i965: fix transform feedback with primitive restart
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* Glossary:
45 *
46 * URB - uniform resource buffer. A mid-sized buffer which is
47 * partitioned between the fixed function units and used for passing
48 * values (vertices, primitives, constants) between them.
49 *
50 * CURBE - constant URB entry. An urb region (entry) used to hold
51 * constant values which the fixed function units can be instructed to
52 * preload into the GRF when spawning a thread.
53 *
54 * VUE - vertex URB entry. An urb entry holding a vertex and usually
55 * a vertex header. The header contains control information and
56 * things like primitive type, Begin/end flags and clip codes.
57 *
58 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
59 * unit holding rasterization and interpolation parameters.
60 *
61 * GRF - general register file. One of several register files
62 * addressable by programmed threads. The inputs (r0, payload, curbe,
63 * urb) of the thread are preloaded to this area before the thread is
64 * spawned. The registers are individually 8 dwords wide and suitable
65 * for general usage. Registers holding thread input values are not
66 * special and may be overwritten.
67 *
68 * MRF - message register file. Threads communicate (and terminate)
69 * by sending messages. Message parameters are placed in contiguous
70 * MRF registers. All program output is via these messages. URB
71 * entries are populated by sending a message to the shared URB
72 * function containing the new data, together with a control word,
73 * often an unmodified copy of R0.
74 *
75 * R0 - GRF register 0. Typically holds control information used when
76 * sending messages to other threads.
77 *
78 * EU or GEN4 EU: The name of the programmable subsystem of the
79 * i965 hardware. Threads are executed by the EU, the registers
80 * described above are part of the EU architecture.
81 *
82 * Fixed function units:
83 *
84 * CS - Command streamer. Notional first unit, little software
85 * interaction. Holds the URB entries used for constant data, ie the
86 * CURBEs.
87 *
88 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
89 * this unit is responsible for pulling vertices out of vertex buffers
90 * in vram and injecting them into the processing pipe as VUEs. If
91 * enabled, it first passes them to a VS thread which is a good place
92 * for the driver to implement any active vertex shader.
93 *
94 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
95 * enabled, incoming strips etc are passed to GS threads in individual
96 * line/triangle/point units. The GS thread may perform arbitary
97 * computation and emit whatever primtives with whatever vertices it
98 * chooses. This makes GS an excellent place to implement GL's
99 * unfilled polygon modes, though of course it is capable of much
100 * more. Additionally, GS is used to translate away primitives not
101 * handled by latter units, including Quads and Lineloops.
102 *
103 * CS - Clipper. Mesa's clipping algorithms are imported to run on
104 * this unit. The fixed function part performs cliptesting against
105 * the 6 fixed clipplanes and makes descisions on whether or not the
106 * incoming primitive needs to be passed to a thread for clipping.
107 * User clip planes are handled via cooperation with the VS thread.
108 *
109 * SF - Strips Fans or Setup: Triangles are prepared for
110 * rasterization. Interpolation coefficients are calculated.
111 * Flatshading and two-side lighting usually performed here.
112 *
113 * WM - Windower. Interpolation of vertex attributes performed here.
114 * Fragment shader implemented here. SIMD aspects of EU taken full
115 * advantage of, as pixels are processed in blocks of 16.
116 *
117 * CC - Color Calculator. No EU threads associated with this unit.
118 * Handles blending and (presumably) depth and stencil testing.
119 */
120
121
122 #define BRW_MAX_CURBE (32*16)
123
124 struct brw_context;
125 struct brw_instruction;
126 struct brw_vs_prog_key;
127 struct brw_wm_prog_key;
128 struct brw_wm_prog_data;
129
130 enum brw_state_id {
131 BRW_STATE_URB_FENCE,
132 BRW_STATE_FRAGMENT_PROGRAM,
133 BRW_STATE_VERTEX_PROGRAM,
134 BRW_STATE_INPUT_DIMENSIONS,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_WM_INPUT_DIMENSIONS,
140 BRW_STATE_PSP,
141 BRW_STATE_SURFACES,
142 BRW_STATE_VS_BINDING_TABLE,
143 BRW_STATE_GS_BINDING_TABLE,
144 BRW_STATE_PS_BINDING_TABLE,
145 BRW_STATE_INDICES,
146 BRW_STATE_VERTICES,
147 BRW_STATE_BATCH,
148 BRW_STATE_NR_WM_SURFACES,
149 BRW_STATE_NR_VS_SURFACES,
150 BRW_STATE_INDEX_BUFFER,
151 BRW_STATE_VS_CONSTBUF,
152 BRW_STATE_PROGRAM_CACHE,
153 BRW_STATE_STATE_BASE_ADDRESS,
154 BRW_STATE_SOL_INDICES,
155 };
156
157 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
158 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
159 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
160 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
161 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
184
185 struct brw_state_flags {
186 /** State update flags signalled by mesa internals */
187 GLuint mesa;
188 /**
189 * State update flags signalled as the result of brw_tracked_state updates
190 */
191 GLuint brw;
192 /** State update flags signalled by brw_state_cache.c searches */
193 GLuint cache;
194 };
195
196 #define AUB_TRACE_TYPE_MASK 0x0000ff00
197 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
198 #define AUB_TRACE_TYPE_BATCH (1 << 8)
199 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
200 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
201 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
202 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
203 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
204 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
205 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
206 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
207 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
208 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
209
210 /**
211 * state_struct_type enum values are encoded with the top 16 bits representing
212 * the type to be delivered to the .aub file, and the bottom 16 bits
213 * representing the subtype. This macro performs the encoding.
214 */
215 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
216
217 enum state_struct_type {
218 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
219 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
220 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
221 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
222 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
223 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
224 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
225 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
226 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
227 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
228 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
229 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
230 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
231
232 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
233 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
234 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
235
236 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
237 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
238 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
239 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
240 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
241 };
242
243 /**
244 * Decode a state_struct_type value to determine the type that should be
245 * stored in the .aub file.
246 */
247 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
248 {
249 return (ss_type & 0xFFFF0000) >> 16;
250 }
251
252 /**
253 * Decode a state_struct_type value to determine the subtype that should be
254 * stored in the .aub file.
255 */
256 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
257 {
258 return ss_type & 0xFFFF;
259 }
260
261 /** Subclass of Mesa vertex program */
262 struct brw_vertex_program {
263 struct gl_vertex_program program;
264 GLuint id;
265 bool use_const_buffer;
266 };
267
268
269 /** Subclass of Mesa fragment program */
270 struct brw_fragment_program {
271 struct gl_fragment_program program;
272 GLuint id; /**< serial no. to identify frag progs, never re-used */
273 };
274
275 struct brw_shader {
276 struct gl_shader base;
277
278 /** Shader IR transformed for native compile, at link time. */
279 struct exec_list *ir;
280 };
281
282 struct brw_shader_program {
283 struct gl_shader_program base;
284 };
285
286 enum param_conversion {
287 PARAM_NO_CONVERT,
288 PARAM_CONVERT_F2I,
289 PARAM_CONVERT_F2U,
290 PARAM_CONVERT_F2B,
291 PARAM_CONVERT_ZERO,
292 };
293
294 /* Data about a particular attempt to compile a program. Note that
295 * there can be many of these, each in a different GL state
296 * corresponding to a different brw_wm_prog_key struct, with different
297 * compiled programs:
298 */
299 struct brw_wm_prog_data {
300 GLuint curb_read_length;
301 GLuint urb_read_length;
302
303 GLuint first_curbe_grf;
304 GLuint first_curbe_grf_16;
305 GLuint reg_blocks;
306 GLuint reg_blocks_16;
307 GLuint total_scratch;
308
309 GLuint nr_params; /**< number of float params/constants */
310 GLuint nr_pull_params;
311 bool error;
312 bool dual_src_blend;
313 int dispatch_width;
314 uint32_t prog_offset_16;
315
316 /**
317 * Mask of which interpolation modes are required by the fragment shader.
318 * Used in hardware setup on gen6+.
319 */
320 uint32_t barycentric_interp_modes;
321
322 /* Pointer to tracked values (only valid once
323 * _mesa_load_state_parameters has been called at runtime).
324 */
325 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
326 enum param_conversion param_convert[MAX_UNIFORMS * 4];
327 const float *pull_param[MAX_UNIFORMS * 4];
328 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
329 };
330
331 /**
332 * Enum representing the i965-specific vertex results that don't correspond
333 * exactly to any element of gl_vert_result. The values of this enum are
334 * assigned such that they don't conflict with gl_vert_result.
335 */
336 typedef enum
337 {
338 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
339 BRW_VERT_RESULT_HPOS_DUPLICATE,
340 BRW_VERT_RESULT_PAD,
341 /*
342 * It's actually not a vert_result but just a _mark_ to let sf aware that
343 * he need do something special to handle gl_PointCoord builtin variable
344 * correctly. see compile_sf_prog() for more info.
345 */
346 BRW_VERT_RESULT_PNTC,
347 BRW_VERT_RESULT_MAX
348 } brw_vert_result;
349
350
351 /**
352 * Data structure recording the relationship between the gl_vert_result enum
353 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
354 * single octaword within the VUE (128 bits).
355 *
356 * Note that each BRW register contains 256 bits (2 octawords), so when
357 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
358 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
359 * in a vertex shader), each register corresponds to a single VUE slot, since
360 * it contains data for two separate vertices.
361 */
362 struct brw_vue_map {
363 /**
364 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
365 * not stored in a slot (because they are not written, or because
366 * additional processing is applied before storing them in the VUE), the
367 * value is -1.
368 */
369 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
370
371 /**
372 * Map from VUE slot to gl_vert_result value. For slots that do not
373 * directly correspond to a gl_vert_result, the value comes from
374 * brw_vert_result.
375 *
376 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
377 * simplifies code that uses the value stored in slot_to_vert_result to
378 * create a bit mask).
379 */
380 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
381
382 /**
383 * Total number of VUE slots in use
384 */
385 int num_slots;
386 };
387
388 /**
389 * Convert a VUE slot number into a byte offset within the VUE.
390 */
391 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
392 {
393 return 16*slot;
394 }
395
396 /**
397 * Convert a vert_result into a byte offset within the VUE.
398 */
399 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
400 GLuint vert_result)
401 {
402 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
403 }
404
405
406 struct brw_sf_prog_data {
407 GLuint urb_read_length;
408 GLuint total_grf;
409
410 /* Each vertex may have upto 12 attributes, 4 components each,
411 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
412 * rows.
413 *
414 * Actually we use 4 for each, so call it 12 rows.
415 */
416 GLuint urb_entry_size;
417 };
418
419 struct brw_clip_prog_data {
420 GLuint curb_read_length; /* user planes? */
421 GLuint clip_mode;
422 GLuint urb_read_length;
423 GLuint total_grf;
424 };
425
426 struct brw_gs_prog_data {
427 GLuint urb_read_length;
428 GLuint total_grf;
429
430 /**
431 * Gen6 transform feedback: Amount by which the streaming vertex buffer
432 * indices should be incremented each time the GS is invoked.
433 */
434 unsigned svbi_postincrement_value;
435 };
436
437 struct brw_vs_prog_data {
438 struct brw_vue_map vue_map;
439
440 GLuint curb_read_length;
441 GLuint urb_read_length;
442 GLuint total_grf;
443 GLbitfield64 outputs_written;
444 GLuint nr_params; /**< number of float params/constants */
445 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
446 GLuint total_scratch;
447
448 GLbitfield64 inputs_read;
449
450 /* Used for calculating urb partitions:
451 */
452 GLuint urb_entry_size;
453
454 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
455 const float *pull_param[MAX_UNIFORMS * 4];
456
457 bool uses_new_param_layout;
458 bool uses_vertexid;
459 bool userclip;
460
461 int num_surfaces;
462 };
463
464
465 /* Size == 0 if output either not written, or always [0,0,0,1]
466 */
467 struct brw_vs_ouput_sizes {
468 GLubyte output_size[VERT_RESULT_MAX];
469 };
470
471
472 /** Number of texture sampler units */
473 #define BRW_MAX_TEX_UNIT 16
474
475 /** Max number of render targets in a shader */
476 #define BRW_MAX_DRAW_BUFFERS 8
477
478 /**
479 * Max number of binding table entries used for stream output.
480 *
481 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
482 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
483 *
484 * On Gen6, the size of transform feedback data is limited not by the number
485 * of components but by the number of binding table entries we set aside. We
486 * use one binding table entry for a float, one entry for a vector, and one
487 * entry per matrix column. Since the only way we can communicate our
488 * transform feedback capabilities to the client is via
489 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
490 * worst case, in which all the varyings are floats, so we use up one binding
491 * table entry per component. Therefore we need to set aside at least 64
492 * binding table entries for use by transform feedback.
493 *
494 * Note: since we don't currently pack varyings, it is currently impossible
495 * for the client to actually use up all of these binding table entries--if
496 * all of their varyings were floats, they would run out of varying slots and
497 * fail to link. But that's a bug, so it seems prudent to go ahead and
498 * allocate the number of binding table entries we will need once the bug is
499 * fixed.
500 */
501 #define BRW_MAX_SOL_BINDINGS 64
502
503 /** Maximum number of actual buffers used for stream output */
504 #define BRW_MAX_SOL_BUFFERS 4
505
506 /**
507 * Helpers to create Surface Binding Table indexes for draw buffers,
508 * textures, and constant buffers.
509 *
510 * Shader threads access surfaces via numeric handles, rather than directly
511 * using pointers. The binding table maps these numeric handles to the
512 * address of the actual buffer.
513 *
514 * For example, a shader might ask to sample from "surface 7." In this case,
515 * bind[7] would contain a pointer to a texture.
516 *
517 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
518 *
519 * +-------------------------------+
520 * | 0 | Draw buffer 0 |
521 * | . | . |
522 * | : | : |
523 * | 7 | Draw buffer 7 |
524 * |-----|-------------------------|
525 * | 8 | WM Pull Constant Buffer |
526 * |-----|-------------------------|
527 * | 9 | Texture 0 |
528 * | . | . |
529 * | : | : |
530 * | 24 | Texture 15 |
531 * +-------------------------------+
532 *
533 * Our VS binding tables are programmed as follows:
534 *
535 * +-----+-------------------------+
536 * | 0 | VS Pull Constant Buffer |
537 * +-----+-------------------------+
538 * | 1 | Texture 0 |
539 * | . | . |
540 * | : | : |
541 * | 16 | Texture 15 |
542 * +-------------------------------+
543 *
544 * Our (gen6) GS binding tables are programmed as follows:
545 *
546 * +-----+-------------------------+
547 * | 0 | SOL Binding 0 |
548 * | . | . |
549 * | : | : |
550 * | 63 | SOL Binding 63 |
551 * +-----+-------------------------+
552 *
553 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
554 * the identity function or things will break. We do want to keep draw buffers
555 * first so we can use headerless render target writes for RT 0.
556 */
557 #define SURF_INDEX_DRAW(d) (d)
558 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
559 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
560
561 /** Maximum size of the binding table. */
562 #define BRW_MAX_WM_SURFACES SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT)
563
564 #define SURF_INDEX_VERT_CONST_BUFFER (0)
565 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
566 #define BRW_MAX_VS_SURFACES SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT)
567
568 #define SURF_INDEX_SOL_BINDING(t) ((t))
569 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
570
571 enum brw_cache_id {
572 BRW_BLEND_STATE,
573 BRW_DEPTH_STENCIL_STATE,
574 BRW_COLOR_CALC_STATE,
575 BRW_CC_VP,
576 BRW_CC_UNIT,
577 BRW_WM_PROG,
578 BRW_BLORP_BLIT_PROG,
579 BRW_SAMPLER,
580 BRW_WM_UNIT,
581 BRW_SF_PROG,
582 BRW_SF_VP,
583 BRW_SF_UNIT, /* scissor state on gen6 */
584 BRW_VS_UNIT,
585 BRW_VS_PROG,
586 BRW_GS_UNIT,
587 BRW_GS_PROG,
588 BRW_CLIP_VP,
589 BRW_CLIP_UNIT,
590 BRW_CLIP_PROG,
591
592 BRW_MAX_CACHE
593 };
594
595 struct brw_cache_item {
596 /**
597 * Effectively part of the key, cache_id identifies what kind of state
598 * buffer is involved, and also which brw->state.dirty.cache flag should
599 * be set when this cache item is chosen.
600 */
601 enum brw_cache_id cache_id;
602 /** 32-bit hash of the key data */
603 GLuint hash;
604 GLuint key_size; /* for variable-sized keys */
605 GLuint aux_size;
606 const void *key;
607
608 uint32_t offset;
609 uint32_t size;
610
611 struct brw_cache_item *next;
612 };
613
614
615
616 struct brw_cache {
617 struct brw_context *brw;
618
619 struct brw_cache_item **items;
620 drm_intel_bo *bo;
621 GLuint size, n_items;
622
623 uint32_t next_offset;
624 bool bo_used_by_gpu;
625 };
626
627
628 /* Considered adding a member to this struct to document which flags
629 * an update might raise so that ordering of the state atoms can be
630 * checked or derived at runtime. Dropped the idea in favor of having
631 * a debug mode where the state is monitored for flags which are
632 * raised that have already been tested against.
633 */
634 struct brw_tracked_state {
635 struct brw_state_flags dirty;
636 void (*emit)( struct brw_context *brw );
637 };
638
639 /* Flags for brw->state.cache.
640 */
641 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
642 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
643 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
644 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
645 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
646 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
647 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
648 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
649 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
650 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
651 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
652 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
653 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
654 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
655 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
656 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
657 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
658 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
659
660 struct brw_cached_batch_item {
661 struct header *header;
662 GLuint sz;
663 struct brw_cached_batch_item *next;
664 };
665
666
667
668 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
669 * be easier if C allowed arrays of packed elements?
670 */
671 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
672
673 struct brw_vertex_buffer {
674 /** Buffer object containing the uploaded vertex data */
675 drm_intel_bo *bo;
676 uint32_t offset;
677 /** Byte stride between elements in the uploaded array */
678 GLuint stride;
679 GLuint step_rate;
680 };
681 struct brw_vertex_element {
682 const struct gl_client_array *glarray;
683
684 int buffer;
685
686 /** The corresponding Mesa vertex attribute */
687 gl_vert_attrib attrib;
688 /** Size of a complete element */
689 GLuint element_size;
690 /** Offset of the first element within the buffer object */
691 unsigned int offset;
692 };
693
694
695
696 struct brw_vertex_info {
697 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
698 };
699
700 struct brw_query_object {
701 struct gl_query_object Base;
702
703 /** Last query BO associated with this query. */
704 drm_intel_bo *bo;
705 /** First index in bo with query data for this object. */
706 int first_index;
707 /** Last index in bo with query data for this object. */
708 int last_index;
709 };
710
711
712 /**
713 * brw_context is derived from intel_context.
714 */
715 struct brw_context
716 {
717 struct intel_context intel; /**< base class, must be first field */
718 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
719
720 bool emit_state_always;
721 bool has_surface_tile_offset;
722 bool has_compr4;
723 bool has_negative_rhw_bug;
724 bool has_aa_line_parameters;
725 bool has_pln;
726 bool precompile;
727
728 struct {
729 struct brw_state_flags dirty;
730 } state;
731
732 struct brw_cache cache;
733 struct brw_cached_batch_item *cached_batch_items;
734
735 struct {
736 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
737 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
738 struct {
739 uint32_t handle;
740 uint32_t offset;
741 uint32_t stride;
742 uint32_t step_rate;
743 } current_buffers[VERT_ATTRIB_MAX];
744
745 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
746 GLuint nr_enabled;
747 GLuint nr_buffers, nr_current_buffers;
748
749 /* Summary of size and varying of active arrays, so we can check
750 * for changes to this state:
751 */
752 struct brw_vertex_info info;
753 unsigned int min_index, max_index;
754
755 /* Offset from start of vertex buffer so we can avoid redefining
756 * the same VB packed over and over again.
757 */
758 unsigned int start_vertex_bias;
759 } vb;
760
761 struct {
762 /**
763 * Index buffer for this draw_prims call.
764 *
765 * Updates are signaled by BRW_NEW_INDICES.
766 */
767 const struct _mesa_index_buffer *ib;
768
769 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
770 drm_intel_bo *bo;
771 GLuint type;
772
773 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
774 * avoid re-uploading the IB packet over and over if we're actually
775 * referencing the same index buffer.
776 */
777 unsigned int start_vertex_offset;
778 } ib;
779
780 /* Active vertex program:
781 */
782 const struct gl_vertex_program *vertex_program;
783 const struct gl_fragment_program *fragment_program;
784
785 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
786 uint32_t CMD_VF_STATISTICS;
787 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
788 uint32_t CMD_PIPELINE_SELECT;
789
790 /**
791 * Platform specific constants containing the maximum number of threads
792 * for each pipeline stage.
793 */
794 int max_vs_threads;
795 int max_gs_threads;
796 int max_wm_threads;
797
798 /* BRW_NEW_URB_ALLOCATIONS:
799 */
800 struct {
801 GLuint vsize; /* vertex size plus header in urb registers */
802 GLuint csize; /* constant buffer size in urb registers */
803 GLuint sfsize; /* setup data size in urb registers */
804
805 bool constrained;
806
807 GLuint max_vs_entries; /* Maximum number of VS entries */
808 GLuint max_gs_entries; /* Maximum number of GS entries */
809
810 GLuint nr_vs_entries;
811 GLuint nr_gs_entries;
812 GLuint nr_clip_entries;
813 GLuint nr_sf_entries;
814 GLuint nr_cs_entries;
815
816 /* gen6:
817 * The length of each URB entry owned by the VS (or GS), as
818 * a number of 1024-bit (128-byte) rows. Should be >= 1.
819 *
820 * gen7: Same meaning, but in 512-bit (64-byte) rows.
821 */
822 GLuint vs_size;
823 GLuint gs_size;
824
825 GLuint vs_start;
826 GLuint gs_start;
827 GLuint clip_start;
828 GLuint sf_start;
829 GLuint cs_start;
830 GLuint size; /* Hardware URB size, in KB. */
831
832 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
833 * URB space for the GS.
834 */
835 bool gen6_gs_previously_active;
836 } urb;
837
838
839 /* BRW_NEW_CURBE_OFFSETS:
840 */
841 struct {
842 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
843 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
844 GLuint clip_start;
845 GLuint clip_size;
846 GLuint vs_start;
847 GLuint vs_size;
848 GLuint total_size;
849
850 drm_intel_bo *curbe_bo;
851 /** Offset within curbe_bo of space for current curbe entry */
852 GLuint curbe_offset;
853 /** Offset within curbe_bo of space for next curbe entry */
854 GLuint curbe_next_offset;
855
856 /**
857 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
858 * in brw_curbe.c with the same set of constant data to be uploaded,
859 * so we'd rather not upload new constants in that case (it can cause
860 * a pipeline bubble since only up to 4 can be pipelined at a time).
861 */
862 GLfloat *last_buf;
863 /**
864 * Allocation for where to calculate the next set of CURBEs.
865 * It's a hot enough path that malloc/free of that data matters.
866 */
867 GLfloat *next_buf;
868 GLuint last_bufsz;
869 } curbe;
870
871 /** SAMPLER_STATE count and offset */
872 struct {
873 GLuint count;
874 uint32_t offset;
875 } sampler;
876
877 struct {
878 struct brw_vs_prog_data *prog_data;
879 int8_t *constant_map; /* variable array following prog_data */
880
881 drm_intel_bo *scratch_bo;
882 drm_intel_bo *const_bo;
883 /** Offset in the program cache to the VS program */
884 uint32_t prog_offset;
885 uint32_t state_offset;
886
887 uint32_t push_const_offset; /* Offset in the batchbuffer */
888 int push_const_size; /* in 256-bit register increments */
889
890 /** @{ register allocator */
891
892 struct ra_regs *regs;
893
894 /**
895 * Array of the ra classes for the unaligned contiguous register
896 * block sizes used.
897 */
898 int *classes;
899
900 /**
901 * Mapping for register-allocated objects in *regs to the first
902 * GRF for that object.
903 */
904 uint8_t *ra_reg_to_grf;
905 /** @} */
906
907 uint32_t bind_bo_offset;
908 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
909 } vs;
910
911 struct {
912 struct brw_gs_prog_data *prog_data;
913
914 bool prog_active;
915 /** Offset in the program cache to the CLIP program pre-gen6 */
916 uint32_t prog_offset;
917 uint32_t state_offset;
918
919 uint32_t bind_bo_offset;
920 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
921 } gs;
922
923 struct {
924 struct brw_clip_prog_data *prog_data;
925
926 /** Offset in the program cache to the CLIP program pre-gen6 */
927 uint32_t prog_offset;
928
929 /* Offset in the batch to the CLIP state on pre-gen6. */
930 uint32_t state_offset;
931
932 /* As of gen6, this is the offset in the batch to the CLIP VP,
933 * instead of vp_bo.
934 */
935 uint32_t vp_offset;
936 } clip;
937
938
939 struct {
940 struct brw_sf_prog_data *prog_data;
941
942 /** Offset in the program cache to the CLIP program pre-gen6 */
943 uint32_t prog_offset;
944 uint32_t state_offset;
945 uint32_t vp_offset;
946 } sf;
947
948 struct {
949 struct brw_wm_prog_data *prog_data;
950 struct brw_wm_compile *compile_data;
951
952 /** Input sizes, calculated from active vertex program.
953 * One bit per fragment program input attribute.
954 */
955 GLbitfield input_size_masks[4];
956
957 /** offsets in the batch to sampler default colors (texture border color)
958 */
959 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
960
961 GLuint render_surf;
962
963 drm_intel_bo *scratch_bo;
964
965 /** Offset in the program cache to the WM program */
966 uint32_t prog_offset;
967
968 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
969
970 drm_intel_bo *const_bo; /* pull constant buffer. */
971 /**
972 * This is offset in the batch to the push constants on gen6.
973 *
974 * Pre-gen6, push constants live in the CURBE.
975 */
976 uint32_t push_const_offset;
977
978 /** Binding table of pointers to surf_bo entries */
979 uint32_t bind_bo_offset;
980 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
981
982 /** @{ register allocator */
983
984 struct ra_regs *regs;
985
986 /** Array of the ra classes for the unaligned contiguous
987 * register block sizes used.
988 */
989 int *classes;
990
991 /**
992 * Mapping for register-allocated objects in *regs to the first
993 * GRF for that object.
994 */
995 uint8_t *ra_reg_to_grf;
996
997 /**
998 * ra class for the aligned pairs we use for PLN, which doesn't
999 * appear in *classes.
1000 */
1001 int aligned_pairs_class;
1002
1003 /** @} */
1004 } wm;
1005
1006
1007 struct {
1008 uint32_t state_offset;
1009 uint32_t blend_state_offset;
1010 uint32_t depth_stencil_state_offset;
1011 uint32_t vp_offset;
1012 } cc;
1013
1014 struct {
1015 struct brw_query_object *obj;
1016 drm_intel_bo *bo;
1017 int index;
1018 bool active;
1019 } query;
1020 /* Used to give every program string a unique id
1021 */
1022 GLuint program_id;
1023
1024 int num_atoms;
1025 const struct brw_tracked_state **atoms;
1026
1027 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1028 struct {
1029 uint32_t offset;
1030 uint32_t size;
1031 enum state_struct_type type;
1032 } *state_batch_list;
1033 int state_batch_count;
1034
1035 struct brw_sol_state {
1036 uint32_t svbi_0_starting_index;
1037 uint32_t svbi_0_max_index;
1038 uint32_t offset_0_batch_start;
1039 uint32_t primitives_generated;
1040 uint32_t primitives_written;
1041 bool counting_primitives_generated;
1042 bool counting_primitives_written;
1043 } sol;
1044
1045 uint32_t render_target_format[MESA_FORMAT_COUNT];
1046 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1047
1048 /* PrimitiveRestart */
1049 struct {
1050 bool in_progress;
1051 bool enable_cut_index;
1052 } prim_restart;
1053
1054 uint32_t num_instances;
1055 };
1056
1057
1058
1059 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1060
1061 struct brw_instruction_info {
1062 char *name;
1063 int nsrc;
1064 int ndst;
1065 bool is_arith;
1066 };
1067 extern const struct brw_instruction_info brw_opcodes[128];
1068
1069 /*======================================================================
1070 * brw_vtbl.c
1071 */
1072 void brwInitVtbl( struct brw_context *brw );
1073
1074 /*======================================================================
1075 * brw_context.c
1076 */
1077 bool brwCreateContext(int api,
1078 const struct gl_config *mesaVis,
1079 __DRIcontext *driContextPriv,
1080 void *sharedContextPrivate);
1081
1082 /*======================================================================
1083 * brw_queryobj.c
1084 */
1085 void brw_init_queryobj_functions(struct dd_function_table *functions);
1086 void brw_prepare_query_begin(struct brw_context *brw);
1087 void brw_emit_query_begin(struct brw_context *brw);
1088 void brw_emit_query_end(struct brw_context *brw);
1089
1090 /*======================================================================
1091 * brw_state_dump.c
1092 */
1093 void brw_debug_batch(struct intel_context *intel);
1094 void brw_annotate_aub(struct intel_context *intel);
1095
1096 /*======================================================================
1097 * brw_tex.c
1098 */
1099 void brw_validate_textures( struct brw_context *brw );
1100
1101
1102 /*======================================================================
1103 * brw_program.c
1104 */
1105 void brwInitFragProgFuncs( struct dd_function_table *functions );
1106
1107 int brw_get_scratch_size(int size);
1108 void brw_get_scratch_bo(struct intel_context *intel,
1109 drm_intel_bo **scratch_bo, int size);
1110
1111
1112 /* brw_urb.c
1113 */
1114 void brw_upload_urb_fence(struct brw_context *brw);
1115
1116 /* brw_curbe.c
1117 */
1118 void brw_upload_cs_urb_state(struct brw_context *brw);
1119
1120 /* brw_disasm.c */
1121 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1122
1123 /* brw_vs.c */
1124 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1125
1126 /* brw_wm_surface_state.c */
1127 void brw_init_surface_formats(struct brw_context *brw);
1128 void
1129 brw_update_sol_surface(struct brw_context *brw,
1130 struct gl_buffer_object *buffer_obj,
1131 uint32_t *out_offset, unsigned num_vector_components,
1132 unsigned stride_dwords, unsigned offset_dwords);
1133
1134 /* gen6_sol.c */
1135 void
1136 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1137 struct gl_transform_feedback_object *obj);
1138 void
1139 brw_end_transform_feedback(struct gl_context *ctx,
1140 struct gl_transform_feedback_object *obj);
1141
1142 /* gen7_sol_state.c */
1143 void
1144 gen7_end_transform_feedback(struct gl_context *ctx,
1145 struct gl_transform_feedback_object *obj);
1146
1147 /* brw_blorp_blit.cpp */
1148 GLbitfield
1149 brw_blorp_framebuffer(struct intel_context *intel,
1150 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1151 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1152 GLbitfield mask, GLenum filter);
1153
1154 /* gen6_multisample_state.c */
1155 void
1156 gen6_emit_3dstate_multisample(struct brw_context *brw,
1157 unsigned num_samples);
1158 void
1159 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1160 unsigned num_samples, float coverage,
1161 bool coverage_invert);
1162
1163 /* gen7_urb.c */
1164 void
1165 gen7_allocate_push_constants(struct brw_context *brw);
1166
1167 void
1168 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1169 GLuint vs_size, GLuint vs_start);
1170
1171
1172
1173 /*======================================================================
1174 * Inline conversion functions. These are better-typed than the
1175 * macros used previously:
1176 */
1177 static INLINE struct brw_context *
1178 brw_context( struct gl_context *ctx )
1179 {
1180 return (struct brw_context *)ctx;
1181 }
1182
1183 static INLINE struct brw_vertex_program *
1184 brw_vertex_program(struct gl_vertex_program *p)
1185 {
1186 return (struct brw_vertex_program *) p;
1187 }
1188
1189 static INLINE const struct brw_vertex_program *
1190 brw_vertex_program_const(const struct gl_vertex_program *p)
1191 {
1192 return (const struct brw_vertex_program *) p;
1193 }
1194
1195 static INLINE struct brw_fragment_program *
1196 brw_fragment_program(struct gl_fragment_program *p)
1197 {
1198 return (struct brw_fragment_program *) p;
1199 }
1200
1201 static INLINE const struct brw_fragment_program *
1202 brw_fragment_program_const(const struct gl_fragment_program *p)
1203 {
1204 return (const struct brw_fragment_program *) p;
1205 }
1206
1207 static inline
1208 float convert_param(enum param_conversion conversion, const float *param)
1209 {
1210 union {
1211 float f;
1212 uint32_t u;
1213 int32_t i;
1214 } fi;
1215
1216 switch (conversion) {
1217 case PARAM_NO_CONVERT:
1218 return *param;
1219 case PARAM_CONVERT_F2I:
1220 fi.i = *param;
1221 return fi.f;
1222 case PARAM_CONVERT_F2U:
1223 fi.u = *param;
1224 return fi.f;
1225 case PARAM_CONVERT_F2B:
1226 if (*param != 0.0)
1227 fi.i = 1;
1228 else
1229 fi.i = 0;
1230 return fi.f;
1231 case PARAM_CONVERT_ZERO:
1232 return 0.0;
1233 default:
1234 return *param;
1235 }
1236 }
1237
1238 /**
1239 * Pre-gen6, the register file of the EUs was shared between threads,
1240 * and each thread used some subset allocated on a 16-register block
1241 * granularity. The unit states wanted these block counts.
1242 */
1243 static inline int
1244 brw_register_blocks(int reg_count)
1245 {
1246 return ALIGN(reg_count, 16) / 16 - 1;
1247 }
1248
1249 static inline uint32_t
1250 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1251 uint32_t prog_offset)
1252 {
1253 struct intel_context *intel = &brw->intel;
1254
1255 if (intel->gen >= 5) {
1256 /* Using state base address. */
1257 return prog_offset;
1258 }
1259
1260 drm_intel_bo_emit_reloc(intel->batch.bo,
1261 state_offset,
1262 brw->cache.bo,
1263 prog_offset,
1264 I915_GEM_DOMAIN_INSTRUCTION, 0);
1265
1266 return brw->cache.bo->offset + prog_offset;
1267 }
1268
1269 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1270
1271 #ifdef __cplusplus
1272 }
1273 #endif
1274
1275 #endif