i965/gen7: Flush the batch between transform feedbacks.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122
123 enum brw_state_id {
124 BRW_STATE_URB_FENCE,
125 BRW_STATE_FRAGMENT_PROGRAM,
126 BRW_STATE_VERTEX_PROGRAM,
127 BRW_STATE_INPUT_DIMENSIONS,
128 BRW_STATE_CURBE_OFFSETS,
129 BRW_STATE_REDUCED_PRIMITIVE,
130 BRW_STATE_PRIMITIVE,
131 BRW_STATE_CONTEXT,
132 BRW_STATE_WM_INPUT_DIMENSIONS,
133 BRW_STATE_PSP,
134 BRW_STATE_SURFACES,
135 BRW_STATE_VS_BINDING_TABLE,
136 BRW_STATE_GS_BINDING_TABLE,
137 BRW_STATE_PS_BINDING_TABLE,
138 BRW_STATE_INDICES,
139 BRW_STATE_VERTICES,
140 BRW_STATE_BATCH,
141 BRW_STATE_NR_WM_SURFACES,
142 BRW_STATE_NR_VS_SURFACES,
143 BRW_STATE_INDEX_BUFFER,
144 BRW_STATE_VS_CONSTBUF,
145 BRW_STATE_PROGRAM_CACHE,
146 BRW_STATE_STATE_BASE_ADDRESS,
147 BRW_STATE_HIZ,
148 BRW_STATE_SOL_INDICES,
149 };
150
151 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
152 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
153 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
154 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
155 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
156 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
157 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
158 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
159 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
160 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
161 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
162 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
163 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
164 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
165 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
166 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
167 /**
168 * Used for any batch entry with a relocated pointer that will be used
169 * by any 3D rendering.
170 */
171 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
172 /** \see brw.state.depth_region */
173 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
174 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
175 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
176 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
177 #define BRW_NEW_HIZ (1 << BRW_STATE_HIZ)
178 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
179
180 struct brw_state_flags {
181 /** State update flags signalled by mesa internals */
182 GLuint mesa;
183 /**
184 * State update flags signalled as the result of brw_tracked_state updates
185 */
186 GLuint brw;
187 /** State update flags signalled by brw_state_cache.c searches */
188 GLuint cache;
189 };
190
191 enum state_struct_type {
192 AUB_TRACE_VS_STATE = 1,
193 AUB_TRACE_GS_STATE = 2,
194 AUB_TRACE_CLIP_STATE = 3,
195 AUB_TRACE_SF_STATE = 4,
196 AUB_TRACE_WM_STATE = 5,
197 AUB_TRACE_CC_STATE = 6,
198 AUB_TRACE_CLIP_VP_STATE = 7,
199 AUB_TRACE_SF_VP_STATE = 8,
200 AUB_TRACE_CC_VP_STATE = 0x9,
201 AUB_TRACE_SAMPLER_STATE = 0xa,
202 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
203 AUB_TRACE_SCRATCH_SPACE = 0xc,
204 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
205
206 AUB_TRACE_SCISSOR_STATE = 0x15,
207 AUB_TRACE_BLEND_STATE = 0x16,
208 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
209
210 /* Not written to .aub files the same way the structures above are. */
211 AUB_TRACE_NO_TYPE = 0x100,
212 AUB_TRACE_BINDING_TABLE = 0x101,
213 AUB_TRACE_SURFACE_STATE = 0x102,
214 AUB_TRACE_VS_CONSTANTS = 0x103,
215 AUB_TRACE_WM_CONSTANTS = 0x104,
216 };
217
218 /** Subclass of Mesa vertex program */
219 struct brw_vertex_program {
220 struct gl_vertex_program program;
221 GLuint id;
222 bool use_const_buffer;
223 };
224
225
226 /** Subclass of Mesa fragment program */
227 struct brw_fragment_program {
228 struct gl_fragment_program program;
229 GLuint id; /**< serial no. to identify frag progs, never re-used */
230 };
231
232 struct brw_shader {
233 struct gl_shader base;
234
235 /** Shader IR transformed for native compile, at link time. */
236 struct exec_list *ir;
237 };
238
239 struct brw_shader_program {
240 struct gl_shader_program base;
241 };
242
243 enum param_conversion {
244 PARAM_NO_CONVERT,
245 PARAM_CONVERT_F2I,
246 PARAM_CONVERT_F2U,
247 PARAM_CONVERT_F2B,
248 PARAM_CONVERT_ZERO,
249 };
250
251 /* Data about a particular attempt to compile a program. Note that
252 * there can be many of these, each in a different GL state
253 * corresponding to a different brw_wm_prog_key struct, with different
254 * compiled programs:
255 */
256 struct brw_wm_prog_data {
257 GLuint curb_read_length;
258 GLuint urb_read_length;
259
260 GLuint first_curbe_grf;
261 GLuint first_curbe_grf_16;
262 GLuint reg_blocks;
263 GLuint reg_blocks_16;
264 GLuint total_scratch;
265
266 GLuint nr_params; /**< number of float params/constants */
267 GLuint nr_pull_params;
268 bool error;
269 int dispatch_width;
270 uint32_t prog_offset_16;
271
272 /* Pointer to tracked values (only valid once
273 * _mesa_load_state_parameters has been called at runtime).
274 */
275 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
276 enum param_conversion param_convert[MAX_UNIFORMS * 4];
277 const float *pull_param[MAX_UNIFORMS * 4];
278 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
279 };
280
281 /**
282 * Enum representing the i965-specific vertex results that don't correspond
283 * exactly to any element of gl_vert_result. The values of this enum are
284 * assigned such that they don't conflict with gl_vert_result.
285 */
286 typedef enum
287 {
288 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
289 BRW_VERT_RESULT_HPOS_DUPLICATE,
290 BRW_VERT_RESULT_PAD,
291 BRW_VERT_RESULT_MAX
292 } brw_vert_result;
293
294
295 /**
296 * Data structure recording the relationship between the gl_vert_result enum
297 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
298 * single octaword within the VUE (128 bits).
299 *
300 * Note that each BRW register contains 256 bits (2 octawords), so when
301 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
302 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
303 * in a vertex shader), each register corresponds to a single VUE slot, since
304 * it contains data for two separate vertices.
305 */
306 struct brw_vue_map {
307 /**
308 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
309 * not stored in a slot (because they are not written, or because
310 * additional processing is applied before storing them in the VUE), the
311 * value is -1.
312 */
313 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
314
315 /**
316 * Map from VUE slot to gl_vert_result value. For slots that do not
317 * directly correspond to a gl_vert_result, the value comes from
318 * brw_vert_result.
319 *
320 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
321 * simplifies code that uses the value stored in slot_to_vert_result to
322 * create a bit mask).
323 */
324 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
325
326 /**
327 * Total number of VUE slots in use
328 */
329 int num_slots;
330 };
331
332 /**
333 * Convert a VUE slot number into a byte offset within the VUE.
334 */
335 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
336 {
337 return 16*slot;
338 }
339
340 /**
341 * Convert a vert_result into a byte offset within the VUE.
342 */
343 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
344 GLuint vert_result)
345 {
346 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
347 }
348
349
350 struct brw_sf_prog_data {
351 GLuint urb_read_length;
352 GLuint total_grf;
353
354 /* Each vertex may have upto 12 attributes, 4 components each,
355 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
356 * rows.
357 *
358 * Actually we use 4 for each, so call it 12 rows.
359 */
360 GLuint urb_entry_size;
361 };
362
363 struct brw_clip_prog_data {
364 GLuint curb_read_length; /* user planes? */
365 GLuint clip_mode;
366 GLuint urb_read_length;
367 GLuint total_grf;
368 };
369
370 struct brw_gs_prog_data {
371 GLuint urb_read_length;
372 GLuint total_grf;
373
374 /**
375 * Gen6 transform feedback: Amount by which the streaming vertex buffer
376 * indices should be incremented each time the GS is invoked.
377 */
378 unsigned svbi_postincrement_value;
379 };
380
381 struct brw_vs_prog_data {
382 GLuint curb_read_length;
383 GLuint urb_read_length;
384 GLuint total_grf;
385 GLbitfield64 outputs_written;
386 GLuint nr_params; /**< number of float params/constants */
387 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
388 GLuint total_scratch;
389
390 GLbitfield64 inputs_read;
391
392 /* Used for calculating urb partitions:
393 */
394 GLuint urb_entry_size;
395
396 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
397 const float *pull_param[MAX_UNIFORMS * 4];
398
399 bool uses_new_param_layout;
400 bool uses_vertexid;
401 };
402
403
404 /* Size == 0 if output either not written, or always [0,0,0,1]
405 */
406 struct brw_vs_ouput_sizes {
407 GLubyte output_size[VERT_RESULT_MAX];
408 };
409
410
411 /** Number of texture sampler units */
412 #define BRW_MAX_TEX_UNIT 16
413
414 /** Max number of render targets in a shader */
415 #define BRW_MAX_DRAW_BUFFERS 8
416
417 /**
418 * Max number of binding table entries used for stream output.
419 *
420 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
421 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
422 *
423 * On Gen6, the size of transform feedback data is limited not by the number
424 * of components but by the number of binding table entries we set aside. We
425 * use one binding table entry for a float, one entry for a vector, and one
426 * entry per matrix column. Since the only way we can communicate our
427 * transform feedback capabilities to the client is via
428 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
429 * worst case, in which all the varyings are floats, so we use up one binding
430 * table entry per component. Therefore we need to set aside at least 64
431 * binding table entries for use by transform feedback.
432 *
433 * Note: since we don't currently pack varyings, it is currently impossible
434 * for the client to actually use up all of these binding table entries--if
435 * all of their varyings were floats, they would run out of varying slots and
436 * fail to link. But that's a bug, so it seems prudent to go ahead and
437 * allocate the number of binding table entries we will need once the bug is
438 * fixed.
439 */
440 #define BRW_MAX_SOL_BINDINGS 64
441
442 /** Maximum number of actual buffers used for stream output */
443 #define BRW_MAX_SOL_BUFFERS 4
444
445 /**
446 * Helpers to create Surface Binding Table indexes for draw buffers,
447 * textures, and constant buffers.
448 *
449 * Shader threads access surfaces via numeric handles, rather than directly
450 * using pointers. The binding table maps these numeric handles to the
451 * address of the actual buffer.
452 *
453 * For example, a shader might ask to sample from "surface 7." In this case,
454 * bind[7] would contain a pointer to a texture.
455 *
456 * Although the hardware supports separate binding tables per pipeline stage
457 * (VS, HS, DS, GS, PS), we currently share a single binding table for all of
458 * them. This is purely for convenience.
459 *
460 * Currently our binding tables are (arbitrarily) programmed as follows:
461 *
462 * +-------------------------------+
463 * | 0 | Draw buffer 0 | .
464 * | . | . | \
465 * | : | : | > Only relevant to the WM.
466 * | 7 | Draw buffer 7 | /
467 * |-----|-------------------------| `
468 * | 8 | VS Pull Constant Buffer |
469 * | 9 | WM Pull Constant Buffer |
470 * |-----|-------------------------|
471 * | 10 | Texture 0 |
472 * | . | . |
473 * | : | : |
474 * | 25 | Texture 15 |
475 * +-----|-------------------------+
476 * | 26 | SOL Binding 0 |
477 * | . | . |
478 * | : | : |
479 * | 89 | SOL Binding 63 |
480 * +-------------------------------+
481 *
482 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
483 * the identity function or things will break. We do want to keep draw buffers
484 * first so we can use headerless render target writes for RT 0.
485 */
486 #define SURF_INDEX_DRAW(d) (d)
487 #define SURF_INDEX_VERT_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 0)
488 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
489 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
490 #define SURF_INDEX_SOL_BINDING(t) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + (t))
491
492 /** Maximum size of the binding table. */
493 #define BRW_MAX_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
494
495 enum brw_cache_id {
496 BRW_BLEND_STATE,
497 BRW_DEPTH_STENCIL_STATE,
498 BRW_COLOR_CALC_STATE,
499 BRW_CC_VP,
500 BRW_CC_UNIT,
501 BRW_WM_PROG,
502 BRW_SAMPLER,
503 BRW_WM_UNIT,
504 BRW_SF_PROG,
505 BRW_SF_VP,
506 BRW_SF_UNIT, /* scissor state on gen6 */
507 BRW_VS_UNIT,
508 BRW_VS_PROG,
509 BRW_GS_UNIT,
510 BRW_GS_PROG,
511 BRW_CLIP_VP,
512 BRW_CLIP_UNIT,
513 BRW_CLIP_PROG,
514
515 BRW_MAX_CACHE
516 };
517
518 struct brw_cache_item {
519 /**
520 * Effectively part of the key, cache_id identifies what kind of state
521 * buffer is involved, and also which brw->state.dirty.cache flag should
522 * be set when this cache item is chosen.
523 */
524 enum brw_cache_id cache_id;
525 /** 32-bit hash of the key data */
526 GLuint hash;
527 GLuint key_size; /* for variable-sized keys */
528 GLuint aux_size;
529 const void *key;
530
531 uint32_t offset;
532 uint32_t size;
533
534 struct brw_cache_item *next;
535 };
536
537
538
539 struct brw_cache {
540 struct brw_context *brw;
541
542 struct brw_cache_item **items;
543 drm_intel_bo *bo;
544 GLuint size, n_items;
545
546 uint32_t next_offset;
547 bool bo_used_by_gpu;
548 };
549
550
551 /* Considered adding a member to this struct to document which flags
552 * an update might raise so that ordering of the state atoms can be
553 * checked or derived at runtime. Dropped the idea in favor of having
554 * a debug mode where the state is monitored for flags which are
555 * raised that have already been tested against.
556 */
557 struct brw_tracked_state {
558 struct brw_state_flags dirty;
559 void (*emit)( struct brw_context *brw );
560 };
561
562 /* Flags for brw->state.cache.
563 */
564 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
565 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
566 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
567 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
568 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
569 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
570 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
571 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
572 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
573 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
574 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
575 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
576 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
577 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
578 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
579 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
580 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
581 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
582
583 struct brw_cached_batch_item {
584 struct header *header;
585 GLuint sz;
586 struct brw_cached_batch_item *next;
587 };
588
589
590
591 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
592 * be easier if C allowed arrays of packed elements?
593 */
594 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
595
596 struct brw_vertex_buffer {
597 /** Buffer object containing the uploaded vertex data */
598 drm_intel_bo *bo;
599 uint32_t offset;
600 /** Byte stride between elements in the uploaded array */
601 GLuint stride;
602 };
603 struct brw_vertex_element {
604 const struct gl_client_array *glarray;
605
606 int buffer;
607
608 /** The corresponding Mesa vertex attribute */
609 gl_vert_attrib attrib;
610 /** Size of a complete element */
611 GLuint element_size;
612 /** Offset of the first element within the buffer object */
613 unsigned int offset;
614 };
615
616
617
618 struct brw_vertex_info {
619 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
620 };
621
622 struct brw_query_object {
623 struct gl_query_object Base;
624
625 /** Last query BO associated with this query. */
626 drm_intel_bo *bo;
627 /** First index in bo with query data for this object. */
628 int first_index;
629 /** Last index in bo with query data for this object. */
630 int last_index;
631 };
632
633
634 /**
635 * brw_context is derived from intel_context.
636 */
637 struct brw_context
638 {
639 struct intel_context intel; /**< base class, must be first field */
640 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
641
642 bool emit_state_always;
643 bool has_surface_tile_offset;
644 bool has_compr4;
645 bool has_negative_rhw_bug;
646 bool has_aa_line_parameters;
647 bool has_pln;
648 bool new_vs_backend;
649 bool precompile;
650
651 struct {
652 struct brw_state_flags dirty;
653 } state;
654
655 struct brw_cache cache;
656 struct brw_cached_batch_item *cached_batch_items;
657
658 struct {
659 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
660 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
661 struct {
662 uint32_t handle;
663 uint32_t offset;
664 uint32_t stride;
665 } current_buffers[VERT_ATTRIB_MAX];
666
667 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
668 GLuint nr_enabled;
669 GLuint nr_buffers, nr_current_buffers;
670
671 /* Summary of size and varying of active arrays, so we can check
672 * for changes to this state:
673 */
674 struct brw_vertex_info info;
675 unsigned int min_index, max_index;
676
677 /* Offset from start of vertex buffer so we can avoid redefining
678 * the same VB packed over and over again.
679 */
680 unsigned int start_vertex_bias;
681 } vb;
682
683 struct {
684 /**
685 * Index buffer for this draw_prims call.
686 *
687 * Updates are signaled by BRW_NEW_INDICES.
688 */
689 const struct _mesa_index_buffer *ib;
690
691 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
692 drm_intel_bo *bo;
693 GLuint type;
694
695 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
696 * avoid re-uploading the IB packet over and over if we're actually
697 * referencing the same index buffer.
698 */
699 unsigned int start_vertex_offset;
700 } ib;
701
702 /* Active vertex program:
703 */
704 const struct gl_vertex_program *vertex_program;
705 const struct gl_fragment_program *fragment_program;
706
707 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
708 uint32_t CMD_VF_STATISTICS;
709 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
710 uint32_t CMD_PIPELINE_SELECT;
711
712 /**
713 * Platform specific constants containing the maximum number of threads
714 * for each pipeline stage.
715 */
716 int max_vs_threads;
717 int max_gs_threads;
718 int max_wm_threads;
719
720 /* BRW_NEW_URB_ALLOCATIONS:
721 */
722 struct {
723 GLuint vsize; /* vertex size plus header in urb registers */
724 GLuint csize; /* constant buffer size in urb registers */
725 GLuint sfsize; /* setup data size in urb registers */
726
727 bool constrained;
728
729 GLuint max_vs_entries; /* Maximum number of VS entries */
730 GLuint max_gs_entries; /* Maximum number of GS entries */
731
732 GLuint nr_vs_entries;
733 GLuint nr_gs_entries;
734 GLuint nr_clip_entries;
735 GLuint nr_sf_entries;
736 GLuint nr_cs_entries;
737
738 /* gen6:
739 * The length of each URB entry owned by the VS (or GS), as
740 * a number of 1024-bit (128-byte) rows. Should be >= 1.
741 *
742 * gen7: Same meaning, but in 512-bit (64-byte) rows.
743 */
744 GLuint vs_size;
745 GLuint gs_size;
746
747 GLuint vs_start;
748 GLuint gs_start;
749 GLuint clip_start;
750 GLuint sf_start;
751 GLuint cs_start;
752 GLuint size; /* Hardware URB size, in KB. */
753
754 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
755 * URB space for the GS.
756 */
757 bool gen6_gs_previously_active;
758 } urb;
759
760
761 /* BRW_NEW_CURBE_OFFSETS:
762 */
763 struct {
764 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
765 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
766 GLuint clip_start;
767 GLuint clip_size;
768 GLuint vs_start;
769 GLuint vs_size;
770 GLuint total_size;
771
772 drm_intel_bo *curbe_bo;
773 /** Offset within curbe_bo of space for current curbe entry */
774 GLuint curbe_offset;
775 /** Offset within curbe_bo of space for next curbe entry */
776 GLuint curbe_next_offset;
777
778 /**
779 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
780 * in brw_curbe.c with the same set of constant data to be uploaded,
781 * so we'd rather not upload new constants in that case (it can cause
782 * a pipeline bubble since only up to 4 can be pipelined at a time).
783 */
784 GLfloat *last_buf;
785 /**
786 * Allocation for where to calculate the next set of CURBEs.
787 * It's a hot enough path that malloc/free of that data matters.
788 */
789 GLfloat *next_buf;
790 GLuint last_bufsz;
791 } curbe;
792
793 struct {
794 /** Binding table of pointers to surf_bo entries */
795 uint32_t bo_offset;
796 uint32_t surf_offset[BRW_MAX_SURFACES];
797 } bind;
798
799 /** SAMPLER_STATE count and offset */
800 struct {
801 GLuint count;
802 uint32_t offset;
803 } sampler;
804
805 struct {
806 struct brw_vs_prog_data *prog_data;
807 int8_t *constant_map; /* variable array following prog_data */
808
809 drm_intel_bo *scratch_bo;
810 drm_intel_bo *const_bo;
811 /** Offset in the program cache to the VS program */
812 uint32_t prog_offset;
813 uint32_t state_offset;
814
815 uint32_t push_const_offset; /* Offset in the batchbuffer */
816 int push_const_size; /* in 256-bit register increments */
817
818 /** @{ register allocator */
819
820 struct ra_regs *regs;
821
822 /**
823 * Array of the ra classes for the unaligned contiguous register
824 * block sizes used.
825 */
826 int *classes;
827
828 /**
829 * Mapping for register-allocated objects in *regs to the first
830 * GRF for that object.
831 */
832 uint8_t *ra_reg_to_grf;
833 /** @} */
834 } vs;
835
836 struct {
837 struct brw_gs_prog_data *prog_data;
838
839 bool prog_active;
840 /** Offset in the program cache to the CLIP program pre-gen6 */
841 uint32_t prog_offset;
842 uint32_t state_offset;
843 } gs;
844
845 struct {
846 struct brw_clip_prog_data *prog_data;
847
848 /** Offset in the program cache to the CLIP program pre-gen6 */
849 uint32_t prog_offset;
850
851 /* Offset in the batch to the CLIP state on pre-gen6. */
852 uint32_t state_offset;
853
854 /* As of gen6, this is the offset in the batch to the CLIP VP,
855 * instead of vp_bo.
856 */
857 uint32_t vp_offset;
858 } clip;
859
860
861 struct {
862 struct brw_sf_prog_data *prog_data;
863
864 /** Offset in the program cache to the CLIP program pre-gen6 */
865 uint32_t prog_offset;
866 uint32_t state_offset;
867 uint32_t vp_offset;
868 } sf;
869
870 struct {
871 struct brw_wm_prog_data *prog_data;
872 struct brw_wm_compile *compile_data;
873
874 /** Input sizes, calculated from active vertex program.
875 * One bit per fragment program input attribute.
876 */
877 GLbitfield input_size_masks[4];
878
879 /** offsets in the batch to sampler default colors (texture border color)
880 */
881 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
882
883 GLuint render_surf;
884
885 drm_intel_bo *scratch_bo;
886
887 /** Offset in the program cache to the WM program */
888 uint32_t prog_offset;
889
890 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
891
892 drm_intel_bo *const_bo; /* pull constant buffer. */
893 /**
894 * This is offset in the batch to the push constants on gen6.
895 *
896 * Pre-gen6, push constants live in the CURBE.
897 */
898 uint32_t push_const_offset;
899
900 /** @{ register allocator */
901
902 struct ra_regs *regs;
903
904 /** Array of the ra classes for the unaligned contiguous
905 * register block sizes used.
906 */
907 int *classes;
908
909 /**
910 * Mapping for register-allocated objects in *regs to the first
911 * GRF for that object.
912 */
913 uint8_t *ra_reg_to_grf;
914
915 /**
916 * ra class for the aligned pairs we use for PLN, which doesn't
917 * appear in *classes.
918 */
919 int aligned_pairs_class;
920
921 /** @} */
922 } wm;
923
924
925 struct {
926 uint32_t state_offset;
927 uint32_t blend_state_offset;
928 uint32_t depth_stencil_state_offset;
929 uint32_t vp_offset;
930 } cc;
931
932 struct {
933 struct brw_query_object *obj;
934 drm_intel_bo *bo;
935 int index;
936 bool active;
937 } query;
938 /* Used to give every program string a unique id
939 */
940 GLuint program_id;
941
942 int num_atoms;
943 const struct brw_tracked_state **atoms;
944
945 /* If (INTEL_DEBUG & DEBUG_BATCH) */
946 struct {
947 uint32_t offset;
948 uint32_t size;
949 enum state_struct_type type;
950 } *state_batch_list;
951 int state_batch_count;
952
953 /**
954 * \brief State needed to execute HiZ meta-ops
955 *
956 * All fields except \c op are initialized by gen6_hiz_init().
957 */
958 struct brw_hiz_state {
959 /**
960 * \brief Indicates which HiZ operation is in progress.
961 *
962 * See the following sections of the Sandy Bridge PRM, Volume 1, Part2:
963 * - 7.5.3.1 Depth Buffer Clear
964 * - 7.5.3.2 Depth Buffer Resolve
965 * - 7.5.3.3 Hierarchical Depth Buffer Resolve
966 */
967 enum brw_hiz_op {
968 BRW_HIZ_OP_NONE = 0,
969 BRW_HIZ_OP_DEPTH_CLEAR,
970 BRW_HIZ_OP_DEPTH_RESOLVE,
971 BRW_HIZ_OP_HIZ_RESOLVE,
972 } op;
973
974 /** \brief Shader state */
975 struct {
976 GLuint program;
977 GLuint position_vbo;
978 GLint position_location;
979 } shader;
980
981 /** \brief VAO for the rectangle primitive's vertices. */
982 GLuint vao;
983
984 GLuint fbo;
985 struct gl_renderbuffer *depth_rb;
986 } hiz;
987
988 struct brw_sol_state {
989 uint32_t svbi_0_starting_index;
990 uint32_t svbi_0_max_index;
991 uint32_t primitives_generated;
992 uint32_t primitives_written;
993 } sol;
994
995 uint32_t render_target_format[MESA_FORMAT_COUNT];
996 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
997 };
998
999
1000
1001 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1002
1003 struct brw_instruction_info {
1004 char *name;
1005 int nsrc;
1006 int ndst;
1007 bool is_arith;
1008 };
1009 extern const struct brw_instruction_info brw_opcodes[128];
1010
1011 /*======================================================================
1012 * brw_vtbl.c
1013 */
1014 void brwInitVtbl( struct brw_context *brw );
1015
1016 /*======================================================================
1017 * brw_context.c
1018 */
1019 bool brwCreateContext(int api,
1020 const struct gl_config *mesaVis,
1021 __DRIcontext *driContextPriv,
1022 void *sharedContextPrivate);
1023
1024 /*======================================================================
1025 * brw_queryobj.c
1026 */
1027 void brw_init_queryobj_functions(struct dd_function_table *functions);
1028 void brw_prepare_query_begin(struct brw_context *brw);
1029 void brw_emit_query_begin(struct brw_context *brw);
1030 void brw_emit_query_end(struct brw_context *brw);
1031
1032 /*======================================================================
1033 * brw_state_dump.c
1034 */
1035 void brw_debug_batch(struct intel_context *intel);
1036
1037 /*======================================================================
1038 * brw_tex.c
1039 */
1040 void brw_validate_textures( struct brw_context *brw );
1041
1042
1043 /*======================================================================
1044 * brw_program.c
1045 */
1046 void brwInitFragProgFuncs( struct dd_function_table *functions );
1047
1048 int brw_get_scratch_size(int size);
1049 void brw_get_scratch_bo(struct intel_context *intel,
1050 drm_intel_bo **scratch_bo, int size);
1051
1052
1053 /* brw_urb.c
1054 */
1055 void brw_upload_urb_fence(struct brw_context *brw);
1056
1057 /* brw_curbe.c
1058 */
1059 void brw_upload_cs_urb_state(struct brw_context *brw);
1060
1061 /* brw_disasm.c */
1062 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1063
1064 /* brw_vs.c */
1065 void brw_compute_vue_map(struct brw_vue_map *vue_map,
1066 const struct intel_context *intel,
1067 bool userclip_active,
1068 GLbitfield64 outputs_written);
1069 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1070
1071 /* brw_wm.c */
1072 unsigned
1073 brw_compute_barycentric_interp_modes(bool shade_model_flat,
1074 const struct gl_fragment_program *fprog);
1075
1076 /* brw_wm_surface_state.c */
1077 void brw_init_surface_formats(struct brw_context *brw);
1078 void
1079 brw_update_sol_surface(struct brw_context *brw,
1080 struct gl_buffer_object *buffer_obj,
1081 uint32_t *out_offset, unsigned num_vector_components,
1082 unsigned stride_dwords, unsigned offset_dwords);
1083
1084 /* gen6_clip_state.c */
1085 bool
1086 brw_fprog_uses_noperspective(const struct gl_fragment_program *fprog);
1087
1088 /* gen6_sol.c */
1089 void
1090 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1091 struct gl_transform_feedback_object *obj);
1092 void
1093 brw_end_transform_feedback(struct gl_context *ctx,
1094 struct gl_transform_feedback_object *obj);
1095
1096 /* gen7_sol_state.c */
1097 void
1098 gen7_end_transform_feedback(struct gl_context *ctx,
1099 struct gl_transform_feedback_object *obj);
1100
1101
1102
1103 /*======================================================================
1104 * Inline conversion functions. These are better-typed than the
1105 * macros used previously:
1106 */
1107 static INLINE struct brw_context *
1108 brw_context( struct gl_context *ctx )
1109 {
1110 return (struct brw_context *)ctx;
1111 }
1112
1113 static INLINE struct brw_vertex_program *
1114 brw_vertex_program(struct gl_vertex_program *p)
1115 {
1116 return (struct brw_vertex_program *) p;
1117 }
1118
1119 static INLINE const struct brw_vertex_program *
1120 brw_vertex_program_const(const struct gl_vertex_program *p)
1121 {
1122 return (const struct brw_vertex_program *) p;
1123 }
1124
1125 static INLINE struct brw_fragment_program *
1126 brw_fragment_program(struct gl_fragment_program *p)
1127 {
1128 return (struct brw_fragment_program *) p;
1129 }
1130
1131 static INLINE const struct brw_fragment_program *
1132 brw_fragment_program_const(const struct gl_fragment_program *p)
1133 {
1134 return (const struct brw_fragment_program *) p;
1135 }
1136
1137 static inline
1138 float convert_param(enum param_conversion conversion, const float *param)
1139 {
1140 union {
1141 float f;
1142 uint32_t u;
1143 int32_t i;
1144 } fi;
1145
1146 switch (conversion) {
1147 case PARAM_NO_CONVERT:
1148 return *param;
1149 case PARAM_CONVERT_F2I:
1150 fi.i = *param;
1151 return fi.f;
1152 case PARAM_CONVERT_F2U:
1153 fi.u = *param;
1154 return fi.f;
1155 case PARAM_CONVERT_F2B:
1156 if (*param != 0.0)
1157 fi.i = 1;
1158 else
1159 fi.i = 0;
1160 return fi.f;
1161 case PARAM_CONVERT_ZERO:
1162 return 0.0;
1163 default:
1164 return *param;
1165 }
1166 }
1167
1168 /**
1169 * Pre-gen6, the register file of the EUs was shared between threads,
1170 * and each thread used some subset allocated on a 16-register block
1171 * granularity. The unit states wanted these block counts.
1172 */
1173 static inline int
1174 brw_register_blocks(int reg_count)
1175 {
1176 return ALIGN(reg_count, 16) / 16 - 1;
1177 }
1178
1179 static inline uint32_t
1180 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1181 uint32_t prog_offset)
1182 {
1183 struct intel_context *intel = &brw->intel;
1184
1185 if (intel->gen >= 5) {
1186 /* Using state base address. */
1187 return prog_offset;
1188 }
1189
1190 drm_intel_bo_emit_reloc(intel->batch.bo,
1191 state_offset,
1192 brw->cache.bo,
1193 prog_offset,
1194 I915_GEM_DOMAIN_INSTRUCTION, 0);
1195
1196 return brw->cache.bo->offset + prog_offset;
1197 }
1198
1199 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1200
1201 #endif