i965: Move front buffer rendering fields from intel_context to brw.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_VUE_MAP_GEOM_OUT,
152 BRW_STATE_TRANSFORM_FEEDBACK,
153 BRW_STATE_RASTERIZER_DISCARD,
154 BRW_STATE_STATS_WM,
155 BRW_STATE_UNIFORM_BUFFER,
156 BRW_STATE_META_IN_PROGRESS,
157 };
158
159 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
160 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
161 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
162 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
163 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
164 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
165 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
184 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
185 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
186 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
187 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
188 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
189
190 struct brw_state_flags {
191 /** State update flags signalled by mesa internals */
192 GLuint mesa;
193 /**
194 * State update flags signalled as the result of brw_tracked_state updates
195 */
196 GLuint brw;
197 /** State update flags signalled by brw_state_cache.c searches */
198 GLuint cache;
199 };
200
201 #define AUB_TRACE_TYPE_MASK 0x0000ff00
202 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
203 #define AUB_TRACE_TYPE_BATCH (1 << 8)
204 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
205 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
206 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
207 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
208 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
209 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
210 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
211 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
212 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
213 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
214
215 /**
216 * state_struct_type enum values are encoded with the top 16 bits representing
217 * the type to be delivered to the .aub file, and the bottom 16 bits
218 * representing the subtype. This macro performs the encoding.
219 */
220 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
221
222 enum state_struct_type {
223 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
224 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
225 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
226 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
227 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
228 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
229 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
230 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
231 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
232 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
233 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
234 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
235 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
236
237 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
238 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
239 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
240
241 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
242 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
243 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
244 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
245 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
246 };
247
248 /**
249 * Decode a state_struct_type value to determine the type that should be
250 * stored in the .aub file.
251 */
252 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
253 {
254 return (ss_type & 0xFFFF0000) >> 16;
255 }
256
257 /**
258 * Decode a state_struct_type value to determine the subtype that should be
259 * stored in the .aub file.
260 */
261 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
262 {
263 return ss_type & 0xFFFF;
264 }
265
266 /** Subclass of Mesa vertex program */
267 struct brw_vertex_program {
268 struct gl_vertex_program program;
269 GLuint id;
270 };
271
272
273 /** Subclass of Mesa fragment program */
274 struct brw_fragment_program {
275 struct gl_fragment_program program;
276 GLuint id; /**< serial no. to identify frag progs, never re-used */
277 };
278
279 struct brw_shader {
280 struct gl_shader base;
281
282 bool compiled_once;
283
284 /** Shader IR transformed for native compile, at link time. */
285 struct exec_list *ir;
286 };
287
288 /* Data about a particular attempt to compile a program. Note that
289 * there can be many of these, each in a different GL state
290 * corresponding to a different brw_wm_prog_key struct, with different
291 * compiled programs.
292 *
293 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
294 * struct!
295 */
296 struct brw_wm_prog_data {
297 GLuint curb_read_length;
298 GLuint urb_read_length;
299
300 GLuint first_curbe_grf;
301 GLuint first_curbe_grf_16;
302 GLuint reg_blocks;
303 GLuint reg_blocks_16;
304 GLuint total_scratch;
305
306 GLuint nr_params; /**< number of float params/constants */
307 GLuint nr_pull_params;
308 bool dual_src_blend;
309 int dispatch_width;
310 uint32_t prog_offset_16;
311
312 /**
313 * Mask of which interpolation modes are required by the fragment shader.
314 * Used in hardware setup on gen6+.
315 */
316 uint32_t barycentric_interp_modes;
317
318 /* Pointers to tracked values (only valid once
319 * _mesa_load_state_parameters has been called at runtime).
320 *
321 * These must be the last fields of the struct (see
322 * brw_wm_prog_data_compare()).
323 */
324 const float **param;
325 const float **pull_param;
326 };
327
328 /**
329 * Enum representing the i965-specific vertex results that don't correspond
330 * exactly to any element of gl_varying_slot. The values of this enum are
331 * assigned such that they don't conflict with gl_varying_slot.
332 */
333 typedef enum
334 {
335 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
336 BRW_VARYING_SLOT_PAD,
337 /**
338 * Technically this is not a varying but just a placeholder that
339 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
340 * builtin variable to be compiled correctly. see compile_sf_prog() for
341 * more info.
342 */
343 BRW_VARYING_SLOT_PNTC,
344 BRW_VARYING_SLOT_COUNT
345 } brw_varying_slot;
346
347
348 /**
349 * Data structure recording the relationship between the gl_varying_slot enum
350 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
351 * single octaword within the VUE (128 bits).
352 *
353 * Note that each BRW register contains 256 bits (2 octawords), so when
354 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
355 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
356 * in a vertex shader), each register corresponds to a single VUE slot, since
357 * it contains data for two separate vertices.
358 */
359 struct brw_vue_map {
360 /**
361 * Bitfield representing all varying slots that are (a) stored in this VUE
362 * map, and (b) actually written by the shader. Does not include any of
363 * the additional varying slots defined in brw_varying_slot.
364 */
365 GLbitfield64 slots_valid;
366
367 /**
368 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
369 * not stored in a slot (because they are not written, or because
370 * additional processing is applied before storing them in the VUE), the
371 * value is -1.
372 */
373 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
374
375 /**
376 * Map from VUE slot to gl_varying_slot value. For slots that do not
377 * directly correspond to a gl_varying_slot, the value comes from
378 * brw_varying_slot.
379 *
380 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
381 * simplifies code that uses the value stored in slot_to_varying to
382 * create a bit mask).
383 */
384 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
385
386 /**
387 * Total number of VUE slots in use
388 */
389 int num_slots;
390 };
391
392 /**
393 * Convert a VUE slot number into a byte offset within the VUE.
394 */
395 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
396 {
397 return 16*slot;
398 }
399
400 /**
401 * Convert a vertex output (brw_varying_slot) into a byte offset within the
402 * VUE.
403 */
404 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
405 GLuint varying)
406 {
407 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
408 }
409
410 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
411 GLbitfield64 slots_valid, bool userclip_active);
412
413
414 struct brw_sf_prog_data {
415 GLuint urb_read_length;
416 GLuint total_grf;
417
418 /* Each vertex may have upto 12 attributes, 4 components each,
419 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
420 * rows.
421 *
422 * Actually we use 4 for each, so call it 12 rows.
423 */
424 GLuint urb_entry_size;
425 };
426
427 struct brw_clip_prog_data {
428 GLuint curb_read_length; /* user planes? */
429 GLuint clip_mode;
430 GLuint urb_read_length;
431 GLuint total_grf;
432 };
433
434 struct brw_gs_prog_data {
435 GLuint urb_read_length;
436 GLuint total_grf;
437
438 /**
439 * Gen6 transform feedback: Amount by which the streaming vertex buffer
440 * indices should be incremented each time the GS is invoked.
441 */
442 unsigned svbi_postincrement_value;
443 };
444
445
446 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
447 * this struct!
448 */
449 struct brw_vec4_prog_data {
450 struct brw_vue_map vue_map;
451
452 GLuint curb_read_length;
453 GLuint urb_read_length;
454 GLuint total_grf;
455 GLuint nr_params; /**< number of float params/constants */
456 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
457 GLuint total_scratch;
458
459 /* Used for calculating urb partitions. In the VS, this is the size of the
460 * URB entry used for both input and output to the thread. In the GS, this
461 * is the size of the URB entry used for output.
462 */
463 GLuint urb_entry_size;
464
465 int num_surfaces;
466
467 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
468 const float **param;
469 const float **pull_param;
470 };
471
472
473 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
474 * struct!
475 */
476 struct brw_vs_prog_data {
477 struct brw_vec4_prog_data base;
478
479 GLbitfield64 inputs_read;
480
481 bool uses_vertexid;
482 };
483
484 /** Number of texture sampler units */
485 #define BRW_MAX_TEX_UNIT 16
486
487 /** Max number of render targets in a shader */
488 #define BRW_MAX_DRAW_BUFFERS 8
489
490 /**
491 * Max number of binding table entries used for stream output.
492 *
493 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
494 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
495 *
496 * On Gen6, the size of transform feedback data is limited not by the number
497 * of components but by the number of binding table entries we set aside. We
498 * use one binding table entry for a float, one entry for a vector, and one
499 * entry per matrix column. Since the only way we can communicate our
500 * transform feedback capabilities to the client is via
501 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
502 * worst case, in which all the varyings are floats, so we use up one binding
503 * table entry per component. Therefore we need to set aside at least 64
504 * binding table entries for use by transform feedback.
505 *
506 * Note: since we don't currently pack varyings, it is currently impossible
507 * for the client to actually use up all of these binding table entries--if
508 * all of their varyings were floats, they would run out of varying slots and
509 * fail to link. But that's a bug, so it seems prudent to go ahead and
510 * allocate the number of binding table entries we will need once the bug is
511 * fixed.
512 */
513 #define BRW_MAX_SOL_BINDINGS 64
514
515 /** Maximum number of actual buffers used for stream output */
516 #define BRW_MAX_SOL_BUFFERS 4
517
518 #define BRW_MAX_WM_UBOS 12
519 #define BRW_MAX_VS_UBOS 12
520
521 /**
522 * Helpers to create Surface Binding Table indexes for draw buffers,
523 * textures, and constant buffers.
524 *
525 * Shader threads access surfaces via numeric handles, rather than directly
526 * using pointers. The binding table maps these numeric handles to the
527 * address of the actual buffer.
528 *
529 * For example, a shader might ask to sample from "surface 7." In this case,
530 * bind[7] would contain a pointer to a texture.
531 *
532 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
533 *
534 * +-------------------------------+
535 * | 0 | Draw buffer 0 |
536 * | . | . |
537 * | : | : |
538 * | 7 | Draw buffer 7 |
539 * |-----|-------------------------|
540 * | 8 | WM Pull Constant Buffer |
541 * |-----|-------------------------|
542 * | 9 | Texture 0 |
543 * | . | . |
544 * | : | : |
545 * | 24 | Texture 15 |
546 * |-----|-------------------------|
547 * | 25 | UBO 0 |
548 * | . | . |
549 * | : | : |
550 * | 36 | UBO 11 |
551 * +-------------------------------+
552 *
553 * Our VS binding tables are programmed as follows:
554 *
555 * +-----+-------------------------+
556 * | 0 | VS Pull Constant Buffer |
557 * +-----+-------------------------+
558 * | 1 | Texture 0 |
559 * | . | . |
560 * | : | : |
561 * | 16 | Texture 15 |
562 * +-----+-------------------------+
563 * | 17 | UBO 0 |
564 * | . | . |
565 * | : | : |
566 * | 28 | UBO 11 |
567 * +-------------------------------+
568 *
569 * Our (gen6) GS binding tables are programmed as follows:
570 *
571 * +-----+-------------------------+
572 * | 0 | SOL Binding 0 |
573 * | . | . |
574 * | : | : |
575 * | 63 | SOL Binding 63 |
576 * +-----+-------------------------+
577 *
578 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
579 * the identity function or things will break. We do want to keep draw buffers
580 * first so we can use headerless render target writes for RT 0.
581 */
582 #define SURF_INDEX_DRAW(d) (d)
583 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
584 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
585 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
586 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
587 /** Maximum size of the binding table. */
588 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
589
590 #define SURF_INDEX_VERT_CONST_BUFFER (0)
591 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
592 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
593 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
594 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
595
596 #define SURF_INDEX_SOL_BINDING(t) ((t))
597 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
598
599 /**
600 * Stride in bytes between shader_time entries.
601 *
602 * We separate entries by a cacheline to reduce traffic between EUs writing to
603 * different entries.
604 */
605 #define SHADER_TIME_STRIDE 64
606
607 enum brw_cache_id {
608 BRW_CC_VP,
609 BRW_CC_UNIT,
610 BRW_WM_PROG,
611 BRW_BLORP_BLIT_PROG,
612 BRW_BLORP_CONST_COLOR_PROG,
613 BRW_SAMPLER,
614 BRW_WM_UNIT,
615 BRW_SF_PROG,
616 BRW_SF_VP,
617 BRW_SF_UNIT, /* scissor state on gen6 */
618 BRW_VS_UNIT,
619 BRW_VS_PROG,
620 BRW_GS_UNIT,
621 BRW_GS_PROG,
622 BRW_CLIP_VP,
623 BRW_CLIP_UNIT,
624 BRW_CLIP_PROG,
625
626 BRW_MAX_CACHE
627 };
628
629 struct brw_cache_item {
630 /**
631 * Effectively part of the key, cache_id identifies what kind of state
632 * buffer is involved, and also which brw->state.dirty.cache flag should
633 * be set when this cache item is chosen.
634 */
635 enum brw_cache_id cache_id;
636 /** 32-bit hash of the key data */
637 GLuint hash;
638 GLuint key_size; /* for variable-sized keys */
639 GLuint aux_size;
640 const void *key;
641
642 uint32_t offset;
643 uint32_t size;
644
645 struct brw_cache_item *next;
646 };
647
648
649 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
650 int aux_size, const void *key);
651 typedef void (*cache_aux_free_func)(const void *aux);
652
653 struct brw_cache {
654 struct brw_context *brw;
655
656 struct brw_cache_item **items;
657 drm_intel_bo *bo;
658 GLuint size, n_items;
659
660 uint32_t next_offset;
661 bool bo_used_by_gpu;
662
663 /**
664 * Optional functions used in determining whether the prog_data for a new
665 * cache item matches an existing cache item (in case there's relevant data
666 * outside of the prog_data). If NULL, a plain memcmp is done.
667 */
668 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
669 /** Optional functions for freeing other pointers attached to a prog_data. */
670 cache_aux_free_func aux_free[BRW_MAX_CACHE];
671 };
672
673
674 /* Considered adding a member to this struct to document which flags
675 * an update might raise so that ordering of the state atoms can be
676 * checked or derived at runtime. Dropped the idea in favor of having
677 * a debug mode where the state is monitored for flags which are
678 * raised that have already been tested against.
679 */
680 struct brw_tracked_state {
681 struct brw_state_flags dirty;
682 void (*emit)( struct brw_context *brw );
683 };
684
685 enum shader_time_shader_type {
686 ST_NONE,
687 ST_VS,
688 ST_VS_WRITTEN,
689 ST_VS_RESET,
690 ST_FS8,
691 ST_FS8_WRITTEN,
692 ST_FS8_RESET,
693 ST_FS16,
694 ST_FS16_WRITTEN,
695 ST_FS16_RESET,
696 };
697
698 /* Flags for brw->state.cache.
699 */
700 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
701 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
702 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
703 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
704 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
705 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
706 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
707 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
708 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
709 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
710 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
711 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
712 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
713 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
714 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
715
716 struct brw_cached_batch_item {
717 struct header *header;
718 GLuint sz;
719 struct brw_cached_batch_item *next;
720 };
721
722
723
724 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
725 * be easier if C allowed arrays of packed elements?
726 */
727 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
728
729 struct brw_vertex_buffer {
730 /** Buffer object containing the uploaded vertex data */
731 drm_intel_bo *bo;
732 uint32_t offset;
733 /** Byte stride between elements in the uploaded array */
734 GLuint stride;
735 GLuint step_rate;
736 };
737 struct brw_vertex_element {
738 const struct gl_client_array *glarray;
739
740 int buffer;
741
742 /** The corresponding Mesa vertex attribute */
743 gl_vert_attrib attrib;
744 /** Offset of the first element within the buffer object */
745 unsigned int offset;
746 };
747
748 struct brw_query_object {
749 struct gl_query_object Base;
750
751 /** Last query BO associated with this query. */
752 drm_intel_bo *bo;
753
754 /** Last index in bo with query data for this object. */
755 int last_index;
756 };
757
758
759 /**
760 * brw_context is derived from intel_context.
761 */
762 struct brw_context
763 {
764 struct intel_context intel; /**< base class, must be first field */
765
766 struct
767 {
768 void (*destroy) (struct brw_context * brw);
769 void (*finish_batch) (struct brw_context * brw);
770 void (*new_batch) (struct brw_context * brw);
771
772 void (*update_texture_surface)(struct gl_context *ctx,
773 unsigned unit,
774 uint32_t *binding_table,
775 unsigned surf_index);
776 void (*update_renderbuffer_surface)(struct brw_context *brw,
777 struct gl_renderbuffer *rb,
778 bool layered,
779 unsigned unit);
780 void (*update_null_renderbuffer_surface)(struct brw_context *brw,
781 unsigned unit);
782 void (*create_constant_surface)(struct brw_context *brw,
783 drm_intel_bo *bo,
784 uint32_t offset,
785 uint32_t size,
786 uint32_t *out_offset,
787 bool dword_pitch);
788
789 /**
790 * Send the appropriate state packets to configure depth, stencil, and
791 * HiZ buffers (i965+ only)
792 */
793 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
794 struct intel_mipmap_tree *depth_mt,
795 uint32_t depth_offset,
796 uint32_t depthbuffer_format,
797 uint32_t depth_surface_type,
798 struct intel_mipmap_tree *stencil_mt,
799 bool hiz, bool separate_stencil,
800 uint32_t width, uint32_t height,
801 uint32_t tile_x, uint32_t tile_y);
802
803 } vtbl;
804
805 /**
806 * Set if rendering has occured to the drawable's front buffer.
807 *
808 * This is used in the DRI2 case to detect that glFlush should also copy
809 * the contents of the fake front buffer to the real front buffer.
810 */
811 bool front_buffer_dirty;
812
813 /**
814 * Track whether front-buffer rendering is currently enabled
815 *
816 * A separate flag is used to track this in order to support MRT more
817 * easily.
818 */
819 bool is_front_buffer_rendering;
820
821 /**
822 * Track whether front-buffer is the current read target.
823 *
824 * This is closely associated with is_front_buffer_rendering, but may
825 * be set separately. The DRI2 fake front buffer must be referenced
826 * either way.
827 */
828 bool is_front_buffer_reading;
829
830 /** drirc option cache */
831 driOptionCache optionCache;
832
833 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
834
835 bool emit_state_always;
836 bool has_surface_tile_offset;
837 bool has_compr4;
838 bool has_negative_rhw_bug;
839 bool has_aa_line_parameters;
840 bool has_pln;
841 bool precompile;
842
843 /**
844 * Some versions of Gen hardware don't do centroid interpolation correctly
845 * on unlit pixels, causing incorrect values for derivatives near triangle
846 * edges. Enabling this flag causes the fragment shader to use
847 * non-centroid interpolation for unlit pixels, at the expense of two extra
848 * fragment shader instructions.
849 */
850 bool needs_unlit_centroid_workaround;
851
852 struct {
853 struct brw_state_flags dirty;
854 } state;
855
856 struct brw_cache cache;
857 struct brw_cached_batch_item *cached_batch_items;
858
859 /* Whether a meta-operation is in progress. */
860 bool meta_in_progress;
861
862 struct {
863 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
864 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
865
866 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
867 GLuint nr_enabled;
868 GLuint nr_buffers;
869
870 /* Summary of size and varying of active arrays, so we can check
871 * for changes to this state:
872 */
873 unsigned int min_index, max_index;
874
875 /* Offset from start of vertex buffer so we can avoid redefining
876 * the same VB packed over and over again.
877 */
878 unsigned int start_vertex_bias;
879 } vb;
880
881 struct {
882 /**
883 * Index buffer for this draw_prims call.
884 *
885 * Updates are signaled by BRW_NEW_INDICES.
886 */
887 const struct _mesa_index_buffer *ib;
888
889 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
890 drm_intel_bo *bo;
891 GLuint type;
892
893 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
894 * avoid re-uploading the IB packet over and over if we're actually
895 * referencing the same index buffer.
896 */
897 unsigned int start_vertex_offset;
898 } ib;
899
900 /* Active vertex program:
901 */
902 const struct gl_vertex_program *vertex_program;
903 const struct gl_fragment_program *fragment_program;
904
905 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
906 uint32_t CMD_VF_STATISTICS;
907 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
908 uint32_t CMD_PIPELINE_SELECT;
909
910 /**
911 * Platform specific constants containing the maximum number of threads
912 * for each pipeline stage.
913 */
914 int max_vs_threads;
915 int max_gs_threads;
916 int max_wm_threads;
917
918 /* BRW_NEW_URB_ALLOCATIONS:
919 */
920 struct {
921 GLuint vsize; /* vertex size plus header in urb registers */
922 GLuint csize; /* constant buffer size in urb registers */
923 GLuint sfsize; /* setup data size in urb registers */
924
925 bool constrained;
926
927 GLuint max_vs_entries; /* Maximum number of VS entries */
928 GLuint max_gs_entries; /* Maximum number of GS entries */
929
930 GLuint nr_vs_entries;
931 GLuint nr_gs_entries;
932 GLuint nr_clip_entries;
933 GLuint nr_sf_entries;
934 GLuint nr_cs_entries;
935
936 GLuint vs_start;
937 GLuint gs_start;
938 GLuint clip_start;
939 GLuint sf_start;
940 GLuint cs_start;
941 GLuint size; /* Hardware URB size, in KB. */
942
943 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
944 * URB space for the GS.
945 */
946 bool gen6_gs_previously_active;
947 } urb;
948
949
950 /* BRW_NEW_CURBE_OFFSETS:
951 */
952 struct {
953 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
954 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
955 GLuint clip_start;
956 GLuint clip_size;
957 GLuint vs_start;
958 GLuint vs_size;
959 GLuint total_size;
960
961 drm_intel_bo *curbe_bo;
962 /** Offset within curbe_bo of space for current curbe entry */
963 GLuint curbe_offset;
964 /** Offset within curbe_bo of space for next curbe entry */
965 GLuint curbe_next_offset;
966
967 /**
968 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
969 * in brw_curbe.c with the same set of constant data to be uploaded,
970 * so we'd rather not upload new constants in that case (it can cause
971 * a pipeline bubble since only up to 4 can be pipelined at a time).
972 */
973 GLfloat *last_buf;
974 /**
975 * Allocation for where to calculate the next set of CURBEs.
976 * It's a hot enough path that malloc/free of that data matters.
977 */
978 GLfloat *next_buf;
979 GLuint last_bufsz;
980 } curbe;
981
982 /** SAMPLER_STATE count and offset */
983 struct {
984 GLuint count;
985 uint32_t offset;
986 } sampler;
987
988 /**
989 * Layout of vertex data exiting the geometry portion of the pipleine.
990 * This comes from the geometry shader if one exists, otherwise from the
991 * vertex shader.
992 *
993 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
994 */
995 struct brw_vue_map vue_map_geom_out;
996
997 struct {
998 struct brw_vs_prog_data *prog_data;
999
1000 drm_intel_bo *scratch_bo;
1001 drm_intel_bo *const_bo;
1002 /** Offset in the program cache to the VS program */
1003 uint32_t prog_offset;
1004 uint32_t state_offset;
1005
1006 uint32_t push_const_offset; /* Offset in the batchbuffer */
1007 int push_const_size; /* in 256-bit register increments */
1008
1009 /** @{ register allocator */
1010
1011 struct ra_regs *regs;
1012
1013 /**
1014 * Array of the ra classes for the unaligned contiguous register
1015 * block sizes used.
1016 */
1017 int *classes;
1018
1019 /**
1020 * Mapping for register-allocated objects in *regs to the first
1021 * GRF for that object.
1022 */
1023 uint8_t *ra_reg_to_grf;
1024 /** @} */
1025
1026 uint32_t bind_bo_offset;
1027 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
1028 } vs;
1029
1030 struct {
1031 struct brw_gs_prog_data *prog_data;
1032
1033 bool prog_active;
1034 /** Offset in the program cache to the CLIP program pre-gen6 */
1035 uint32_t prog_offset;
1036 uint32_t state_offset;
1037
1038 uint32_t bind_bo_offset;
1039 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
1040 } gs;
1041
1042 struct {
1043 struct brw_clip_prog_data *prog_data;
1044
1045 /** Offset in the program cache to the CLIP program pre-gen6 */
1046 uint32_t prog_offset;
1047
1048 /* Offset in the batch to the CLIP state on pre-gen6. */
1049 uint32_t state_offset;
1050
1051 /* As of gen6, this is the offset in the batch to the CLIP VP,
1052 * instead of vp_bo.
1053 */
1054 uint32_t vp_offset;
1055 } clip;
1056
1057
1058 struct {
1059 struct brw_sf_prog_data *prog_data;
1060
1061 /** Offset in the program cache to the CLIP program pre-gen6 */
1062 uint32_t prog_offset;
1063 uint32_t state_offset;
1064 uint32_t vp_offset;
1065 } sf;
1066
1067 struct {
1068 struct brw_wm_prog_data *prog_data;
1069
1070 /** offsets in the batch to sampler default colors (texture border color)
1071 */
1072 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1073
1074 GLuint render_surf;
1075
1076 drm_intel_bo *scratch_bo;
1077
1078 /**
1079 * Buffer object used in place of multisampled null render targets on
1080 * Gen6. See brw_update_null_renderbuffer_surface().
1081 */
1082 drm_intel_bo *multisampled_null_render_target_bo;
1083
1084 /** Offset in the program cache to the WM program */
1085 uint32_t prog_offset;
1086
1087 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1088
1089 drm_intel_bo *const_bo; /* pull constant buffer. */
1090 /**
1091 * This is offset in the batch to the push constants on gen6.
1092 *
1093 * Pre-gen6, push constants live in the CURBE.
1094 */
1095 uint32_t push_const_offset;
1096
1097 /** Binding table of pointers to surf_bo entries */
1098 uint32_t bind_bo_offset;
1099 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1100
1101 struct {
1102 struct ra_regs *regs;
1103
1104 /** Array of the ra classes for the unaligned contiguous
1105 * register block sizes used.
1106 */
1107 int *classes;
1108
1109 /**
1110 * Mapping for register-allocated objects in *regs to the first
1111 * GRF for that object.
1112 */
1113 uint8_t *ra_reg_to_grf;
1114
1115 /**
1116 * ra class for the aligned pairs we use for PLN, which doesn't
1117 * appear in *classes.
1118 */
1119 int aligned_pairs_class;
1120 } reg_sets[2];
1121 } wm;
1122
1123
1124 struct {
1125 uint32_t state_offset;
1126 uint32_t blend_state_offset;
1127 uint32_t depth_stencil_state_offset;
1128 uint32_t vp_offset;
1129 } cc;
1130
1131 struct {
1132 struct brw_query_object *obj;
1133 bool begin_emitted;
1134 } query;
1135
1136 int num_atoms;
1137 const struct brw_tracked_state **atoms;
1138
1139 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1140 struct {
1141 uint32_t offset;
1142 uint32_t size;
1143 enum state_struct_type type;
1144 } *state_batch_list;
1145 int state_batch_count;
1146
1147 uint32_t render_target_format[MESA_FORMAT_COUNT];
1148 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1149
1150 /* PrimitiveRestart */
1151 struct {
1152 bool in_progress;
1153 bool enable_cut_index;
1154 } prim_restart;
1155
1156 /** Computed depth/stencil/hiz state from the current attached
1157 * renderbuffers, valid only during the drawing state upload loop after
1158 * brw_workaround_depthstencil_alignment().
1159 */
1160 struct {
1161 struct intel_mipmap_tree *depth_mt;
1162 struct intel_mipmap_tree *stencil_mt;
1163
1164 /* Inter-tile (page-aligned) byte offsets. */
1165 uint32_t depth_offset, hiz_offset, stencil_offset;
1166 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1167 uint32_t tile_x, tile_y;
1168 } depthstencil;
1169
1170 uint32_t num_instances;
1171 int basevertex;
1172
1173 struct {
1174 drm_intel_bo *bo;
1175 struct gl_shader_program **shader_programs;
1176 struct gl_program **programs;
1177 enum shader_time_shader_type *types;
1178 uint64_t *cumulative;
1179 int num_entries;
1180 int max_entries;
1181 double report_time;
1182 } shader_time;
1183 };
1184
1185 /*======================================================================
1186 * brw_vtbl.c
1187 */
1188 void brwInitVtbl( struct brw_context *brw );
1189
1190 /*======================================================================
1191 * brw_context.c
1192 */
1193 bool brwCreateContext(int api,
1194 const struct gl_config *mesaVis,
1195 __DRIcontext *driContextPriv,
1196 unsigned major_version,
1197 unsigned minor_version,
1198 uint32_t flags,
1199 unsigned *error,
1200 void *sharedContextPrivate);
1201
1202 /*======================================================================
1203 * brw_misc_state.c
1204 */
1205 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1206 uint32_t depth_level,
1207 uint32_t depth_layer,
1208 struct intel_mipmap_tree *stencil_mt,
1209 uint32_t *out_tile_mask_x,
1210 uint32_t *out_tile_mask_y);
1211 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1212 GLbitfield clear_mask);
1213
1214 /*======================================================================
1215 * brw_queryobj.c
1216 */
1217 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1218 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1219 void brw_emit_query_begin(struct brw_context *brw);
1220 void brw_emit_query_end(struct brw_context *brw);
1221
1222 /** gen6_queryobj.c */
1223 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1224
1225 /*======================================================================
1226 * brw_state_dump.c
1227 */
1228 void brw_debug_batch(struct brw_context *brw);
1229 void brw_annotate_aub(struct brw_context *brw);
1230
1231 /*======================================================================
1232 * brw_tex.c
1233 */
1234 void brw_validate_textures( struct brw_context *brw );
1235
1236
1237 /*======================================================================
1238 * brw_program.c
1239 */
1240 void brwInitFragProgFuncs( struct dd_function_table *functions );
1241
1242 int brw_get_scratch_size(int size);
1243 void brw_get_scratch_bo(struct brw_context *brw,
1244 drm_intel_bo **scratch_bo, int size);
1245 void brw_init_shader_time(struct brw_context *brw);
1246 int brw_get_shader_time_index(struct brw_context *brw,
1247 struct gl_shader_program *shader_prog,
1248 struct gl_program *prog,
1249 enum shader_time_shader_type type);
1250 void brw_collect_and_report_shader_time(struct brw_context *brw);
1251 void brw_destroy_shader_time(struct brw_context *brw);
1252
1253 /* brw_urb.c
1254 */
1255 void brw_upload_urb_fence(struct brw_context *brw);
1256
1257 /* brw_curbe.c
1258 */
1259 void brw_upload_cs_urb_state(struct brw_context *brw);
1260
1261 /* brw_fs_reg_allocate.cpp
1262 */
1263 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1264
1265 /* brw_disasm.c */
1266 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1267
1268 /* brw_vs.c */
1269 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1270
1271 /* brw_wm_surface_state.c */
1272 void brw_init_surface_formats(struct brw_context *brw);
1273 void
1274 brw_update_sol_surface(struct brw_context *brw,
1275 struct gl_buffer_object *buffer_obj,
1276 uint32_t *out_offset, unsigned num_vector_components,
1277 unsigned stride_dwords, unsigned offset_dwords);
1278 void brw_upload_ubo_surfaces(struct brw_context *brw,
1279 struct gl_shader *shader,
1280 uint32_t *surf_offsets);
1281
1282 /* brw_surface_formats.c */
1283 bool brw_is_hiz_depth_format(struct brw_context *ctx, gl_format format);
1284 bool brw_render_target_supported(struct brw_context *brw,
1285 struct gl_renderbuffer *rb);
1286
1287 /* gen6_sol.c */
1288 void
1289 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1290 struct gl_transform_feedback_object *obj);
1291 void
1292 brw_end_transform_feedback(struct gl_context *ctx,
1293 struct gl_transform_feedback_object *obj);
1294
1295 /* gen7_sol_state.c */
1296 void
1297 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1298 struct gl_transform_feedback_object *obj);
1299 void
1300 gen7_end_transform_feedback(struct gl_context *ctx,
1301 struct gl_transform_feedback_object *obj);
1302
1303 /* brw_blorp_blit.cpp */
1304 GLbitfield
1305 brw_blorp_framebuffer(struct brw_context *brw,
1306 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1307 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1308 GLbitfield mask, GLenum filter);
1309
1310 bool
1311 brw_blorp_copytexsubimage(struct brw_context *brw,
1312 struct gl_renderbuffer *src_rb,
1313 struct gl_texture_image *dst_image,
1314 int slice,
1315 int srcX0, int srcY0,
1316 int dstX0, int dstY0,
1317 int width, int height);
1318
1319 /* gen6_multisample_state.c */
1320 void
1321 gen6_emit_3dstate_multisample(struct brw_context *brw,
1322 unsigned num_samples);
1323 void
1324 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1325 unsigned num_samples, float coverage,
1326 bool coverage_invert, unsigned sample_mask);
1327 void
1328 gen6_get_sample_position(struct gl_context *ctx,
1329 struct gl_framebuffer *fb,
1330 GLuint index,
1331 GLfloat *result);
1332
1333 /* gen7_urb.c */
1334 void
1335 gen7_allocate_push_constants(struct brw_context *brw);
1336
1337 void
1338 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1339 GLuint vs_size, GLuint vs_start);
1340
1341
1342
1343 /*======================================================================
1344 * Inline conversion functions. These are better-typed than the
1345 * macros used previously:
1346 */
1347 static INLINE struct brw_context *
1348 brw_context( struct gl_context *ctx )
1349 {
1350 return (struct brw_context *)ctx;
1351 }
1352
1353 static INLINE struct brw_vertex_program *
1354 brw_vertex_program(struct gl_vertex_program *p)
1355 {
1356 return (struct brw_vertex_program *) p;
1357 }
1358
1359 static INLINE const struct brw_vertex_program *
1360 brw_vertex_program_const(const struct gl_vertex_program *p)
1361 {
1362 return (const struct brw_vertex_program *) p;
1363 }
1364
1365 static INLINE struct brw_fragment_program *
1366 brw_fragment_program(struct gl_fragment_program *p)
1367 {
1368 return (struct brw_fragment_program *) p;
1369 }
1370
1371 static INLINE const struct brw_fragment_program *
1372 brw_fragment_program_const(const struct gl_fragment_program *p)
1373 {
1374 return (const struct brw_fragment_program *) p;
1375 }
1376
1377 /**
1378 * Pre-gen6, the register file of the EUs was shared between threads,
1379 * and each thread used some subset allocated on a 16-register block
1380 * granularity. The unit states wanted these block counts.
1381 */
1382 static inline int
1383 brw_register_blocks(int reg_count)
1384 {
1385 return ALIGN(reg_count, 16) / 16 - 1;
1386 }
1387
1388 static inline uint32_t
1389 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1390 uint32_t prog_offset)
1391 {
1392 struct intel_context *intel = &brw->intel;
1393
1394 if (intel->gen >= 5) {
1395 /* Using state base address. */
1396 return prog_offset;
1397 }
1398
1399 drm_intel_bo_emit_reloc(intel->batch.bo,
1400 state_offset,
1401 brw->cache.bo,
1402 prog_offset,
1403 I915_GEM_DOMAIN_INSTRUCTION, 0);
1404
1405 return brw->cache.bo->offset + prog_offset;
1406 }
1407
1408 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1409 bool brw_lower_texture_gradients(struct brw_context *brw,
1410 struct exec_list *instructions);
1411
1412 struct opcode_desc {
1413 char *name;
1414 int nsrc;
1415 int ndst;
1416 };
1417
1418 extern const struct opcode_desc opcode_descs[128];
1419
1420 void
1421 brw_emit_depthbuffer(struct brw_context *brw);
1422
1423 void
1424 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1425 struct intel_mipmap_tree *depth_mt,
1426 uint32_t depth_offset, uint32_t depthbuffer_format,
1427 uint32_t depth_surface_type,
1428 struct intel_mipmap_tree *stencil_mt,
1429 bool hiz, bool separate_stencil,
1430 uint32_t width, uint32_t height,
1431 uint32_t tile_x, uint32_t tile_y);
1432
1433 void
1434 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1435 struct intel_mipmap_tree *depth_mt,
1436 uint32_t depth_offset, uint32_t depthbuffer_format,
1437 uint32_t depth_surface_type,
1438 struct intel_mipmap_tree *stencil_mt,
1439 bool hiz, bool separate_stencil,
1440 uint32_t width, uint32_t height,
1441 uint32_t tile_x, uint32_t tile_y);
1442
1443 #ifdef __cplusplus
1444 }
1445 #endif
1446
1447 #endif