i965: Add functions to compute offsets within the VUE map.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122
123 enum brw_state_id {
124 BRW_STATE_URB_FENCE,
125 BRW_STATE_FRAGMENT_PROGRAM,
126 BRW_STATE_VERTEX_PROGRAM,
127 BRW_STATE_INPUT_DIMENSIONS,
128 BRW_STATE_CURBE_OFFSETS,
129 BRW_STATE_REDUCED_PRIMITIVE,
130 BRW_STATE_PRIMITIVE,
131 BRW_STATE_CONTEXT,
132 BRW_STATE_WM_INPUT_DIMENSIONS,
133 BRW_STATE_PSP,
134 BRW_STATE_WM_SURFACES,
135 BRW_STATE_VS_BINDING_TABLE,
136 BRW_STATE_GS_BINDING_TABLE,
137 BRW_STATE_PS_BINDING_TABLE,
138 BRW_STATE_INDICES,
139 BRW_STATE_VERTICES,
140 BRW_STATE_BATCH,
141 BRW_STATE_NR_WM_SURFACES,
142 BRW_STATE_NR_VS_SURFACES,
143 BRW_STATE_INDEX_BUFFER,
144 BRW_STATE_VS_CONSTBUF,
145 BRW_STATE_WM_CONSTBUF,
146 BRW_STATE_PROGRAM_CACHE,
147 BRW_STATE_STATE_BASE_ADDRESS,
148 };
149
150 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
151 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
152 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
153 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
154 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
155 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
156 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
157 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
158 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
159 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
160 #define BRW_NEW_WM_SURFACES (1 << BRW_STATE_WM_SURFACES)
161 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
162 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
163 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
164 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
165 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
166 /**
167 * Used for any batch entry with a relocated pointer that will be used
168 * by any 3D rendering.
169 */
170 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
171 /** \see brw.state.depth_region */
172 #define BRW_NEW_NR_WM_SURFACES (1 << BRW_STATE_NR_WM_SURFACES)
173 #define BRW_NEW_NR_VS_SURFACES (1 << BRW_STATE_NR_VS_SURFACES)
174 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
175 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
176 #define BRW_NEW_WM_CONSTBUF (1 << BRW_STATE_WM_CONSTBUF)
177 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
178 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
179
180 struct brw_state_flags {
181 /** State update flags signalled by mesa internals */
182 GLuint mesa;
183 /**
184 * State update flags signalled as the result of brw_tracked_state updates
185 */
186 GLuint brw;
187 /** State update flags signalled by brw_state_cache.c searches */
188 GLuint cache;
189 };
190
191 enum state_struct_type {
192 AUB_TRACE_VS_STATE = 1,
193 AUB_TRACE_GS_STATE = 2,
194 AUB_TRACE_CLIP_STATE = 3,
195 AUB_TRACE_SF_STATE = 4,
196 AUB_TRACE_WM_STATE = 5,
197 AUB_TRACE_CC_STATE = 6,
198 AUB_TRACE_CLIP_VP_STATE = 7,
199 AUB_TRACE_SF_VP_STATE = 8,
200 AUB_TRACE_CC_VP_STATE = 0x9,
201 AUB_TRACE_SAMPLER_STATE = 0xa,
202 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
203 AUB_TRACE_SCRATCH_SPACE = 0xc,
204 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
205
206 AUB_TRACE_SCISSOR_STATE = 0x15,
207 AUB_TRACE_BLEND_STATE = 0x16,
208 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
209
210 /* Not written to .aub files the same way the structures above are. */
211 AUB_TRACE_NO_TYPE = 0x100,
212 AUB_TRACE_BINDING_TABLE = 0x101,
213 AUB_TRACE_SURFACE_STATE = 0x102,
214 AUB_TRACE_VS_CONSTANTS = 0x103,
215 AUB_TRACE_WM_CONSTANTS = 0x104,
216 };
217
218 /** Subclass of Mesa vertex program */
219 struct brw_vertex_program {
220 struct gl_vertex_program program;
221 GLuint id;
222 GLboolean use_const_buffer;
223 };
224
225
226 /** Subclass of Mesa fragment program */
227 struct brw_fragment_program {
228 struct gl_fragment_program program;
229 GLuint id; /**< serial no. to identify frag progs, never re-used */
230
231 /** for debugging, which texture units are referenced */
232 GLbitfield tex_units_used;
233 };
234
235 struct brw_shader {
236 struct gl_shader base;
237
238 /** Shader IR transformed for native compile, at link time. */
239 struct exec_list *ir;
240 };
241
242 struct brw_shader_program {
243 struct gl_shader_program base;
244 };
245
246 enum param_conversion {
247 PARAM_NO_CONVERT,
248 PARAM_CONVERT_F2I,
249 PARAM_CONVERT_F2U,
250 PARAM_CONVERT_F2B,
251 PARAM_CONVERT_ZERO,
252 };
253
254 /* Data about a particular attempt to compile a program. Note that
255 * there can be many of these, each in a different GL state
256 * corresponding to a different brw_wm_prog_key struct, with different
257 * compiled programs:
258 */
259 struct brw_wm_prog_data {
260 GLuint curb_read_length;
261 GLuint urb_read_length;
262
263 GLuint first_curbe_grf;
264 GLuint first_curbe_grf_16;
265 GLuint reg_blocks;
266 GLuint reg_blocks_16;
267 GLuint total_scratch;
268
269 GLuint nr_params; /**< number of float params/constants */
270 GLuint nr_pull_params;
271 GLboolean error;
272 int dispatch_width;
273 uint32_t prog_offset_16;
274
275 /* Pointer to tracked values (only valid once
276 * _mesa_load_state_parameters has been called at runtime).
277 */
278 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
279 enum param_conversion param_convert[MAX_UNIFORMS * 4];
280 const float *pull_param[MAX_UNIFORMS * 4];
281 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
282 };
283
284 /**
285 * Enum representing the i965-specific vertex results that don't correspond
286 * exactly to any element of gl_vert_result. The values of this enum are
287 * assigned such that they don't conflict with gl_vert_result.
288 */
289 typedef enum
290 {
291 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
292 BRW_VERT_RESULT_HPOS_DUPLICATE,
293 BRW_VERT_RESULT_CLIP0,
294 BRW_VERT_RESULT_CLIP1,
295 BRW_VERT_RESULT_PAD,
296 BRW_VERT_RESULT_MAX
297 } brw_vert_result;
298
299
300 /**
301 * Data structure recording the relationship between the gl_vert_result enum
302 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
303 * single octaword within the VUE (128 bits).
304 *
305 * Note that each BRW register contains 256 bits (2 octawords), so when
306 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
307 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
308 * in a vertex shader), each register corresponds to a single VUE slot, since
309 * it contains data for two separate vertices.
310 */
311 struct brw_vue_map {
312 /**
313 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
314 * not stored in a slot (because they are not written, or because
315 * additional processing is applied before storing them in the VUE), the
316 * value is -1.
317 */
318 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
319
320 /**
321 * Map from VUE slot to gl_vert_result value. For slots that do not
322 * directly correspond to a gl_vert_result, the value comes from
323 * brw_vert_result.
324 *
325 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
326 * simplifies code that uses the value stored in slot_to_vert_result to
327 * create a bit mask).
328 */
329 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
330
331 /**
332 * Total number of VUE slots in use
333 */
334 int num_slots;
335 };
336
337 /**
338 * Convert a VUE slot number into a byte offset within the VUE.
339 */
340 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
341 {
342 return 16*slot;
343 }
344
345 /**
346 * Convert a vert_result into a byte offset within the VUE.
347 */
348 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
349 GLuint vert_result)
350 {
351 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
352 }
353
354
355 struct brw_sf_prog_data {
356 GLuint urb_read_length;
357 GLuint total_grf;
358
359 /* Each vertex may have upto 12 attributes, 4 components each,
360 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
361 * rows.
362 *
363 * Actually we use 4 for each, so call it 12 rows.
364 */
365 GLuint urb_entry_size;
366 };
367
368 struct brw_clip_prog_data {
369 GLuint curb_read_length; /* user planes? */
370 GLuint clip_mode;
371 GLuint urb_read_length;
372 GLuint total_grf;
373 };
374
375 struct brw_gs_prog_data {
376 GLuint urb_read_length;
377 GLuint total_grf;
378 };
379
380 struct brw_vs_prog_data {
381 GLuint curb_read_length;
382 GLuint urb_read_length;
383 GLuint total_grf;
384 GLbitfield64 outputs_written;
385 GLuint nr_params; /**< number of float params/constants */
386 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
387 GLuint total_scratch;
388
389 GLuint inputs_read;
390
391 /* Used for calculating urb partitions:
392 */
393 GLuint urb_entry_size;
394
395 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
396 const float *pull_param[MAX_UNIFORMS * 4];
397
398 bool uses_new_param_layout;
399 };
400
401
402 /* Size == 0 if output either not written, or always [0,0,0,1]
403 */
404 struct brw_vs_ouput_sizes {
405 GLubyte output_size[VERT_RESULT_MAX];
406 };
407
408
409 /** Number of texture sampler units */
410 #define BRW_MAX_TEX_UNIT 16
411
412 /** Max number of render targets in a shader */
413 #define BRW_MAX_DRAW_BUFFERS 8
414
415 /**
416 * Size of our surface binding table for the WM.
417 * This contains pointers to the drawing surfaces and current texture
418 * objects and shader constant buffers (+2).
419 */
420 #define BRW_WM_MAX_SURF (BRW_MAX_DRAW_BUFFERS + BRW_MAX_TEX_UNIT + 1)
421
422 /**
423 * Helpers to convert drawing buffers, textures and constant buffers
424 * to surface binding table indexes, for WM.
425 */
426 #define SURF_INDEX_DRAW(d) (d)
427 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS)
428 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 1 + (t))
429
430 /**
431 * Size of surface binding table for the VS.
432 * Only one constant buffer for now.
433 */
434 #define BRW_VS_MAX_SURF 1
435
436 /**
437 * Only a VS constant buffer
438 */
439 #define SURF_INDEX_VERT_CONST_BUFFER 0
440
441
442 enum brw_cache_id {
443 BRW_BLEND_STATE,
444 BRW_DEPTH_STENCIL_STATE,
445 BRW_COLOR_CALC_STATE,
446 BRW_CC_VP,
447 BRW_CC_UNIT,
448 BRW_WM_PROG,
449 BRW_SAMPLER,
450 BRW_WM_UNIT,
451 BRW_SF_PROG,
452 BRW_SF_VP,
453 BRW_SF_UNIT, /* scissor state on gen6 */
454 BRW_VS_UNIT,
455 BRW_VS_PROG,
456 BRW_GS_UNIT,
457 BRW_GS_PROG,
458 BRW_CLIP_VP,
459 BRW_CLIP_UNIT,
460 BRW_CLIP_PROG,
461
462 BRW_MAX_CACHE
463 };
464
465 struct brw_cache_item {
466 /**
467 * Effectively part of the key, cache_id identifies what kind of state
468 * buffer is involved, and also which brw->state.dirty.cache flag should
469 * be set when this cache item is chosen.
470 */
471 enum brw_cache_id cache_id;
472 /** 32-bit hash of the key data */
473 GLuint hash;
474 GLuint key_size; /* for variable-sized keys */
475 GLuint aux_size;
476 const void *key;
477
478 uint32_t offset;
479 uint32_t size;
480
481 struct brw_cache_item *next;
482 };
483
484
485
486 struct brw_cache {
487 struct brw_context *brw;
488
489 struct brw_cache_item **items;
490 drm_intel_bo *bo;
491 GLuint size, n_items;
492
493 uint32_t next_offset;
494 bool bo_used_by_gpu;
495 };
496
497
498 /* Considered adding a member to this struct to document which flags
499 * an update might raise so that ordering of the state atoms can be
500 * checked or derived at runtime. Dropped the idea in favor of having
501 * a debug mode where the state is monitored for flags which are
502 * raised that have already been tested against.
503 */
504 struct brw_tracked_state {
505 struct brw_state_flags dirty;
506 void (*prepare)( struct brw_context *brw );
507 void (*emit)( struct brw_context *brw );
508 };
509
510 /* Flags for brw->state.cache.
511 */
512 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
513 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
514 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
515 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
516 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
517 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
518 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
519 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
520 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
521 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
522 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
523 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
524 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
525 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
526 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
527 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
528 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
529 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
530
531 struct brw_cached_batch_item {
532 struct header *header;
533 GLuint sz;
534 struct brw_cached_batch_item *next;
535 };
536
537
538
539 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
540 * be easier if C allowed arrays of packed elements?
541 */
542 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
543
544 struct brw_vertex_buffer {
545 /** Buffer object containing the uploaded vertex data */
546 drm_intel_bo *bo;
547 uint32_t offset;
548 /** Byte stride between elements in the uploaded array */
549 GLuint stride;
550 };
551 struct brw_vertex_element {
552 const struct gl_client_array *glarray;
553
554 int buffer;
555
556 /** The corresponding Mesa vertex attribute */
557 gl_vert_attrib attrib;
558 /** Size of a complete element */
559 GLuint element_size;
560 /** Offset of the first element within the buffer object */
561 unsigned int offset;
562 };
563
564
565
566 struct brw_vertex_info {
567 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
568 };
569
570 struct brw_query_object {
571 struct gl_query_object Base;
572
573 /** Last query BO associated with this query. */
574 drm_intel_bo *bo;
575 /** First index in bo with query data for this object. */
576 int first_index;
577 /** Last index in bo with query data for this object. */
578 int last_index;
579 };
580
581
582 /**
583 * brw_context is derived from intel_context.
584 */
585 struct brw_context
586 {
587 struct intel_context intel; /**< base class, must be first field */
588 GLuint primitive;
589
590 GLboolean emit_state_always;
591 GLboolean has_surface_tile_offset;
592 GLboolean has_compr4;
593 GLboolean has_negative_rhw_bug;
594 GLboolean has_aa_line_parameters;
595 GLboolean has_pln;
596 GLboolean new_vs_backend;
597
598 struct {
599 struct brw_state_flags dirty;
600 /**
601 * List of buffers accumulated in brw_validate_state to receive
602 * drm_intel_bo_check_aperture treatment before exec, so we can
603 * know if we should flush the batch and try again before
604 * emitting primitives.
605 *
606 * This can be a fixed number as we only have a limited number of
607 * objects referenced from the batchbuffer in a primitive emit,
608 * consisting of the vertex buffers, pipelined state pointers,
609 * the CURBE, the depth buffer, and a query BO.
610 */
611 drm_intel_bo *validated_bos[VERT_ATTRIB_MAX + BRW_WM_MAX_SURF + 16];
612 unsigned int validated_bo_count;
613 } state;
614
615 struct brw_cache cache;
616 struct brw_cached_batch_item *cached_batch_items;
617
618 struct {
619 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
620 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
621 struct {
622 uint32_t handle;
623 uint32_t offset;
624 uint32_t stride;
625 } current_buffers[VERT_ATTRIB_MAX];
626
627 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
628 GLuint nr_enabled;
629 GLuint nr_buffers, nr_current_buffers;
630
631 /* Summary of size and varying of active arrays, so we can check
632 * for changes to this state:
633 */
634 struct brw_vertex_info info;
635 unsigned int min_index, max_index;
636
637 /* Offset from start of vertex buffer so we can avoid redefining
638 * the same VB packed over and over again.
639 */
640 unsigned int start_vertex_bias;
641 } vb;
642
643 struct {
644 /**
645 * Index buffer for this draw_prims call.
646 *
647 * Updates are signaled by BRW_NEW_INDICES.
648 */
649 const struct _mesa_index_buffer *ib;
650
651 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
652 drm_intel_bo *bo;
653 GLuint type;
654
655 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
656 * avoid re-uploading the IB packet over and over if we're actually
657 * referencing the same index buffer.
658 */
659 unsigned int start_vertex_offset;
660 } ib;
661
662 /* Active vertex program:
663 */
664 const struct gl_vertex_program *vertex_program;
665 const struct gl_fragment_program *fragment_program;
666
667 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
668 uint32_t CMD_VF_STATISTICS;
669 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
670 uint32_t CMD_PIPELINE_SELECT;
671 int vs_max_threads;
672 int wm_max_threads;
673
674 /* BRW_NEW_URB_ALLOCATIONS:
675 */
676 struct {
677 GLuint vsize; /* vertex size plus header in urb registers */
678 GLuint csize; /* constant buffer size in urb registers */
679 GLuint sfsize; /* setup data size in urb registers */
680
681 GLboolean constrained;
682
683 GLuint max_vs_entries; /* Maximum number of VS entries */
684 GLuint max_gs_entries; /* Maximum number of GS entries */
685
686 GLuint nr_vs_entries;
687 GLuint nr_gs_entries;
688 GLuint nr_clip_entries;
689 GLuint nr_sf_entries;
690 GLuint nr_cs_entries;
691
692 /* gen6:
693 * The length of each URB entry owned by the VS (or GS), as
694 * a number of 1024-bit (128-byte) rows. Should be >= 1.
695 *
696 * gen7: Same meaning, but in 512-bit (64-byte) rows.
697 */
698 GLuint vs_size;
699 GLuint gs_size;
700
701 GLuint vs_start;
702 GLuint gs_start;
703 GLuint clip_start;
704 GLuint sf_start;
705 GLuint cs_start;
706 GLuint size; /* Hardware URB size, in KB. */
707 } urb;
708
709
710 /* BRW_NEW_CURBE_OFFSETS:
711 */
712 struct {
713 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
714 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
715 GLuint clip_start;
716 GLuint clip_size;
717 GLuint vs_start;
718 GLuint vs_size;
719 GLuint total_size;
720
721 drm_intel_bo *curbe_bo;
722 /** Offset within curbe_bo of space for current curbe entry */
723 GLuint curbe_offset;
724 /** Offset within curbe_bo of space for next curbe entry */
725 GLuint curbe_next_offset;
726
727 /**
728 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
729 * in brw_curbe.c with the same set of constant data to be uploaded,
730 * so we'd rather not upload new constants in that case (it can cause
731 * a pipeline bubble since only up to 4 can be pipelined at a time).
732 */
733 GLfloat *last_buf;
734 /**
735 * Allocation for where to calculate the next set of CURBEs.
736 * It's a hot enough path that malloc/free of that data matters.
737 */
738 GLfloat *next_buf;
739 GLuint last_bufsz;
740 } curbe;
741
742 struct {
743 struct brw_vs_prog_data *prog_data;
744 int8_t *constant_map; /* variable array following prog_data */
745
746 drm_intel_bo *scratch_bo;
747 drm_intel_bo *const_bo;
748 /** Offset in the program cache to the VS program */
749 uint32_t prog_offset;
750 uint32_t state_offset;
751
752 /** Binding table of pointers to surf_bo entries */
753 uint32_t bind_bo_offset;
754 uint32_t surf_offset[BRW_VS_MAX_SURF];
755 GLuint nr_surfaces;
756
757 uint32_t push_const_offset; /* Offset in the batchbuffer */
758 int push_const_size; /* in 256-bit register increments */
759
760 /** @{ register allocator */
761
762 struct ra_regs *regs;
763
764 /**
765 * Array of the ra classes for the unaligned contiguous register
766 * block sizes used.
767 */
768 int *classes;
769
770 /**
771 * Mapping for register-allocated objects in *regs to the first
772 * GRF for that object.
773 */
774 uint8_t *ra_reg_to_grf;
775 /** @} */
776 } vs;
777
778 struct {
779 struct brw_gs_prog_data *prog_data;
780
781 GLboolean prog_active;
782 /** Offset in the program cache to the CLIP program pre-gen6 */
783 uint32_t prog_offset;
784 uint32_t state_offset;
785 } gs;
786
787 struct {
788 struct brw_clip_prog_data *prog_data;
789
790 /** Offset in the program cache to the CLIP program pre-gen6 */
791 uint32_t prog_offset;
792
793 /* Offset in the batch to the CLIP state on pre-gen6. */
794 uint32_t state_offset;
795
796 /* As of gen6, this is the offset in the batch to the CLIP VP,
797 * instead of vp_bo.
798 */
799 uint32_t vp_offset;
800 } clip;
801
802
803 struct {
804 struct brw_sf_prog_data *prog_data;
805
806 /** Offset in the program cache to the CLIP program pre-gen6 */
807 uint32_t prog_offset;
808 uint32_t state_offset;
809 uint32_t vp_offset;
810 } sf;
811
812 struct {
813 struct brw_wm_prog_data *prog_data;
814 struct brw_wm_compile *compile_data;
815
816 /** Input sizes, calculated from active vertex program.
817 * One bit per fragment program input attribute.
818 */
819 GLbitfield input_size_masks[4];
820
821 /** offsets in the batch to sampler default colors (texture border color)
822 */
823 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
824
825 GLuint render_surf;
826 GLuint nr_surfaces;
827
828 drm_intel_bo *scratch_bo;
829
830 GLuint sampler_count;
831 uint32_t sampler_offset;
832
833 /** Offset in the program cache to the WM program */
834 uint32_t prog_offset;
835
836 /** Binding table of pointers to surf_bo entries */
837 uint32_t bind_bo_offset;
838 uint32_t surf_offset[BRW_WM_MAX_SURF];
839 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
840
841 drm_intel_bo *const_bo; /* pull constant buffer. */
842 /**
843 * This is offset in the batch to the push constants on gen6.
844 *
845 * Pre-gen6, push constants live in the CURBE.
846 */
847 uint32_t push_const_offset;
848
849 /** @{ register allocator */
850
851 struct ra_regs *regs;
852
853 /** Array of the ra classes for the unaligned contiguous
854 * register block sizes used.
855 */
856 int *classes;
857
858 /**
859 * Mapping for register-allocated objects in *regs to the first
860 * GRF for that object.
861 */
862 uint8_t *ra_reg_to_grf;
863
864 /**
865 * ra class for the aligned pairs we use for PLN, which doesn't
866 * appear in *classes.
867 */
868 int aligned_pairs_class;
869
870 /** @} */
871 } wm;
872
873
874 struct {
875 uint32_t state_offset;
876 uint32_t blend_state_offset;
877 uint32_t depth_stencil_state_offset;
878 uint32_t vp_offset;
879 } cc;
880
881 struct {
882 struct brw_query_object *obj;
883 drm_intel_bo *bo;
884 int index;
885 GLboolean active;
886 } query;
887 /* Used to give every program string a unique id
888 */
889 GLuint program_id;
890
891 int num_prepare_atoms, num_emit_atoms;
892 struct brw_tracked_state prepare_atoms[64], emit_atoms[64];
893
894 /* If (INTEL_DEBUG & DEBUG_BATCH) */
895 struct {
896 uint32_t offset;
897 uint32_t size;
898 enum state_struct_type type;
899 } *state_batch_list;
900 int state_batch_count;
901 };
902
903
904 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
905
906 struct brw_instruction_info {
907 char *name;
908 int nsrc;
909 int ndst;
910 GLboolean is_arith;
911 };
912 extern const struct brw_instruction_info brw_opcodes[128];
913
914 /*======================================================================
915 * brw_vtbl.c
916 */
917 void brwInitVtbl( struct brw_context *brw );
918
919 /*======================================================================
920 * brw_context.c
921 */
922 GLboolean brwCreateContext( int api,
923 const struct gl_config *mesaVis,
924 __DRIcontext *driContextPriv,
925 void *sharedContextPrivate);
926
927 /*======================================================================
928 * brw_queryobj.c
929 */
930 void brw_init_queryobj_functions(struct dd_function_table *functions);
931 void brw_prepare_query_begin(struct brw_context *brw);
932 void brw_emit_query_begin(struct brw_context *brw);
933 void brw_emit_query_end(struct brw_context *brw);
934
935 /*======================================================================
936 * brw_state_dump.c
937 */
938 void brw_debug_batch(struct intel_context *intel);
939
940 /*======================================================================
941 * brw_tex.c
942 */
943 void brw_validate_textures( struct brw_context *brw );
944
945
946 /*======================================================================
947 * brw_program.c
948 */
949 void brwInitFragProgFuncs( struct dd_function_table *functions );
950
951 int brw_get_scratch_size(int size);
952 void brw_get_scratch_bo(struct intel_context *intel,
953 drm_intel_bo **scratch_bo, int size);
954
955
956 /* brw_urb.c
957 */
958 void brw_upload_urb_fence(struct brw_context *brw);
959
960 /* brw_curbe.c
961 */
962 void brw_upload_cs_urb_state(struct brw_context *brw);
963
964 /* brw_disasm.c */
965 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
966
967 /* brw_vs.c */
968 void brw_compute_vue_map(struct brw_vue_map *vue_map,
969 const struct intel_context *intel, int nr_userclip,
970 bool two_side_color, GLbitfield64 outputs_written);
971
972 /*======================================================================
973 * Inline conversion functions. These are better-typed than the
974 * macros used previously:
975 */
976 static INLINE struct brw_context *
977 brw_context( struct gl_context *ctx )
978 {
979 return (struct brw_context *)ctx;
980 }
981
982 static INLINE struct brw_vertex_program *
983 brw_vertex_program(struct gl_vertex_program *p)
984 {
985 return (struct brw_vertex_program *) p;
986 }
987
988 static INLINE const struct brw_vertex_program *
989 brw_vertex_program_const(const struct gl_vertex_program *p)
990 {
991 return (const struct brw_vertex_program *) p;
992 }
993
994 static INLINE struct brw_fragment_program *
995 brw_fragment_program(struct gl_fragment_program *p)
996 {
997 return (struct brw_fragment_program *) p;
998 }
999
1000 static INLINE const struct brw_fragment_program *
1001 brw_fragment_program_const(const struct gl_fragment_program *p)
1002 {
1003 return (const struct brw_fragment_program *) p;
1004 }
1005
1006 static inline
1007 float convert_param(enum param_conversion conversion, const float *param)
1008 {
1009 union {
1010 float f;
1011 uint32_t u;
1012 int32_t i;
1013 } fi;
1014
1015 switch (conversion) {
1016 case PARAM_NO_CONVERT:
1017 return *param;
1018 case PARAM_CONVERT_F2I:
1019 fi.i = *param;
1020 return fi.f;
1021 case PARAM_CONVERT_F2U:
1022 fi.u = *param;
1023 return fi.f;
1024 case PARAM_CONVERT_F2B:
1025 if (*param != 0.0)
1026 fi.i = 1;
1027 else
1028 fi.i = 0;
1029 return fi.f;
1030 case PARAM_CONVERT_ZERO:
1031 return 0.0;
1032 default:
1033 return *param;
1034 }
1035 }
1036
1037 /**
1038 * Pre-gen6, the register file of the EUs was shared between threads,
1039 * and each thread used some subset allocated on a 16-register block
1040 * granularity. The unit states wanted these block counts.
1041 */
1042 static inline int
1043 brw_register_blocks(int reg_count)
1044 {
1045 return ALIGN(reg_count, 16) / 16 - 1;
1046 }
1047
1048 static inline uint32_t
1049 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1050 uint32_t prog_offset)
1051 {
1052 struct intel_context *intel = &brw->intel;
1053
1054 if (intel->gen >= 5) {
1055 /* Using state base address. */
1056 return prog_offset;
1057 }
1058
1059 drm_intel_bo_emit_reloc(intel->batch.bo,
1060 state_offset,
1061 brw->cache.bo,
1062 prog_offset,
1063 I915_GEM_DOMAIN_INSTRUCTION, 0);
1064
1065 return brw->cache.bo->offset + prog_offset;
1066 }
1067
1068 GLboolean brw_do_cubemap_normalize(struct exec_list *instructions);
1069
1070 #endif