /**
714 * Platform specific constants containing the maximum number of threads
715 * for each pipeline stage.
716 */
717 int max_vs_threads;
718 int max_gs_threads;
719 int max_wm_threads;
720
721 /* BRW_NEW_URB_ALLOCATIONS:
722 */
723 struct {
724 GLuint vsize; /* vertex size plus header in urb registers */
725 GLuint csize; /* constant buffer size in urb registers */
726 GLuint sfsize; /* setup data size in urb registers */
727
728 bool constrained;
729
730 GLuint max_vs_entries; /* Maximum number of VS entries */
731 GLuint max_gs_entries; /* Maximum number of GS entries */
732
733 GLuint nr_vs_entries;
734 GLuint nr_gs_entries;
735 GLuint nr_clip_entries;
736 GLuint nr_sf_entries;
737 GLuint nr_cs_entries;
738
739 /* gen6:
740 * The length of each URB entry owned by the VS (or GS), as
741 * a number of 1024-bit (128-byte) rows. Should be >= 1.
742 *
743 * gen7: Same meaning, but in 512-bit (64-byte) rows.
744 */
745 GLuint vs_size;
746 GLuint gs_size;
747
748 GLuint vs_start;
749 GLuint gs_start;
750 GLuint clip_start;
751 GLuint sf_start;
752 GLuint cs_start;
753 GLuint size; /* Hardware URB size, in KB. */
754
755 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
756 * URB space for the GS.
757 */
758 bool gen6_gs_previously_active;
759 } urb;
760
761
762 /* BRW_NEW_CURBE_OFFSETS:
763 */
764 struct {
765 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
766 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
767 GLuint clip_start;
768 GLuint clip_size;
769 GLuint vs_start;
770 GLuint vs_size;
771 GLuint total_size;
772
773 drm_intel_bo *curbe_bo;
774 /** Offset within curbe_bo of space for current curbe entry */
775 GLuint curbe_offset;
776 /** Offset within curbe_bo of space for next curbe entry */
777 GLuint curbe_next_offset;
778
779 /**
780 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
781 * in brw_curbe.c with the same set of constant data to be uploaded,
782 * so we'd rather not upload new constants in that case (it can cause
783 * a pipeline bubble since only up to 4 can be pipelined at a time).
784 */
785 GLfloat *last_buf;
786 /**
787 * Allocation for where to calculate the next set of CURBEs.
788 * It's a hot enough path that malloc/free of that data matters.
789 */
790 GLfloat *next_buf;
791 GLuint last_bufsz;
792 } curbe;
793
794 struct {
795 /** Binding table of pointers to surf_bo entries */
796 uint32_t bo_offset;
797 uint32_t surf_offset[BRW_MAX_SURFACES];
798 } bind;
799
800 /** SAMPLER_STATE count and offset */
801 struct {
802 GLuint count;
803 uint32_t offset;
804 } sampler;
805
806 struct {
807 struct brw_vs_prog_data *prog_data;
808 int8_t *constant_map; /* variable array following prog_data */
809
810 drm_intel_bo *scratch_bo;
811 drm_intel_bo *const_bo;
812 /** Offset in the program cache to the VS program */
813 uint32_t prog_offset;
814 uint32_t state_offset;
815
816 uint32_t push_const_offset; /* Offset in the batchbuffer */
817 int push_const_size; /* in 256-bit register increments */
818
819 /** @{ register allocator */
820
821 struct ra_regs *regs;
822
823 /**
824 * Array of the ra classes for the unaligned contiguous register
825 * block sizes used.
826 */
827 int *classes;
828
829 /**
830 * Mapping for register-allocated objects in *regs to the first
831 * GRF for that object.
832 */
833 uint8_t *ra_reg_to_grf;
834 /** @} */
835 } vs;
836
837 struct {
838 struct brw_gs_prog_data *prog_data;
839
840 bool prog_active;
841 /** Offset in the program cache to the CLIP program pre-gen6 */
842 uint32_t prog_offset;
843 uint32_t state_offset;
844 } gs;
845
846 struct {
847 struct brw_clip_prog_data *prog_data;
848
849 /** Offset in the program cache to the CLIP program pre-gen6 */
850 uint32_t prog_offset;
851
852 /* Offset in the batch to the CLIP state on pre-gen6. */
853 uint32_t state_offset;
854
855 /* As of gen6, this is the offset in the batch to the CLIP VP,
856 * instead of vp_bo.
857 */
858 uint32_t vp_offset;
859 } clip;
860
861
862 struct {
863 struct brw_sf_prog_data *prog_data;
864
865 /** Offset in the program cache to the CLIP program pre-gen6 */
866 uint32_t prog_offset;
867 uint32_t state_offset;
868 uint32_t vp_offset;
869 } sf;
870
871 struct {
872 struct brw_wm_prog_data *prog_data;
873 struct brw_wm_compile *compile_data;
874
875 /** Input sizes, calculated from active vertex program.
876 * One bit per fragment program input attribute.
877 */
878 GLbitfield input_size_masks[4];
879
880 /** offsets in the batch to sampler default colors (texture border color)
881 */
882 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
883
884 GLuint render_surf;
885
886 drm_intel_bo *scratch_bo;
887
888 /** Offset in the program cache to the WM program */
889 uint32_t prog_offset;
890
891 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
892
893 drm_intel_bo *const_bo; /* pull constant buffer. */
894 /**
895 * This is offset in the batch to the push constants on gen6.
896 *
897 * Pre-gen6, push constants live in the CURBE.
898 */
899 uint32_t push_const_offset;
900
901 /** @{ register allocator */
902
903 struct ra_regs *regs;
904
905 /** Array of the ra classes for the unaligned contiguous
906 * register block sizes used.
907 */
908 int *classes;
909
910 /**
911 * Mapping for register-allocated objects in *regs to the first
912 * GRF for that object.
913 */
914 uint8_t *ra_reg_to_grf;
915
916 /**
917 * ra class for the aligned pairs we use for PLN, which doesn't
918 * appear in *classes.
919 */
920 int aligned_pairs_class;
921
922 /** @} */
923 } wm;
924
925
926 struct {
927 uint32_t state_offset;
928 uint32_t blend_state_offset;
929 uint32_t depth_stencil_state_offset;
930 uint32_t vp_offset;
931 } cc;
932
933 struct {
934 struct brw_query_object *obj;
935 drm_intel_bo *bo;
936 int index;
937 bool active;
938 } query;
939 /* Used to give every program string a unique id
940 */
941 GLuint program_id;
942
943 int num_atoms;
944 const struct brw_tracked_state **atoms;
945
946 /* If (INTEL_DEBUG & DEBUG_BATCH) */
947 struct {
948 uint32_t offset;
949 uint32_t size;
950 enum state_struct_type type;
951 } *state_batch_list;
952 int state_batch_count;
953
954 /**
955 * \brief State needed to execute HiZ ops.
956 *
957 * \see gen6_hiz_init()
958 * \see gen6_hiz_exec()
959 */
960 struct brw_hiz_state {
961 /** \brief VBO for rectangle primitive.
962 *
963 * Rather than using glGenBuffers(), we allocate the VBO directly
964 * through drm.
965 */
966 drm_intel_bo *vertex_bo;
967 } hiz;
968
969 struct brw_sol_state {
970 uint32_t svbi_0_starting_index;
971 uint32_t svbi_0_max_index;
972 uint32_t offset_0_batch_start;
973 uint32_t primitives_generated;
974 uint32_t primitives_written;
975 } sol;
976
977 uint32_t render_target_format[MESA_FORMAT_COUNT];
978 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
979 };
980
981
982
983 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
984
985 struct brw_instruction_info {
986 char *name;
987 int nsrc;
988 int ndst;
989 bool is_arith;
990 };
991 extern const struct brw_instruction_info brw_opcodes[128];
992
993 /*======================================================================
994 * brw_vtbl.c
995 */
996 void brwInitVtbl( struct brw_context *brw );
997
998 /*======================================================================
999 * brw_context.c
1000 */
1001 bool brwCreateContext(int api,
1002 const struct gl_config *mesaVis,
1003 __DRIcontext *driContextPriv,
1004 void *sharedContextPrivate);
1005
1006 /*======================================================================
1007 * brw_queryobj.c
1008 */
1009 void brw_init_queryobj_functions(struct dd_function_table *functions);
1010 void brw_prepare_query_begin(struct brw_context *brw);
1011 void brw_emit_query_begin(struct brw_context *brw);
1012 void brw_emit_query_end(struct brw_context *brw);
1013
1014 /*======================================================================
1015 * brw_state_dump.c
1016 */
1017 void brw_debug_batch(struct intel_context *intel);
1018
1019 /*======================================================================
1020 * brw_tex.c
1021 */
1022 void brw_validate_textures( struct brw_context *brw );
1023
1024
1025 /*======================================================================
1026 * brw_program.c
1027 */
1028 void brwInitFragProgFuncs( struct dd_function_table *functions );
1029
1030 int brw_get_scratch_size(int size);
1031 void brw_get_scratch_bo(struct intel_context *intel,
1032 drm_intel_bo **scratch_bo, int size);
1033
1034
1035 /* brw_urb.c
1036 */
1037 void brw_upload_urb_fence(struct brw_context *brw);
1038
1039 /* brw_curbe.c
1040 */
1041 void brw_upload_cs_urb_state(struct brw_context *brw);
1042
1043 /* brw_disasm.c */
1044 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1045
1046 /* brw_vs.c */
1047 void brw_compute_vue_map(struct brw_vue_map *vue_map,
1048 const struct intel_context *intel,
1049 bool userclip_active,
1050 GLbitfield64 outputs_written);
1051 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1052
1053 /* brw_wm.c */
1054 unsigned
1055 brw_compute_barycentric_interp_modes(bool shade_model_flat,
1056 const struct gl_fragment_program *fprog);
1057
1058 /* brw_wm_surface_state.c */
1059 void brw_init_surface_formats(struct brw_context *brw);
1060 void
1061 brw_update_sol_surface(struct brw_context *brw,
1062 struct gl_buffer_object *buffer_obj,
1063 uint32_t *out_offset, unsigned num_vector_components,
1064 unsigned stride_dwords, unsigned offset_dwords);
1065
1066 /* gen6_clip_state.c */
1067 bool
1068 brw_fprog_uses_noperspective(const struct gl_fragment_program *fprog);
1069
1070 /* gen6_sol.c */
1071 void
1072 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1073 struct gl_transform_feedback_object *obj);
1074 void
1075 brw_end_transform_feedback(struct gl_context *ctx,
1076 struct gl_transform_feedback_object *obj);
1077
1078 /* gen7_sol_state.c */
1079 void
1080 gen7_end_transform_feedback(struct gl_context *ctx,
1081 struct gl_transform_feedback_object *obj);
1082
1083
1084
1085 /*======================================================================
1086 * Inline conversion functions. These are better-typed than the
1087 * macros used previously:
1088 */
1089 static INLINE struct brw_context *
1090 brw_context( struct gl_context *ctx )
1091 {
1092 return (struct brw_context *)ctx;
1093 }
1094
1095 static INLINE struct brw_vertex_program *
1096 brw_vertex_program(struct gl_vertex_program *p)
1097 {
1098 return (struct brw_vertex_program *) p;
1099 }
1100
1101 static INLINE const struct brw_vertex_program *
1102 brw_vertex_program_const(const struct gl_vertex_program *p)
1103 {
1104 return (const struct brw_vertex_program *) p;
1105 }
1106
1107 static INLINE struct brw_fragment_program *
1108 brw_fragment_program(struct gl_fragment_program *p)
1109 {
1110 return (struct brw_fragment_program *) p;
1111 }
1112
1113 static INLINE const struct brw_fragment_program *
1114 brw_fragment_program_const(const struct gl_fragment_program *p)
1115 {
1116 return (const struct brw_fragment_program *) p;
1117 }
1118
1119 static inline
1120 float convert_param(enum param_conversion conversion, const float *param)
1121 {
1122 union {
1123 float f;
1124 uint32_t u;
1125 int32_t i;
1126 } fi;
1127
1128 switch (conversion) {
1129 case PARAM_NO_CONVERT:
1130 return *param;
1131 case PARAM_CONVERT_F2I:
1132 fi.i = *param;
1133 return fi.f;
1134 case PARAM_CONVERT_F2U:
1135 fi.u = *param;
1136 return fi.f;
1137 case PARAM_CONVERT_F2B:
1138 if (*param != 0.0)
1139 fi.i = 1;
1140 else
1141 fi.i = 0;
1142 return fi.f;
1143 case PARAM_CONVERT_ZERO:
1144 return 0.0;
1145 default:
1146 return *param;
1147 }
1148 }
1149
1150 /**
1151 * Pre-gen6, the register file of the EUs was shared between threads,
1152 * and each thread used some subset allocated on a 16-register block
1153 * granularity. The unit states wanted these block counts.
1154 */
1155 static inline int
1156 brw_register_blocks(int reg_count)
1157 {
1158 return ALIGN(reg_count, 16) / 16 - 1;
1159 }
1160
1161 static inline uint32_t
1162 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1163 uint32_t prog_offset)
1164 {
1165 struct intel_context *intel = &brw->intel;
1166
1167 if (intel->gen >= 5) {
1168 /* Using state base address. */
1169 return prog_offset;
1170 }
1171
1172 drm_intel_bo_emit_reloc(intel->batch.bo,
1173 state_offset,
1174 brw->cache.bo,
1175 prog_offset,
1176 I915_GEM_DOMAIN_INSTRUCTION, 0);
1177
1178 return brw->cache.bo->offset + prog_offset;
1179 }
1180
1181 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1182
1183 #endif