i965/gen6+: Avoid recomputing whether we use noperspective.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122 struct brw_instruction;
123 struct brw_vs_prog_key;
124 struct brw_wm_prog_key;
125 struct brw_wm_prog_data;
126
127 enum brw_state_id {
128 BRW_STATE_URB_FENCE,
129 BRW_STATE_FRAGMENT_PROGRAM,
130 BRW_STATE_VERTEX_PROGRAM,
131 BRW_STATE_INPUT_DIMENSIONS,
132 BRW_STATE_CURBE_OFFSETS,
133 BRW_STATE_REDUCED_PRIMITIVE,
134 BRW_STATE_PRIMITIVE,
135 BRW_STATE_CONTEXT,
136 BRW_STATE_WM_INPUT_DIMENSIONS,
137 BRW_STATE_PSP,
138 BRW_STATE_SURFACES,
139 BRW_STATE_VS_BINDING_TABLE,
140 BRW_STATE_GS_BINDING_TABLE,
141 BRW_STATE_PS_BINDING_TABLE,
142 BRW_STATE_INDICES,
143 BRW_STATE_VERTICES,
144 BRW_STATE_BATCH,
145 BRW_STATE_NR_WM_SURFACES,
146 BRW_STATE_NR_VS_SURFACES,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 };
153
154 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
155 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
156 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
157 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
158 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
159 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
160 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
161 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
162 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
163 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
164 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
165 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
166 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
167 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
168 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
169 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
170 /**
171 * Used for any batch entry with a relocated pointer that will be used
172 * by any 3D rendering.
173 */
174 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
175 /** \see brw.state.depth_region */
176 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
177 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
178 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
179 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
180 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
181
182 struct brw_state_flags {
183 /** State update flags signalled by mesa internals */
184 GLuint mesa;
185 /**
186 * State update flags signalled as the result of brw_tracked_state updates
187 */
188 GLuint brw;
189 /** State update flags signalled by brw_state_cache.c searches */
190 GLuint cache;
191 };
192
193 enum state_struct_type {
194 AUB_TRACE_VS_STATE = 1,
195 AUB_TRACE_GS_STATE = 2,
196 AUB_TRACE_CLIP_STATE = 3,
197 AUB_TRACE_SF_STATE = 4,
198 AUB_TRACE_WM_STATE = 5,
199 AUB_TRACE_CC_STATE = 6,
200 AUB_TRACE_CLIP_VP_STATE = 7,
201 AUB_TRACE_SF_VP_STATE = 8,
202 AUB_TRACE_CC_VP_STATE = 0x9,
203 AUB_TRACE_SAMPLER_STATE = 0xa,
204 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
205 AUB_TRACE_SCRATCH_SPACE = 0xc,
206 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
207
208 AUB_TRACE_SCISSOR_STATE = 0x15,
209 AUB_TRACE_BLEND_STATE = 0x16,
210 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
211
212 /* Not written to .aub files the same way the structures above are. */
213 AUB_TRACE_NO_TYPE = 0x100,
214 AUB_TRACE_BINDING_TABLE = 0x101,
215 AUB_TRACE_SURFACE_STATE = 0x102,
216 AUB_TRACE_VS_CONSTANTS = 0x103,
217 AUB_TRACE_WM_CONSTANTS = 0x104,
218 };
219
220 /** Subclass of Mesa vertex program */
221 struct brw_vertex_program {
222 struct gl_vertex_program program;
223 GLuint id;
224 bool use_const_buffer;
225 };
226
227
228 /** Subclass of Mesa fragment program */
229 struct brw_fragment_program {
230 struct gl_fragment_program program;
231 GLuint id; /**< serial no. to identify frag progs, never re-used */
232 };
233
234 struct brw_shader {
235 struct gl_shader base;
236
237 /** Shader IR transformed for native compile, at link time. */
238 struct exec_list *ir;
239 };
240
241 struct brw_shader_program {
242 struct gl_shader_program base;
243 };
244
245 enum param_conversion {
246 PARAM_NO_CONVERT,
247 PARAM_CONVERT_F2I,
248 PARAM_CONVERT_F2U,
249 PARAM_CONVERT_F2B,
250 PARAM_CONVERT_ZERO,
251 };
252
253 /* Data about a particular attempt to compile a program. Note that
254 * there can be many of these, each in a different GL state
255 * corresponding to a different brw_wm_prog_key struct, with different
256 * compiled programs:
257 */
258 struct brw_wm_prog_data {
259 GLuint curb_read_length;
260 GLuint urb_read_length;
261
262 GLuint first_curbe_grf;
263 GLuint first_curbe_grf_16;
264 GLuint reg_blocks;
265 GLuint reg_blocks_16;
266 GLuint total_scratch;
267
268 GLuint nr_params; /**< number of float params/constants */
269 GLuint nr_pull_params;
270 bool error;
271 int dispatch_width;
272 uint32_t prog_offset_16;
273
274 /**
275 * Mask of which interpolation modes are required by the fragment shader.
276 * Used in hardware setup on gen6+.
277 */
278 uint32_t barycentric_interp_modes;
279
280 /* Pointer to tracked values (only valid once
281 * _mesa_load_state_parameters has been called at runtime).
282 */
283 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
284 enum param_conversion param_convert[MAX_UNIFORMS * 4];
285 const float *pull_param[MAX_UNIFORMS * 4];
286 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
287 };
288
289 /**
290 * Enum representing the i965-specific vertex results that don't correspond
291 * exactly to any element of gl_vert_result. The values of this enum are
292 * assigned such that they don't conflict with gl_vert_result.
293 */
294 typedef enum
295 {
296 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
297 BRW_VERT_RESULT_HPOS_DUPLICATE,
298 BRW_VERT_RESULT_PAD,
299 BRW_VERT_RESULT_MAX
300 } brw_vert_result;
301
302
303 /**
304 * Data structure recording the relationship between the gl_vert_result enum
305 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
306 * single octaword within the VUE (128 bits).
307 *
308 * Note that each BRW register contains 256 bits (2 octawords), so when
309 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
310 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
311 * in a vertex shader), each register corresponds to a single VUE slot, since
312 * it contains data for two separate vertices.
313 */
314 struct brw_vue_map {
315 /**
316 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
317 * not stored in a slot (because they are not written, or because
318 * additional processing is applied before storing them in the VUE), the
319 * value is -1.
320 */
321 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
322
323 /**
324 * Map from VUE slot to gl_vert_result value. For slots that do not
325 * directly correspond to a gl_vert_result, the value comes from
326 * brw_vert_result.
327 *
328 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
329 * simplifies code that uses the value stored in slot_to_vert_result to
330 * create a bit mask).
331 */
332 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
333
334 /**
335 * Total number of VUE slots in use
336 */
337 int num_slots;
338 };
339
340 /**
341 * Convert a VUE slot number into a byte offset within the VUE.
342 */
343 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
344 {
345 return 16*slot;
346 }
347
348 /**
349 * Convert a vert_result into a byte offset within the VUE.
350 */
351 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
352 GLuint vert_result)
353 {
354 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
355 }
356
357
358 struct brw_sf_prog_data {
359 GLuint urb_read_length;
360 GLuint total_grf;
361
362 /* Each vertex may have upto 12 attributes, 4 components each,
363 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
364 * rows.
365 *
366 * Actually we use 4 for each, so call it 12 rows.
367 */
368 GLuint urb_entry_size;
369 };
370
371 struct brw_clip_prog_data {
372 GLuint curb_read_length; /* user planes? */
373 GLuint clip_mode;
374 GLuint urb_read_length;
375 GLuint total_grf;
376 };
377
378 struct brw_gs_prog_data {
379 GLuint urb_read_length;
380 GLuint total_grf;
381
382 /**
383 * Gen6 transform feedback: Amount by which the streaming vertex buffer
384 * indices should be incremented each time the GS is invoked.
385 */
386 unsigned svbi_postincrement_value;
387 };
388
389 struct brw_vs_prog_data {
390 struct brw_vue_map vue_map;
391
392 GLuint curb_read_length;
393 GLuint urb_read_length;
394 GLuint total_grf;
395 GLbitfield64 outputs_written;
396 GLuint nr_params; /**< number of float params/constants */
397 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
398 GLuint total_scratch;
399
400 GLbitfield64 inputs_read;
401
402 /* Used for calculating urb partitions:
403 */
404 GLuint urb_entry_size;
405
406 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
407 const float *pull_param[MAX_UNIFORMS * 4];
408
409 bool uses_new_param_layout;
410 bool uses_vertexid;
411 bool userclip;
412 };
413
414
415 /* Size == 0 if output either not written, or always [0,0,0,1]
416 */
417 struct brw_vs_ouput_sizes {
418 GLubyte output_size[VERT_RESULT_MAX];
419 };
420
421
422 /** Number of texture sampler units */
423 #define BRW_MAX_TEX_UNIT 16
424
425 /** Max number of render targets in a shader */
426 #define BRW_MAX_DRAW_BUFFERS 8
427
428 /**
429 * Max number of binding table entries used for stream output.
430 *
431 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
432 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
433 *
434 * On Gen6, the size of transform feedback data is limited not by the number
435 * of components but by the number of binding table entries we set aside. We
436 * use one binding table entry for a float, one entry for a vector, and one
437 * entry per matrix column. Since the only way we can communicate our
438 * transform feedback capabilities to the client is via
439 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
440 * worst case, in which all the varyings are floats, so we use up one binding
441 * table entry per component. Therefore we need to set aside at least 64
442 * binding table entries for use by transform feedback.
443 *
444 * Note: since we don't currently pack varyings, it is currently impossible
445 * for the client to actually use up all of these binding table entries--if
446 * all of their varyings were floats, they would run out of varying slots and
447 * fail to link. But that's a bug, so it seems prudent to go ahead and
448 * allocate the number of binding table entries we will need once the bug is
449 * fixed.
450 */
451 #define BRW_MAX_SOL_BINDINGS 64
452
453 /** Maximum number of actual buffers used for stream output */
454 #define BRW_MAX_SOL_BUFFERS 4
455
456 /**
457 * Helpers to create Surface Binding Table indexes for draw buffers,
458 * textures, and constant buffers.
459 *
460 * Shader threads access surfaces via numeric handles, rather than directly
461 * using pointers. The binding table maps these numeric handles to the
462 * address of the actual buffer.
463 *
464 * For example, a shader might ask to sample from "surface 7." In this case,
465 * bind[7] would contain a pointer to a texture.
466 *
467 * Although the hardware supports separate binding tables per pipeline stage
468 * (VS, HS, DS, GS, PS), we currently share a single binding table for all of
469 * them. This is purely for convenience.
470 *
471 * Currently our binding tables are (arbitrarily) programmed as follows:
472 *
473 * +-------------------------------+
474 * | 0 | Draw buffer 0 | .
475 * | . | . | \
476 * | : | : | > Only relevant to the WM.
477 * | 7 | Draw buffer 7 | /
478 * |-----|-------------------------| `
479 * | 8 | VS Pull Constant Buffer |
480 * | 9 | WM Pull Constant Buffer |
481 * |-----|-------------------------|
482 * | 10 | Texture 0 |
483 * | . | . |
484 * | : | : |
485 * | 25 | Texture 15 |
486 * +-----|-------------------------+
487 * | 26 | SOL Binding 0 |
488 * | . | . |
489 * | : | : |
490 * | 89 | SOL Binding 63 |
491 * +-------------------------------+
492 *
493 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
494 * the identity function or things will break. We do want to keep draw buffers
495 * first so we can use headerless render target writes for RT 0.
496 */
497 #define SURF_INDEX_DRAW(d) (d)
498 #define SURF_INDEX_VERT_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 0)
499 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
500 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
501 #define SURF_INDEX_SOL_BINDING(t) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + (t))
502
503 /** Maximum size of the binding table. */
504 #define BRW_MAX_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
505
506 enum brw_cache_id {
507 BRW_BLEND_STATE,
508 BRW_DEPTH_STENCIL_STATE,
509 BRW_COLOR_CALC_STATE,
510 BRW_CC_VP,
511 BRW_CC_UNIT,
512 BRW_WM_PROG,
513 BRW_SAMPLER,
514 BRW_WM_UNIT,
515 BRW_SF_PROG,
516 BRW_SF_VP,
517 BRW_SF_UNIT, /* scissor state on gen6 */
518 BRW_VS_UNIT,
519 BRW_VS_PROG,
520 BRW_GS_UNIT,
521 BRW_GS_PROG,
522 BRW_CLIP_VP,
523 BRW_CLIP_UNIT,
524 BRW_CLIP_PROG,
525
526 BRW_MAX_CACHE
527 };
528
529 struct brw_cache_item {
530 /**
531 * Effectively part of the key, cache_id identifies what kind of state
532 * buffer is involved, and also which brw->state.dirty.cache flag should
533 * be set when this cache item is chosen.
534 */
535 enum brw_cache_id cache_id;
536 /** 32-bit hash of the key data */
537 GLuint hash;
538 GLuint key_size; /* for variable-sized keys */
539 GLuint aux_size;
540 const void *key;
541
542 uint32_t offset;
543 uint32_t size;
544
545 struct brw_cache_item *next;
546 };
547
548
549
550 struct brw_cache {
551 struct brw_context *brw;
552
553 struct brw_cache_item **items;
554 drm_intel_bo *bo;
555 GLuint size, n_items;
556
557 uint32_t next_offset;
558 bool bo_used_by_gpu;
559 };
560
561
562 /* Considered adding a member to this struct to document which flags
563 * an update might raise so that ordering of the state atoms can be
564 * checked or derived at runtime. Dropped the idea in favor of having
565 * a debug mode where the state is monitored for flags which are
566 * raised that have already been tested against.
567 */
568 struct brw_tracked_state {
569 struct brw_state_flags dirty;
570 void (*emit)( struct brw_context *brw );
571 };
572
573 /* Flags for brw->state.cache.
574 */
575 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
576 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
577 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
578 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
579 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
580 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
581 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
582 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
583 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
584 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
585 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
586 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
587 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
588 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
589 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
590 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
591 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
592 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
593
594 struct brw_cached_batch_item {
595 struct header *header;
596 GLuint sz;
597 struct brw_cached_batch_item *next;
598 };
599
600
601
602 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
603 * be easier if C allowed arrays of packed elements?
604 */
605 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
606
607 struct brw_vertex_buffer {
608 /** Buffer object containing the uploaded vertex data */
609 drm_intel_bo *bo;
610 uint32_t offset;
611 /** Byte stride between elements in the uploaded array */
612 GLuint stride;
613 };
614 struct brw_vertex_element {
615 const struct gl_client_array *glarray;
616
617 int buffer;
618
619 /** The corresponding Mesa vertex attribute */
620 gl_vert_attrib attrib;
621 /** Size of a complete element */
622 GLuint element_size;
623 /** Offset of the first element within the buffer object */
624 unsigned int offset;
625 };
626
627
628
629 struct brw_vertex_info {
630 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
631 };
632
633 struct brw_query_object {
634 struct gl_query_object Base;
635
636 /** Last query BO associated with this query. */
637 drm_intel_bo *bo;
638 /** First index in bo with query data for this object. */
639 int first_index;
640 /** Last index in bo with query data for this object. */
641 int last_index;
642 };
643
644
645 /**
646 * brw_context is derived from intel_context.
647 */
648 struct brw_context
649 {
650 struct intel_context intel; /**< base class, must be first field */
651 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
652
653 bool emit_state_always;
654 bool has_surface_tile_offset;
655 bool has_compr4;
656 bool has_negative_rhw_bug;
657 bool has_aa_line_parameters;
658 bool has_pln;
659 bool precompile;
660
661 struct {
662 struct brw_state_flags dirty;
663 } state;
664
665 struct brw_cache cache;
666 struct brw_cached_batch_item *cached_batch_items;
667
668 struct {
669 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
670 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
671 struct {
672 uint32_t handle;
673 uint32_t offset;
674 uint32_t stride;
675 } current_buffers[VERT_ATTRIB_MAX];
676
677 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
678 GLuint nr_enabled;
679 GLuint nr_buffers, nr_current_buffers;
680
681 /* Summary of size and varying of active arrays, so we can check
682 * for changes to this state:
683 */
684 struct brw_vertex_info info;
685 unsigned int min_index, max_index;
686
687 /* Offset from start of vertex buffer so we can avoid redefining
688 * the same VB packed over and over again.
689 */
690 unsigned int start_vertex_bias;
691 } vb;
692
693 struct {
694 /**
695 * Index buffer for this draw_prims call.
696 *
697 * Updates are signaled by BRW_NEW_INDICES.
698 */
699 const struct _mesa_index_buffer *ib;
700
701 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
702 drm_intel_bo *bo;
703 GLuint type;
704
705 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
706 * avoid re-uploading the IB packet over and over if we're actually
707 * referencing the same index buffer.
708 */
709 unsigned int start_vertex_offset;
710 } ib;
711
712 /* Active vertex program:
713 */
714 const struct gl_vertex_program *vertex_program;
715 const struct gl_fragment_program *fragment_program;
716
717 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
718 uint32_t CMD_VF_STATISTICS;
719 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
720 uint32_t CMD_PIPELINE_SELECT;
721
722 /**
723 * Platform specific constants containing the maximum number of threads
724 * for each pipeline stage.
725 */
726 int max_vs_threads;
727 int max_gs_threads;
728 int max_wm_threads;
729
730 /* BRW_NEW_URB_ALLOCATIONS:
731 */
732 struct {
733 GLuint vsize; /* vertex size plus header in urb registers */
734 GLuint csize; /* constant buffer size in urb registers */
735 GLuint sfsize; /* setup data size in urb registers */
736
737 bool constrained;
738
739 GLuint max_vs_entries; /* Maximum number of VS entries */
740 GLuint max_gs_entries; /* Maximum number of GS entries */
741
742 GLuint nr_vs_entries;
743 GLuint nr_gs_entries;
744 GLuint nr_clip_entries;
745 GLuint nr_sf_entries;
746 GLuint nr_cs_entries;
747
748 /* gen6:
749 * The length of each URB entry owned by the VS (or GS), as
750 * a number of 1024-bit (128-byte) rows. Should be >= 1.
751 *
752 * gen7: Same meaning, but in 512-bit (64-byte) rows.
753 */
754 GLuint vs_size;
755 GLuint gs_size;
756
757 GLuint vs_start;
758 GLuint gs_start;
759 GLuint clip_start;
760 GLuint sf_start;
761 GLuint cs_start;
762 GLuint size; /* Hardware URB size, in KB. */
763
764 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
765 * URB space for the GS.
766 */
767 bool gen6_gs_previously_active;
768 } urb;
769
770
771 /* BRW_NEW_CURBE_OFFSETS:
772 */
773 struct {
774 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
775 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
776 GLuint clip_start;
777 GLuint clip_size;
778 GLuint vs_start;
779 GLuint vs_size;
780 GLuint total_size;
781
782 drm_intel_bo *curbe_bo;
783 /** Offset within curbe_bo of space for current curbe entry */
784 GLuint curbe_offset;
785 /** Offset within curbe_bo of space for next curbe entry */
786 GLuint curbe_next_offset;
787
788 /**
789 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
790 * in brw_curbe.c with the same set of constant data to be uploaded,
791 * so we'd rather not upload new constants in that case (it can cause
792 * a pipeline bubble since only up to 4 can be pipelined at a time).
793 */
794 GLfloat *last_buf;
795 /**
796 * Allocation for where to calculate the next set of CURBEs.
797 * It's a hot enough path that malloc/free of that data matters.
798 */
799 GLfloat *next_buf;
800 GLuint last_bufsz;
801 } curbe;
802
803 struct {
804 /** Binding table of pointers to surf_bo entries */
805 uint32_t bo_offset;
806 uint32_t surf_offset[BRW_MAX_SURFACES];
807 } bind;
808
809 /** SAMPLER_STATE count and offset */
810 struct {
811 GLuint count;
812 uint32_t offset;
813 } sampler;
814
815 struct {
816 struct brw_vs_prog_data *prog_data;
817 int8_t *constant_map; /* variable array following prog_data */
818
819 drm_intel_bo *scratch_bo;
820 drm_intel_bo *const_bo;
821 /** Offset in the program cache to the VS program */
822 uint32_t prog_offset;
823 uint32_t state_offset;
824
825 uint32_t push_const_offset; /* Offset in the batchbuffer */
826 int push_const_size; /* in 256-bit register increments */
827
828 /** @{ register allocator */
829
830 struct ra_regs *regs;
831
832 /**
833 * Array of the ra classes for the unaligned contiguous register
834 * block sizes used.
835 */
836 int *classes;
837
838 /**
839 * Mapping for register-allocated objects in *regs to the first
840 * GRF for that object.
841 */
842 uint8_t *ra_reg_to_grf;
843 /** @} */
844 } vs;
845
846 struct {
847 struct brw_gs_prog_data *prog_data;
848
849 bool prog_active;
850 /** Offset in the program cache to the CLIP program pre-gen6 */
851 uint32_t prog_offset;
852 uint32_t state_offset;
853 } gs;
854
855 struct {
856 struct brw_clip_prog_data *prog_data;
857
858 /** Offset in the program cache to the CLIP program pre-gen6 */
859 uint32_t prog_offset;
860
861 /* Offset in the batch to the CLIP state on pre-gen6. */
862 uint32_t state_offset;
863
864 /* As of gen6, this is the offset in the batch to the CLIP VP,
865 * instead of vp_bo.
866 */
867 uint32_t vp_offset;
868 } clip;
869
870
871 struct {
872 struct brw_sf_prog_data *prog_data;
873
874 /** Offset in the program cache to the CLIP program pre-gen6 */
875 uint32_t prog_offset;
876 uint32_t state_offset;
877 uint32_t vp_offset;
878 } sf;
879
880 struct {
881 struct brw_wm_prog_data *prog_data;
882 struct brw_wm_compile *compile_data;
883
884 /** Input sizes, calculated from active vertex program.
885 * One bit per fragment program input attribute.
886 */
887 GLbitfield input_size_masks[4];
888
889 /** offsets in the batch to sampler default colors (texture border color)
890 */
891 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
892
893 GLuint render_surf;
894
895 drm_intel_bo *scratch_bo;
896
897 /** Offset in the program cache to the WM program */
898 uint32_t prog_offset;
899
900 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
901
902 drm_intel_bo *const_bo; /* pull constant buffer. */
903 /**
904 * This is offset in the batch to the push constants on gen6.
905 *
906 * Pre-gen6, push constants live in the CURBE.
907 */
908 uint32_t push_const_offset;
909
910 /** @{ register allocator */
911
912 struct ra_regs *regs;
913
914 /** Array of the ra classes for the unaligned contiguous
915 * register block sizes used.
916 */
917 int *classes;
918
919 /**
920 * Mapping for register-allocated objects in *regs to the first
921 * GRF for that object.
922 */
923 uint8_t *ra_reg_to_grf;
924
925 /**
926 * ra class for the aligned pairs we use for PLN, which doesn't
927 * appear in *classes.
928 */
929 int aligned_pairs_class;
930
931 /** @} */
932 } wm;
933
934
935 struct {
936 uint32_t state_offset;
937 uint32_t blend_state_offset;
938 uint32_t depth_stencil_state_offset;
939 uint32_t vp_offset;
940 } cc;
941
942 struct {
943 struct brw_query_object *obj;
944 drm_intel_bo *bo;
945 int index;
946 bool active;
947 } query;
948 /* Used to give every program string a unique id
949 */
950 GLuint program_id;
951
952 int num_atoms;
953 const struct brw_tracked_state **atoms;
954
955 /* If (INTEL_DEBUG & DEBUG_BATCH) */
956 struct {
957 uint32_t offset;
958 uint32_t size;
959 enum state_struct_type type;
960 } *state_batch_list;
961 int state_batch_count;
962
963 /**
964 * \brief State needed to execute HiZ ops.
965 *
966 * \see gen6_hiz_init()
967 * \see gen6_hiz_exec()
968 */
969 struct brw_hiz_state {
970 /** \brief VBO for rectangle primitive.
971 *
972 * Rather than using glGenBuffers(), we allocate the VBO directly
973 * through drm.
974 */
975 drm_intel_bo *vertex_bo;
976 } hiz;
977
978 struct brw_sol_state {
979 uint32_t svbi_0_starting_index;
980 uint32_t svbi_0_max_index;
981 uint32_t offset_0_batch_start;
982 uint32_t primitives_generated;
983 uint32_t primitives_written;
984 } sol;
985
986 uint32_t render_target_format[MESA_FORMAT_COUNT];
987 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
988 };
989
990
991
992 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
993
994 struct brw_instruction_info {
995 char *name;
996 int nsrc;
997 int ndst;
998 bool is_arith;
999 };
1000 extern const struct brw_instruction_info brw_opcodes[128];
1001
1002 /*======================================================================
1003 * brw_vtbl.c
1004 */
1005 void brwInitVtbl( struct brw_context *brw );
1006
1007 /*======================================================================
1008 * brw_context.c
1009 */
1010 bool brwCreateContext(int api,
1011 const struct gl_config *mesaVis,
1012 __DRIcontext *driContextPriv,
1013 void *sharedContextPrivate);
1014
1015 /*======================================================================
1016 * brw_queryobj.c
1017 */
1018 void brw_init_queryobj_functions(struct dd_function_table *functions);
1019 void brw_prepare_query_begin(struct brw_context *brw);
1020 void brw_emit_query_begin(struct brw_context *brw);
1021 void brw_emit_query_end(struct brw_context *brw);
1022
1023 /*======================================================================
1024 * brw_state_dump.c
1025 */
1026 void brw_debug_batch(struct intel_context *intel);
1027
1028 /*======================================================================
1029 * brw_tex.c
1030 */
1031 void brw_validate_textures( struct brw_context *brw );
1032
1033
1034 /*======================================================================
1035 * brw_program.c
1036 */
1037 void brwInitFragProgFuncs( struct dd_function_table *functions );
1038
1039 int brw_get_scratch_size(int size);
1040 void brw_get_scratch_bo(struct intel_context *intel,
1041 drm_intel_bo **scratch_bo, int size);
1042
1043
1044 /* brw_urb.c
1045 */
1046 void brw_upload_urb_fence(struct brw_context *brw);
1047
1048 /* brw_curbe.c
1049 */
1050 void brw_upload_cs_urb_state(struct brw_context *brw);
1051
1052 /* brw_disasm.c */
1053 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1054
1055 /* brw_vs.c */
1056 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1057
1058 /* brw_wm_surface_state.c */
1059 void brw_init_surface_formats(struct brw_context *brw);
1060 void
1061 brw_update_sol_surface(struct brw_context *brw,
1062 struct gl_buffer_object *buffer_obj,
1063 uint32_t *out_offset, unsigned num_vector_components,
1064 unsigned stride_dwords, unsigned offset_dwords);
1065
1066 /* gen6_sol.c */
1067 void
1068 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1069 struct gl_transform_feedback_object *obj);
1070 void
1071 brw_end_transform_feedback(struct gl_context *ctx,
1072 struct gl_transform_feedback_object *obj);
1073
1074 /* gen7_sol_state.c */
1075 void
1076 gen7_end_transform_feedback(struct gl_context *ctx,
1077 struct gl_transform_feedback_object *obj);
1078
1079
1080
1081 /*======================================================================
1082 * Inline conversion functions. These are better-typed than the
1083 * macros used previously:
1084 */
1085 static INLINE struct brw_context *
1086 brw_context( struct gl_context *ctx )
1087 {
1088 return (struct brw_context *)ctx;
1089 }
1090
1091 static INLINE struct brw_vertex_program *
1092 brw_vertex_program(struct gl_vertex_program *p)
1093 {
1094 return (struct brw_vertex_program *) p;
1095 }
1096
1097 static INLINE const struct brw_vertex_program *
1098 brw_vertex_program_const(const struct gl_vertex_program *p)
1099 {
1100 return (const struct brw_vertex_program *) p;
1101 }
1102
1103 static INLINE struct brw_fragment_program *
1104 brw_fragment_program(struct gl_fragment_program *p)
1105 {
1106 return (struct brw_fragment_program *) p;
1107 }
1108
1109 static INLINE const struct brw_fragment_program *
1110 brw_fragment_program_const(const struct gl_fragment_program *p)
1111 {
1112 return (const struct brw_fragment_program *) p;
1113 }
1114
1115 static inline
1116 float convert_param(enum param_conversion conversion, const float *param)
1117 {
1118 union {
1119 float f;
1120 uint32_t u;
1121 int32_t i;
1122 } fi;
1123
1124 switch (conversion) {
1125 case PARAM_NO_CONVERT:
1126 return *param;
1127 case PARAM_CONVERT_F2I:
1128 fi.i = *param;
1129 return fi.f;
1130 case PARAM_CONVERT_F2U:
1131 fi.u = *param;
1132 return fi.f;
1133 case PARAM_CONVERT_F2B:
1134 if (*param != 0.0)
1135 fi.i = 1;
1136 else
1137 fi.i = 0;
1138 return fi.f;
1139 case PARAM_CONVERT_ZERO:
1140 return 0.0;
1141 default:
1142 return *param;
1143 }
1144 }
1145
1146 /**
1147 * Pre-gen6, the register file of the EUs was shared between threads,
1148 * and each thread used some subset allocated on a 16-register block
1149 * granularity. The unit states wanted these block counts.
1150 */
1151 static inline int
1152 brw_register_blocks(int reg_count)
1153 {
1154 return ALIGN(reg_count, 16) / 16 - 1;
1155 }
1156
1157 static inline uint32_t
1158 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1159 uint32_t prog_offset)
1160 {
1161 struct intel_context *intel = &brw->intel;
1162
1163 if (intel->gen >= 5) {
1164 /* Using state base address. */
1165 return prog_offset;
1166 }
1167
1168 drm_intel_bo_emit_reloc(intel->batch.bo,
1169 state_offset,
1170 brw->cache.bo,
1171 prog_offset,
1172 I915_GEM_DOMAIN_INSTRUCTION, 0);
1173
1174 return brw->cache.bo->offset + prog_offset;
1175 }
1176
1177 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1178
1179 #endif