i965: Remove perf monitor/query backend
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include <stdbool.h>
37 #include "main/macros.h"
38 #include "main/mtypes.h"
39 #include "brw_structs.h"
40 #include "brw_compiler.h"
41 #include "intel_aub.h"
42
43 #include "isl/isl.h"
44 #include "blorp/blorp.h"
45
46 #ifdef __cplusplus
47 extern "C" {
48 /* Evil hack for using libdrm in a c++ compiler. */
49 #define virtual virt
50 #endif
51
52 #include <intel_bufmgr.h>
53 #ifdef __cplusplus
54 #undef virtual
55 }
56 #endif
57
58 #ifdef __cplusplus
59 extern "C" {
60 #endif
61 #include "intel_debug.h"
62 #include "intel_screen.h"
63 #include "intel_tex_obj.h"
64 #include "intel_resolve_map.h"
65
66 /* Glossary:
67 *
68 * URB - uniform resource buffer. A mid-sized buffer which is
69 * partitioned between the fixed function units and used for passing
70 * values (vertices, primitives, constants) between them.
71 *
72 * CURBE - constant URB entry. An urb region (entry) used to hold
73 * constant values which the fixed function units can be instructed to
74 * preload into the GRF when spawning a thread.
75 *
76 * VUE - vertex URB entry. An urb entry holding a vertex and usually
77 * a vertex header. The header contains control information and
78 * things like primitive type, Begin/end flags and clip codes.
79 *
80 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
81 * unit holding rasterization and interpolation parameters.
82 *
83 * GRF - general register file. One of several register files
84 * addressable by programmed threads. The inputs (r0, payload, curbe,
85 * urb) of the thread are preloaded to this area before the thread is
86 * spawned. The registers are individually 8 dwords wide and suitable
87 * for general usage. Registers holding thread input values are not
88 * special and may be overwritten.
89 *
90 * MRF - message register file. Threads communicate (and terminate)
91 * by sending messages. Message parameters are placed in contiguous
92 * MRF registers. All program output is via these messages. URB
93 * entries are populated by sending a message to the shared URB
94 * function containing the new data, together with a control word,
95 * often an unmodified copy of R0.
96 *
97 * R0 - GRF register 0. Typically holds control information used when
98 * sending messages to other threads.
99 *
100 * EU or GEN4 EU: The name of the programmable subsystem of the
101 * i965 hardware. Threads are executed by the EU, the registers
102 * described above are part of the EU architecture.
103 *
104 * Fixed function units:
105 *
106 * CS - Command streamer. Notional first unit, little software
107 * interaction. Holds the URB entries used for constant data, ie the
108 * CURBEs.
109 *
110 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
111 * this unit is responsible for pulling vertices out of vertex buffers
112 * in vram and injecting them into the processing pipe as VUEs. If
113 * enabled, it first passes them to a VS thread which is a good place
114 * for the driver to implement any active vertex shader.
115 *
116 * HS - Hull Shader (Tessellation Control Shader)
117 *
118 * TE - Tessellation Engine (Tessellation Primitive Generation)
119 *
120 * DS - Domain Shader (Tessellation Evaluation Shader)
121 *
122 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
123 * enabled, incoming strips etc are passed to GS threads in individual
124 * line/triangle/point units. The GS thread may perform arbitary
125 * computation and emit whatever primtives with whatever vertices it
126 * chooses. This makes GS an excellent place to implement GL's
127 * unfilled polygon modes, though of course it is capable of much
128 * more. Additionally, GS is used to translate away primitives not
129 * handled by latter units, including Quads and Lineloops.
130 *
131 * CS - Clipper. Mesa's clipping algorithms are imported to run on
132 * this unit. The fixed function part performs cliptesting against
133 * the 6 fixed clipplanes and makes descisions on whether or not the
134 * incoming primitive needs to be passed to a thread for clipping.
135 * User clip planes are handled via cooperation with the VS thread.
136 *
137 * SF - Strips Fans or Setup: Triangles are prepared for
138 * rasterization. Interpolation coefficients are calculated.
139 * Flatshading and two-side lighting usually performed here.
140 *
141 * WM - Windower. Interpolation of vertex attributes performed here.
142 * Fragment shader implemented here. SIMD aspects of EU taken full
143 * advantage of, as pixels are processed in blocks of 16.
144 *
145 * CC - Color Calculator. No EU threads associated with this unit.
146 * Handles blending and (presumably) depth and stencil testing.
147 */
148
149 struct brw_context;
150 struct brw_inst;
151 struct brw_vs_prog_key;
152 struct brw_vue_prog_key;
153 struct brw_wm_prog_key;
154 struct brw_wm_prog_data;
155 struct brw_cs_prog_key;
156 struct brw_cs_prog_data;
157
158 enum brw_pipeline {
159 BRW_RENDER_PIPELINE,
160 BRW_COMPUTE_PIPELINE,
161
162 BRW_NUM_PIPELINES
163 };
164
165 enum brw_cache_id {
166 BRW_CACHE_FS_PROG,
167 BRW_CACHE_BLORP_PROG,
168 BRW_CACHE_SF_PROG,
169 BRW_CACHE_VS_PROG,
170 BRW_CACHE_FF_GS_PROG,
171 BRW_CACHE_GS_PROG,
172 BRW_CACHE_TCS_PROG,
173 BRW_CACHE_TES_PROG,
174 BRW_CACHE_CLIP_PROG,
175 BRW_CACHE_CS_PROG,
176
177 BRW_MAX_CACHE
178 };
179
180 enum brw_state_id {
181 /* brw_cache_ids must come first - see brw_program_cache.c */
182 BRW_STATE_URB_FENCE = BRW_MAX_CACHE,
183 BRW_STATE_FRAGMENT_PROGRAM,
184 BRW_STATE_GEOMETRY_PROGRAM,
185 BRW_STATE_TESS_PROGRAMS,
186 BRW_STATE_VERTEX_PROGRAM,
187 BRW_STATE_CURBE_OFFSETS,
188 BRW_STATE_REDUCED_PRIMITIVE,
189 BRW_STATE_PATCH_PRIMITIVE,
190 BRW_STATE_PRIMITIVE,
191 BRW_STATE_CONTEXT,
192 BRW_STATE_PSP,
193 BRW_STATE_SURFACES,
194 BRW_STATE_BINDING_TABLE_POINTERS,
195 BRW_STATE_INDICES,
196 BRW_STATE_VERTICES,
197 BRW_STATE_DEFAULT_TESS_LEVELS,
198 BRW_STATE_BATCH,
199 BRW_STATE_INDEX_BUFFER,
200 BRW_STATE_VS_CONSTBUF,
201 BRW_STATE_TCS_CONSTBUF,
202 BRW_STATE_TES_CONSTBUF,
203 BRW_STATE_GS_CONSTBUF,
204 BRW_STATE_PROGRAM_CACHE,
205 BRW_STATE_STATE_BASE_ADDRESS,
206 BRW_STATE_VUE_MAP_GEOM_OUT,
207 BRW_STATE_TRANSFORM_FEEDBACK,
208 BRW_STATE_RASTERIZER_DISCARD,
209 BRW_STATE_STATS_WM,
210 BRW_STATE_UNIFORM_BUFFER,
211 BRW_STATE_ATOMIC_BUFFER,
212 BRW_STATE_IMAGE_UNITS,
213 BRW_STATE_META_IN_PROGRESS,
214 BRW_STATE_PUSH_CONSTANT_ALLOCATION,
215 BRW_STATE_NUM_SAMPLES,
216 BRW_STATE_TEXTURE_BUFFER,
217 BRW_STATE_GEN4_UNIT_STATE,
218 BRW_STATE_CC_VP,
219 BRW_STATE_SF_VP,
220 BRW_STATE_CLIP_VP,
221 BRW_STATE_SAMPLER_STATE_TABLE,
222 BRW_STATE_VS_ATTRIB_WORKAROUNDS,
223 BRW_STATE_COMPUTE_PROGRAM,
224 BRW_STATE_CS_WORK_GROUPS,
225 BRW_STATE_URB_SIZE,
226 BRW_STATE_CC_STATE,
227 BRW_STATE_BLORP,
228 BRW_STATE_VIEWPORT_COUNT,
229 BRW_STATE_CONSERVATIVE_RASTERIZATION,
230 BRW_NUM_STATE_BITS
231 };
232
233 /**
234 * BRW_NEW_*_PROG_DATA and BRW_NEW_*_PROGRAM are similar, but distinct.
235 *
236 * BRW_NEW_*_PROGRAM relates to the gl_shader_program/gl_program structures.
237 * When the currently bound shader program differs from the previous draw
238 * call, these will be flagged. They cover brw->{stage}_program and
239 * ctx->{Stage}Program->_Current.
240 *
241 * BRW_NEW_*_PROG_DATA is flagged when the effective shaders change, from a
242 * driver perspective. Even if the same shader is bound at the API level,
243 * we may need to switch between multiple versions of that shader to handle
244 * changes in non-orthagonal state.
245 *
246 * Additionally, multiple shader programs may have identical vertex shaders
247 * (for example), or compile down to the same code in the backend. We combine
248 * those into a single program cache entry.
249 *
250 * BRW_NEW_*_PROG_DATA occurs when switching program cache entries, which
251 * covers the brw_*_prog_data structures, and brw->*.prog_offset.
252 */
253 #define BRW_NEW_FS_PROG_DATA (1ull << BRW_CACHE_FS_PROG)
254 /* XXX: The BRW_NEW_BLORP_BLIT_PROG_DATA dirty bit is unused (as BLORP doesn't
255 * use the normal state upload paths), but the cache is still used. To avoid
256 * polluting the brw_program_cache code with special cases, we retain the
257 * dirty bit for now. It should eventually be removed.
258 */
259 #define BRW_NEW_BLORP_BLIT_PROG_DATA (1ull << BRW_CACHE_BLORP_PROG)
260 #define BRW_NEW_SF_PROG_DATA (1ull << BRW_CACHE_SF_PROG)
261 #define BRW_NEW_VS_PROG_DATA (1ull << BRW_CACHE_VS_PROG)
262 #define BRW_NEW_FF_GS_PROG_DATA (1ull << BRW_CACHE_FF_GS_PROG)
263 #define BRW_NEW_GS_PROG_DATA (1ull << BRW_CACHE_GS_PROG)
264 #define BRW_NEW_TCS_PROG_DATA (1ull << BRW_CACHE_TCS_PROG)
265 #define BRW_NEW_TES_PROG_DATA (1ull << BRW_CACHE_TES_PROG)
266 #define BRW_NEW_CLIP_PROG_DATA (1ull << BRW_CACHE_CLIP_PROG)
267 #define BRW_NEW_CS_PROG_DATA (1ull << BRW_CACHE_CS_PROG)
268 #define BRW_NEW_URB_FENCE (1ull << BRW_STATE_URB_FENCE)
269 #define BRW_NEW_FRAGMENT_PROGRAM (1ull << BRW_STATE_FRAGMENT_PROGRAM)
270 #define BRW_NEW_GEOMETRY_PROGRAM (1ull << BRW_STATE_GEOMETRY_PROGRAM)
271 #define BRW_NEW_TESS_PROGRAMS (1ull << BRW_STATE_TESS_PROGRAMS)
272 #define BRW_NEW_VERTEX_PROGRAM (1ull << BRW_STATE_VERTEX_PROGRAM)
273 #define BRW_NEW_CURBE_OFFSETS (1ull << BRW_STATE_CURBE_OFFSETS)
274 #define BRW_NEW_REDUCED_PRIMITIVE (1ull << BRW_STATE_REDUCED_PRIMITIVE)
275 #define BRW_NEW_PATCH_PRIMITIVE (1ull << BRW_STATE_PATCH_PRIMITIVE)
276 #define BRW_NEW_PRIMITIVE (1ull << BRW_STATE_PRIMITIVE)
277 #define BRW_NEW_CONTEXT (1ull << BRW_STATE_CONTEXT)
278 #define BRW_NEW_PSP (1ull << BRW_STATE_PSP)
279 #define BRW_NEW_SURFACES (1ull << BRW_STATE_SURFACES)
280 #define BRW_NEW_BINDING_TABLE_POINTERS (1ull << BRW_STATE_BINDING_TABLE_POINTERS)
281 #define BRW_NEW_INDICES (1ull << BRW_STATE_INDICES)
282 #define BRW_NEW_VERTICES (1ull << BRW_STATE_VERTICES)
283 #define BRW_NEW_DEFAULT_TESS_LEVELS (1ull << BRW_STATE_DEFAULT_TESS_LEVELS)
284 /**
285 * Used for any batch entry with a relocated pointer that will be used
286 * by any 3D rendering.
287 */
288 #define BRW_NEW_BATCH (1ull << BRW_STATE_BATCH)
289 /** \see brw.state.depth_region */
290 #define BRW_NEW_INDEX_BUFFER (1ull << BRW_STATE_INDEX_BUFFER)
291 #define BRW_NEW_VS_CONSTBUF (1ull << BRW_STATE_VS_CONSTBUF)
292 #define BRW_NEW_TCS_CONSTBUF (1ull << BRW_STATE_TCS_CONSTBUF)
293 #define BRW_NEW_TES_CONSTBUF (1ull << BRW_STATE_TES_CONSTBUF)
294 #define BRW_NEW_GS_CONSTBUF (1ull << BRW_STATE_GS_CONSTBUF)
295 #define BRW_NEW_PROGRAM_CACHE (1ull << BRW_STATE_PROGRAM_CACHE)
296 #define BRW_NEW_STATE_BASE_ADDRESS (1ull << BRW_STATE_STATE_BASE_ADDRESS)
297 #define BRW_NEW_VUE_MAP_GEOM_OUT (1ull << BRW_STATE_VUE_MAP_GEOM_OUT)
298 #define BRW_NEW_VIEWPORT_COUNT (1ull << BRW_STATE_VIEWPORT_COUNT)
299 #define BRW_NEW_TRANSFORM_FEEDBACK (1ull << BRW_STATE_TRANSFORM_FEEDBACK)
300 #define BRW_NEW_RASTERIZER_DISCARD (1ull << BRW_STATE_RASTERIZER_DISCARD)
301 #define BRW_NEW_STATS_WM (1ull << BRW_STATE_STATS_WM)
302 #define BRW_NEW_UNIFORM_BUFFER (1ull << BRW_STATE_UNIFORM_BUFFER)
303 #define BRW_NEW_ATOMIC_BUFFER (1ull << BRW_STATE_ATOMIC_BUFFER)
304 #define BRW_NEW_IMAGE_UNITS (1ull << BRW_STATE_IMAGE_UNITS)
305 #define BRW_NEW_META_IN_PROGRESS (1ull << BRW_STATE_META_IN_PROGRESS)
306 #define BRW_NEW_PUSH_CONSTANT_ALLOCATION (1ull << BRW_STATE_PUSH_CONSTANT_ALLOCATION)
307 #define BRW_NEW_NUM_SAMPLES (1ull << BRW_STATE_NUM_SAMPLES)
308 #define BRW_NEW_TEXTURE_BUFFER (1ull << BRW_STATE_TEXTURE_BUFFER)
309 #define BRW_NEW_GEN4_UNIT_STATE (1ull << BRW_STATE_GEN4_UNIT_STATE)
310 #define BRW_NEW_CC_VP (1ull << BRW_STATE_CC_VP)
311 #define BRW_NEW_SF_VP (1ull << BRW_STATE_SF_VP)
312 #define BRW_NEW_CLIP_VP (1ull << BRW_STATE_CLIP_VP)
313 #define BRW_NEW_SAMPLER_STATE_TABLE (1ull << BRW_STATE_SAMPLER_STATE_TABLE)
314 #define BRW_NEW_VS_ATTRIB_WORKAROUNDS (1ull << BRW_STATE_VS_ATTRIB_WORKAROUNDS)
315 #define BRW_NEW_COMPUTE_PROGRAM (1ull << BRW_STATE_COMPUTE_PROGRAM)
316 #define BRW_NEW_CS_WORK_GROUPS (1ull << BRW_STATE_CS_WORK_GROUPS)
317 #define BRW_NEW_URB_SIZE (1ull << BRW_STATE_URB_SIZE)
318 #define BRW_NEW_CC_STATE (1ull << BRW_STATE_CC_STATE)
319 #define BRW_NEW_BLORP (1ull << BRW_STATE_BLORP)
320 #define BRW_NEW_CONSERVATIVE_RASTERIZATION (1ull << BRW_STATE_CONSERVATIVE_RASTERIZATION)
321
322 struct brw_state_flags {
323 /** State update flags signalled by mesa internals */
324 GLuint mesa;
325 /**
326 * State update flags signalled as the result of brw_tracked_state updates
327 */
328 uint64_t brw;
329 };
330
331
332 /** Subclass of Mesa program */
333 struct brw_program {
334 struct gl_program program;
335 GLuint id;
336
337 bool compiled_once;
338 };
339
340
341 struct gen4_fragment_program {
342 struct brw_program base;
343
344 bool contains_flat_varying;
345 bool contains_noperspective_varying;
346
347 /*
348 * Mapping of varying slots to interpolation modes.
349 * Used Gen4/5 by the clip|sf|wm stages.
350 */
351 unsigned char interp_mode[BRW_VARYING_SLOT_COUNT];
352 };
353
354
355 /**
356 * Bitmask indicating which fragment shader inputs represent varyings (and
357 * hence have to be delivered to the fragment shader by the SF/SBE stage).
358 */
359 #define BRW_FS_VARYING_INPUT_MASK \
360 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
361 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
362
363
364 struct brw_sf_prog_data {
365 GLuint urb_read_length;
366 GLuint total_grf;
367
368 /* Each vertex may have upto 12 attributes, 4 components each,
369 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
370 * rows.
371 *
372 * Actually we use 4 for each, so call it 12 rows.
373 */
374 GLuint urb_entry_size;
375 };
376
377
378 /**
379 * We always program SF to start reading at an offset of 1 (2 varying slots)
380 * from the start of the vertex URB entry. This causes it to skip:
381 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
382 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
383 */
384 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
385
386
387 struct brw_clip_prog_data {
388 GLuint curb_read_length; /* user planes? */
389 GLuint clip_mode;
390 GLuint urb_read_length;
391 GLuint total_grf;
392 };
393
394 struct brw_ff_gs_prog_data {
395 GLuint urb_read_length;
396 GLuint total_grf;
397
398 /**
399 * Gen6 transform feedback: Amount by which the streaming vertex buffer
400 * indices should be incremented each time the GS is invoked.
401 */
402 unsigned svbi_postincrement_value;
403 };
404
405 /** Number of texture sampler units */
406 #define BRW_MAX_TEX_UNIT 32
407
408 /** Max number of render targets in a shader */
409 #define BRW_MAX_DRAW_BUFFERS 8
410
411 /** Max number of UBOs in a shader */
412 #define BRW_MAX_UBO 14
413
414 /** Max number of SSBOs in a shader */
415 #define BRW_MAX_SSBO 12
416
417 /** Max number of atomic counter buffer objects in a shader */
418 #define BRW_MAX_ABO 16
419
420 /** Max number of image uniforms in a shader */
421 #define BRW_MAX_IMAGES 32
422
423 /**
424 * Max number of binding table entries used for stream output.
425 *
426 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
427 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
428 *
429 * On Gen6, the size of transform feedback data is limited not by the number
430 * of components but by the number of binding table entries we set aside. We
431 * use one binding table entry for a float, one entry for a vector, and one
432 * entry per matrix column. Since the only way we can communicate our
433 * transform feedback capabilities to the client is via
434 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
435 * worst case, in which all the varyings are floats, so we use up one binding
436 * table entry per component. Therefore we need to set aside at least 64
437 * binding table entries for use by transform feedback.
438 *
439 * Note: since we don't currently pack varyings, it is currently impossible
440 * for the client to actually use up all of these binding table entries--if
441 * all of their varyings were floats, they would run out of varying slots and
442 * fail to link. But that's a bug, so it seems prudent to go ahead and
443 * allocate the number of binding table entries we will need once the bug is
444 * fixed.
445 */
446 #define BRW_MAX_SOL_BINDINGS 64
447
448 /** Maximum number of actual buffers used for stream output */
449 #define BRW_MAX_SOL_BUFFERS 4
450
451 #define BRW_MAX_SURFACES (BRW_MAX_DRAW_BUFFERS + \
452 BRW_MAX_TEX_UNIT * 2 + /* normal, gather */ \
453 BRW_MAX_UBO + \
454 BRW_MAX_SSBO + \
455 BRW_MAX_ABO + \
456 BRW_MAX_IMAGES + \
457 2 + /* shader time, pull constants */ \
458 1 /* cs num work groups */)
459
460 #define SURF_INDEX_GEN6_SOL_BINDING(t) (t)
461
462 /**
463 * Stride in bytes between shader_time entries.
464 *
465 * We separate entries by a cacheline to reduce traffic between EUs writing to
466 * different entries.
467 */
468 #define SHADER_TIME_STRIDE 64
469
470 struct brw_cache_item {
471 /**
472 * Effectively part of the key, cache_id identifies what kind of state
473 * buffer is involved, and also which dirty flag should set.
474 */
475 enum brw_cache_id cache_id;
476 /** 32-bit hash of the key data */
477 GLuint hash;
478 GLuint key_size; /* for variable-sized keys */
479 GLuint aux_size;
480 const void *key;
481
482 uint32_t offset;
483 uint32_t size;
484
485 struct brw_cache_item *next;
486 };
487
488
489 struct brw_cache {
490 struct brw_context *brw;
491
492 struct brw_cache_item **items;
493 drm_intel_bo *bo;
494 GLuint size, n_items;
495
496 uint32_t next_offset;
497 bool bo_used_by_gpu;
498 };
499
500
501 /* Considered adding a member to this struct to document which flags
502 * an update might raise so that ordering of the state atoms can be
503 * checked or derived at runtime. Dropped the idea in favor of having
504 * a debug mode where the state is monitored for flags which are
505 * raised that have already been tested against.
506 */
507 struct brw_tracked_state {
508 struct brw_state_flags dirty;
509 void (*emit)( struct brw_context *brw );
510 };
511
512 enum shader_time_shader_type {
513 ST_NONE,
514 ST_VS,
515 ST_TCS,
516 ST_TES,
517 ST_GS,
518 ST_FS8,
519 ST_FS16,
520 ST_CS,
521 };
522
523 struct brw_vertex_buffer {
524 /** Buffer object containing the uploaded vertex data */
525 drm_intel_bo *bo;
526 uint32_t offset;
527 uint32_t size;
528 /** Byte stride between elements in the uploaded array */
529 GLuint stride;
530 GLuint step_rate;
531 };
532 struct brw_vertex_element {
533 const struct gl_vertex_array *glarray;
534
535 int buffer;
536 bool is_dual_slot;
537 /** Offset of the first element within the buffer object */
538 unsigned int offset;
539 };
540
541 struct brw_query_object {
542 struct gl_query_object Base;
543
544 /** Last query BO associated with this query. */
545 drm_intel_bo *bo;
546
547 /** Last index in bo with query data for this object. */
548 int last_index;
549
550 /** True if we know the batch has been flushed since we ended the query. */
551 bool flushed;
552 };
553
554 enum brw_gpu_ring {
555 UNKNOWN_RING,
556 RENDER_RING,
557 BLT_RING,
558 };
559
560 struct intel_batchbuffer {
561 /** Current batchbuffer being queued up. */
562 drm_intel_bo *bo;
563 /** Last BO submitted to the hardware. Used for glFinish(). */
564 drm_intel_bo *last_bo;
565
566 #ifdef DEBUG
567 uint16_t emit, total;
568 #endif
569 uint16_t reserved_space;
570 uint32_t *map_next;
571 uint32_t *map;
572 uint32_t *cpu_map;
573 #define BATCH_SZ (8192*sizeof(uint32_t))
574
575 uint32_t state_batch_offset;
576 enum brw_gpu_ring ring;
577 bool needs_sol_reset;
578 bool state_base_address_emitted;
579
580 struct {
581 uint32_t *map_next;
582 int reloc_count;
583 } saved;
584 };
585
586 #define MAX_GS_INPUT_VERTICES 6
587
588 #define BRW_MAX_XFB_STREAMS 4
589
590 struct brw_transform_feedback_object {
591 struct gl_transform_feedback_object base;
592
593 /** A buffer to hold SO_WRITE_OFFSET(n) values while paused. */
594 drm_intel_bo *offset_bo;
595
596 /** If true, SO_WRITE_OFFSET(n) should be reset to zero at next use. */
597 bool zero_offsets;
598
599 /** The most recent primitive mode (GL_TRIANGLES/GL_POINTS/GL_LINES). */
600 GLenum primitive_mode;
601
602 /**
603 * Count of primitives generated during this transform feedback operation.
604 * @{
605 */
606 uint64_t prims_generated[BRW_MAX_XFB_STREAMS];
607 drm_intel_bo *prim_count_bo;
608 unsigned prim_count_buffer_index; /**< in number of uint64_t units */
609 /** @} */
610
611 /**
612 * Number of vertices written between last Begin/EndTransformFeedback().
613 *
614 * Used to implement DrawTransformFeedback().
615 */
616 uint64_t vertices_written[BRW_MAX_XFB_STREAMS];
617 bool vertices_written_valid;
618 };
619
620 /**
621 * Data shared between each programmable stage in the pipeline (vs, gs, and
622 * wm).
623 */
624 struct brw_stage_state
625 {
626 gl_shader_stage stage;
627 struct brw_stage_prog_data *prog_data;
628
629 /**
630 * Optional scratch buffer used to store spilled register values and
631 * variably-indexed GRF arrays.
632 *
633 * The contents of this buffer are short-lived so the same memory can be
634 * re-used at will for multiple shader programs (executed by the same fixed
635 * function). However reusing a scratch BO for which shader invocations
636 * are still in flight with a per-thread scratch slot size other than the
637 * original can cause threads with different scratch slot size and FFTID
638 * (which may be executed in parallel depending on the shader stage and
639 * hardware generation) to map to an overlapping region of the scratch
640 * space, which can potentially lead to mutual scratch space corruption.
641 * For that reason if you borrow this scratch buffer you should only be
642 * using the slot size given by the \c per_thread_scratch member below,
643 * unless you're taking additional measures to synchronize thread execution
644 * across slot size changes.
645 */
646 drm_intel_bo *scratch_bo;
647
648 /**
649 * Scratch slot size allocated for each thread in the buffer object given
650 * by \c scratch_bo.
651 */
652 uint32_t per_thread_scratch;
653
654 /** Offset in the program cache to the program */
655 uint32_t prog_offset;
656
657 /** Offset in the batchbuffer to Gen4-5 pipelined state (VS/WM/GS_STATE). */
658 uint32_t state_offset;
659
660 uint32_t push_const_offset; /* Offset in the batchbuffer */
661 int push_const_size; /* in 256-bit register increments */
662
663 /* Binding table: pointers to SURFACE_STATE entries. */
664 uint32_t bind_bo_offset;
665 uint32_t surf_offset[BRW_MAX_SURFACES];
666
667 /** SAMPLER_STATE count and table offset */
668 uint32_t sampler_count;
669 uint32_t sampler_offset;
670 };
671
672 enum brw_predicate_state {
673 /* The first two states are used if we can determine whether to draw
674 * without having to look at the values in the query object buffer. This
675 * will happen if there is no conditional render in progress, if the query
676 * object is already completed or if something else has already added
677 * samples to the preliminary result such as via a BLT command.
678 */
679 BRW_PREDICATE_STATE_RENDER,
680 BRW_PREDICATE_STATE_DONT_RENDER,
681 /* In this case whether to draw or not depends on the result of an
682 * MI_PREDICATE command so the predicate enable bit needs to be checked.
683 */
684 BRW_PREDICATE_STATE_USE_BIT
685 };
686
687 struct shader_times;
688
689 struct gen_l3_config;
690
691 /**
692 * brw_context is derived from gl_context.
693 */
694 struct brw_context
695 {
696 struct gl_context ctx; /**< base class, must be first field */
697
698 struct
699 {
700 uint32_t (*update_renderbuffer_surface)(struct brw_context *brw,
701 struct gl_renderbuffer *rb,
702 uint32_t flags, unsigned unit,
703 uint32_t surf_index);
704 void (*emit_null_surface_state)(struct brw_context *brw,
705 unsigned width,
706 unsigned height,
707 unsigned samples,
708 uint32_t *out_offset);
709
710 /**
711 * Send the appropriate state packets to configure depth, stencil, and
712 * HiZ buffers (i965+ only)
713 */
714 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
715 struct intel_mipmap_tree *depth_mt,
716 uint32_t depth_offset,
717 uint32_t depthbuffer_format,
718 uint32_t depth_surface_type,
719 struct intel_mipmap_tree *stencil_mt,
720 bool hiz, bool separate_stencil,
721 uint32_t width, uint32_t height,
722 uint32_t tile_x, uint32_t tile_y);
723
724 } vtbl;
725
726 dri_bufmgr *bufmgr;
727
728 drm_intel_context *hw_ctx;
729
730 /** BO for post-sync nonzero writes for gen6 workaround. */
731 drm_intel_bo *workaround_bo;
732 uint8_t pipe_controls_since_last_cs_stall;
733
734 /**
735 * Set of drm_intel_bo * that have been rendered to within this batchbuffer
736 * and would need flushing before being used from another cache domain that
737 * isn't coherent with it (i.e. the sampler).
738 */
739 struct set *render_cache;
740
741 /**
742 * Number of resets observed in the system at context creation.
743 *
744 * This is tracked in the context so that we can determine that another
745 * reset has occurred.
746 */
747 uint32_t reset_count;
748
749 struct intel_batchbuffer batch;
750 bool no_batch_wrap;
751
752 struct {
753 drm_intel_bo *bo;
754 uint32_t next_offset;
755 } upload;
756
757 /**
758 * Set if rendering has occurred to the drawable's front buffer.
759 *
760 * This is used in the DRI2 case to detect that glFlush should also copy
761 * the contents of the fake front buffer to the real front buffer.
762 */
763 bool front_buffer_dirty;
764
765 /** Framerate throttling: @{ */
766 drm_intel_bo *throttle_batch[2];
767
768 /* Limit the number of outstanding SwapBuffers by waiting for an earlier
769 * frame of rendering to complete. This gives a very precise cap to the
770 * latency between input and output such that rendering never gets more
771 * than a frame behind the user. (With the caveat that we technically are
772 * not using the SwapBuffers itself as a barrier but the first batch
773 * submitted afterwards, which may be immediately prior to the next
774 * SwapBuffers.)
775 */
776 bool need_swap_throttle;
777
778 /** General throttling, not caught by throttling between SwapBuffers */
779 bool need_flush_throttle;
780 /** @} */
781
782 GLuint stats_wm;
783
784 /**
785 * drirc options:
786 * @{
787 */
788 bool no_rast;
789 bool always_flush_batch;
790 bool always_flush_cache;
791 bool disable_throttling;
792 bool precompile;
793 bool dual_color_blend_by_location;
794
795 driOptionCache optionCache;
796 /** @} */
797
798 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
799
800 GLenum reduced_primitive;
801
802 /**
803 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
804 * variable is set, this is the flag indicating to do expensive work that
805 * might lead to a perf_debug() call.
806 */
807 bool perf_debug;
808
809 uint64_t max_gtt_map_object_size;
810
811 int gen;
812 int gt;
813
814 bool is_g4x;
815 bool is_baytrail;
816 bool is_haswell;
817 bool is_cherryview;
818 bool is_broxton;
819
820 bool has_hiz;
821 bool has_separate_stencil;
822 bool must_use_separate_stencil;
823 bool has_llc;
824 bool has_swizzling;
825 bool has_surface_tile_offset;
826 bool has_compr4;
827 bool has_negative_rhw_bug;
828 bool has_pln;
829 bool no_simd8;
830 bool use_rep_send;
831 bool use_resource_streamer;
832
833 /**
834 * Whether LRI can be used to write register values from the batch buffer.
835 */
836 bool can_do_pipelined_register_writes;
837
838 /**
839 * Some versions of Gen hardware don't do centroid interpolation correctly
840 * on unlit pixels, causing incorrect values for derivatives near triangle
841 * edges. Enabling this flag causes the fragment shader to use
842 * non-centroid interpolation for unlit pixels, at the expense of two extra
843 * fragment shader instructions.
844 */
845 bool needs_unlit_centroid_workaround;
846
847 struct isl_device isl_dev;
848
849 struct blorp_context blorp;
850
851 GLuint NewGLState;
852 struct {
853 struct brw_state_flags pipelines[BRW_NUM_PIPELINES];
854 } state;
855
856 enum brw_pipeline last_pipeline;
857
858 struct brw_cache cache;
859
860 /** IDs for meta stencil blit shader programs. */
861 struct gl_shader_program *meta_stencil_blit_programs[2];
862
863 /* Whether a meta-operation is in progress. */
864 bool meta_in_progress;
865
866 /* Whether the last depth/stencil packets were both NULL. */
867 bool no_depth_or_stencil;
868
869 /* The last PMA stall bits programmed. */
870 uint32_t pma_stall_bits;
871
872 struct {
873 struct {
874 /** The value of gl_BaseVertex for the current _mesa_prim. */
875 int gl_basevertex;
876
877 /** The value of gl_BaseInstance for the current _mesa_prim. */
878 int gl_baseinstance;
879 } params;
880
881 /**
882 * Buffer and offset used for GL_ARB_shader_draw_parameters
883 * (for now, only gl_BaseVertex).
884 */
885 drm_intel_bo *draw_params_bo;
886 uint32_t draw_params_offset;
887
888 /**
889 * The value of gl_DrawID for the current _mesa_prim. This always comes
890 * in from it's own vertex buffer since it's not part of the indirect
891 * draw parameters.
892 */
893 int gl_drawid;
894 drm_intel_bo *draw_id_bo;
895 uint32_t draw_id_offset;
896 } draw;
897
898 struct {
899 /**
900 * For gl_NumWorkGroups: If num_work_groups_bo is non NULL, then it is
901 * an indirect call, and num_work_groups_offset is valid. Otherwise,
902 * num_work_groups is set based on glDispatchCompute.
903 */
904 drm_intel_bo *num_work_groups_bo;
905 GLintptr num_work_groups_offset;
906 const GLuint *num_work_groups;
907 } compute;
908
909 struct {
910 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
911 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
912
913 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
914 GLuint nr_enabled;
915 GLuint nr_buffers;
916
917 /* Summary of size and varying of active arrays, so we can check
918 * for changes to this state:
919 */
920 bool index_bounds_valid;
921 unsigned int min_index, max_index;
922
923 /* Offset from start of vertex buffer so we can avoid redefining
924 * the same VB packed over and over again.
925 */
926 unsigned int start_vertex_bias;
927
928 /**
929 * Certain vertex attribute formats aren't natively handled by the
930 * hardware and require special VS code to fix up their values.
931 *
932 * These bitfields indicate which workarounds are needed.
933 */
934 uint8_t attrib_wa_flags[VERT_ATTRIB_MAX];
935 } vb;
936
937 struct {
938 /**
939 * Index buffer for this draw_prims call.
940 *
941 * Updates are signaled by BRW_NEW_INDICES.
942 */
943 const struct _mesa_index_buffer *ib;
944
945 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
946 drm_intel_bo *bo;
947 uint32_t size;
948 GLuint type;
949
950 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
951 * avoid re-uploading the IB packet over and over if we're actually
952 * referencing the same index buffer.
953 */
954 unsigned int start_vertex_offset;
955 } ib;
956
957 /* Active vertex program:
958 */
959 const struct gl_program *vertex_program;
960 const struct gl_program *geometry_program;
961 const struct gl_program *tess_ctrl_program;
962 const struct gl_program *tess_eval_program;
963 const struct gl_program *fragment_program;
964 const struct gl_program *compute_program;
965
966 /**
967 * Number of samples in ctx->DrawBuffer, updated by BRW_NEW_NUM_SAMPLES so
968 * that we don't have to reemit that state every time we change FBOs.
969 */
970 int num_samples;
971
972 /* BRW_NEW_URB_ALLOCATIONS:
973 */
974 struct {
975 GLuint vsize; /* vertex size plus header in urb registers */
976 GLuint gsize; /* GS output size in urb registers */
977 GLuint hsize; /* Tessellation control output size in urb registers */
978 GLuint dsize; /* Tessellation evaluation output size in urb registers */
979 GLuint csize; /* constant buffer size in urb registers */
980 GLuint sfsize; /* setup data size in urb registers */
981
982 bool constrained;
983
984 GLuint nr_vs_entries;
985 GLuint nr_hs_entries;
986 GLuint nr_ds_entries;
987 GLuint nr_gs_entries;
988 GLuint nr_clip_entries;
989 GLuint nr_sf_entries;
990 GLuint nr_cs_entries;
991
992 GLuint vs_start;
993 GLuint hs_start;
994 GLuint ds_start;
995 GLuint gs_start;
996 GLuint clip_start;
997 GLuint sf_start;
998 GLuint cs_start;
999 /**
1000 * URB size in the current configuration. The units this is expressed
1001 * in are somewhat inconsistent, see gen_device_info::urb::size.
1002 *
1003 * FINISHME: Represent the URB size consistently in KB on all platforms.
1004 */
1005 GLuint size;
1006
1007 /* True if the most recently sent _3DSTATE_URB message allocated
1008 * URB space for the GS.
1009 */
1010 bool gs_present;
1011
1012 /* True if the most recently sent _3DSTATE_URB message allocated
1013 * URB space for the HS and DS.
1014 */
1015 bool tess_present;
1016 } urb;
1017
1018
1019 /* BRW_NEW_CURBE_OFFSETS:
1020 */
1021 struct {
1022 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
1023 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
1024 GLuint clip_start;
1025 GLuint clip_size;
1026 GLuint vs_start;
1027 GLuint vs_size;
1028 GLuint total_size;
1029
1030 /**
1031 * Pointer to the (intel_upload.c-generated) BO containing the uniforms
1032 * for upload to the CURBE.
1033 */
1034 drm_intel_bo *curbe_bo;
1035 /** Offset within curbe_bo of space for current curbe entry */
1036 GLuint curbe_offset;
1037 } curbe;
1038
1039 /**
1040 * Layout of vertex data exiting the geometry portion of the pipleine.
1041 * This comes from the last enabled shader stage (GS, DS, or VS).
1042 *
1043 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1044 */
1045 struct brw_vue_map vue_map_geom_out;
1046
1047 struct {
1048 struct brw_stage_state base;
1049 } vs;
1050
1051 struct {
1052 struct brw_stage_state base;
1053
1054 /**
1055 * True if the 3DSTATE_HS command most recently emitted to the 3D
1056 * pipeline enabled the HS; false otherwise.
1057 */
1058 bool enabled;
1059 } tcs;
1060
1061 struct {
1062 struct brw_stage_state base;
1063
1064 /**
1065 * True if the 3DSTATE_DS command most recently emitted to the 3D
1066 * pipeline enabled the DS; false otherwise.
1067 */
1068 bool enabled;
1069 } tes;
1070
1071 struct {
1072 struct brw_stage_state base;
1073
1074 /**
1075 * True if the 3DSTATE_GS command most recently emitted to the 3D
1076 * pipeline enabled the GS; false otherwise.
1077 */
1078 bool enabled;
1079 } gs;
1080
1081 struct {
1082 struct brw_ff_gs_prog_data *prog_data;
1083
1084 bool prog_active;
1085 /** Offset in the program cache to the CLIP program pre-gen6 */
1086 uint32_t prog_offset;
1087 uint32_t state_offset;
1088
1089 uint32_t bind_bo_offset;
1090 /**
1091 * Surface offsets for the binding table. We only need surfaces to
1092 * implement transform feedback so BRW_MAX_SOL_BINDINGS is all that we
1093 * need in this case.
1094 */
1095 uint32_t surf_offset[BRW_MAX_SOL_BINDINGS];
1096 } ff_gs;
1097
1098 struct {
1099 struct brw_clip_prog_data *prog_data;
1100
1101 /** Offset in the program cache to the CLIP program pre-gen6 */
1102 uint32_t prog_offset;
1103
1104 /* Offset in the batch to the CLIP state on pre-gen6. */
1105 uint32_t state_offset;
1106
1107 /* As of gen6, this is the offset in the batch to the CLIP VP,
1108 * instead of vp_bo.
1109 */
1110 uint32_t vp_offset;
1111
1112 /**
1113 * The number of viewports to use. If gl_ViewportIndex is written,
1114 * we can have up to ctx->Const.MaxViewports viewports. If not,
1115 * the viewport index is always 0, so we can only emit one.
1116 */
1117 uint8_t viewport_count;
1118 } clip;
1119
1120
1121 struct {
1122 struct brw_sf_prog_data *prog_data;
1123
1124 /** Offset in the program cache to the CLIP program pre-gen6 */
1125 uint32_t prog_offset;
1126 uint32_t state_offset;
1127 uint32_t vp_offset;
1128 bool viewport_transform_enable;
1129 } sf;
1130
1131 struct {
1132 struct brw_stage_state base;
1133
1134 GLuint render_surf;
1135
1136 /**
1137 * Buffer object used in place of multisampled null render targets on
1138 * Gen6. See brw_emit_null_surface_state().
1139 */
1140 drm_intel_bo *multisampled_null_render_target_bo;
1141 uint32_t fast_clear_op;
1142
1143 float offset_clamp;
1144 } wm;
1145
1146 struct {
1147 struct brw_stage_state base;
1148 } cs;
1149
1150 /* RS hardware binding table */
1151 struct {
1152 drm_intel_bo *bo;
1153 uint32_t next_offset;
1154 } hw_bt_pool;
1155
1156 struct {
1157 uint32_t state_offset;
1158 uint32_t blend_state_offset;
1159 uint32_t depth_stencil_state_offset;
1160 uint32_t vp_offset;
1161 } cc;
1162
1163 struct {
1164 struct brw_query_object *obj;
1165 bool begin_emitted;
1166 } query;
1167
1168 struct {
1169 enum brw_predicate_state state;
1170 bool supported;
1171 } predicate;
1172
1173 int num_atoms[BRW_NUM_PIPELINES];
1174 const struct brw_tracked_state render_atoms[76];
1175 const struct brw_tracked_state compute_atoms[11];
1176
1177 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1178 struct {
1179 uint32_t offset;
1180 uint32_t size;
1181 enum aub_state_struct_type type;
1182 int index;
1183 } *state_batch_list;
1184 int state_batch_count;
1185
1186 uint32_t render_target_format[MESA_FORMAT_COUNT];
1187 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1188
1189 /* PrimitiveRestart */
1190 struct {
1191 bool in_progress;
1192 bool enable_cut_index;
1193 } prim_restart;
1194
1195 /** Computed depth/stencil/hiz state from the current attached
1196 * renderbuffers, valid only during the drawing state upload loop after
1197 * brw_workaround_depthstencil_alignment().
1198 */
1199 struct {
1200 struct intel_mipmap_tree *depth_mt;
1201 struct intel_mipmap_tree *stencil_mt;
1202
1203 /* Inter-tile (page-aligned) byte offsets. */
1204 uint32_t depth_offset, hiz_offset, stencil_offset;
1205 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1206 uint32_t tile_x, tile_y;
1207 } depthstencil;
1208
1209 uint32_t num_instances;
1210 int basevertex;
1211 int baseinstance;
1212
1213 struct {
1214 const struct gen_l3_config *config;
1215 } l3;
1216
1217 struct {
1218 drm_intel_bo *bo;
1219 const char **names;
1220 int *ids;
1221 enum shader_time_shader_type *types;
1222 struct shader_times *cumulative;
1223 int num_entries;
1224 int max_entries;
1225 double report_time;
1226 } shader_time;
1227
1228 struct brw_fast_clear_state *fast_clear_state;
1229
1230 /* Array of flags telling if auxiliary buffer is disabled for corresponding
1231 * renderbuffer. If draw_aux_buffer_disabled[i] is set then use of
1232 * auxiliary buffer for gl_framebuffer::_ColorDrawBuffers[i] is
1233 * disabled.
1234 * This is needed in case the same underlying buffer is also configured
1235 * to be sampled but with a format that the sampling engine can't treat
1236 * compressed or fast cleared.
1237 */
1238 bool draw_aux_buffer_disabled[MAX_DRAW_BUFFERS];
1239
1240 __DRIcontext *driContext;
1241 struct intel_screen *screen;
1242 };
1243
1244 /*======================================================================
1245 * brw_vtbl.c
1246 */
1247 void brwInitVtbl( struct brw_context *brw );
1248
1249 /* brw_clear.c */
1250 extern void intelInitClearFuncs(struct dd_function_table *functions);
1251
1252 /*======================================================================
1253 * brw_context.c
1254 */
1255 extern const char *const brw_vendor_string;
1256
1257 extern const char *
1258 brw_get_renderer_string(const struct intel_screen *screen);
1259
1260 enum {
1261 DRI_CONF_BO_REUSE_DISABLED,
1262 DRI_CONF_BO_REUSE_ALL
1263 };
1264
1265 void intel_update_renderbuffers(__DRIcontext *context,
1266 __DRIdrawable *drawable);
1267 void intel_prepare_render(struct brw_context *brw);
1268
1269 void intel_resolve_for_dri2_flush(struct brw_context *brw,
1270 __DRIdrawable *drawable);
1271
1272 GLboolean brwCreateContext(gl_api api,
1273 const struct gl_config *mesaVis,
1274 __DRIcontext *driContextPriv,
1275 unsigned major_version,
1276 unsigned minor_version,
1277 uint32_t flags,
1278 bool notify_reset,
1279 unsigned *error,
1280 void *sharedContextPrivate);
1281
1282 /*======================================================================
1283 * brw_misc_state.c
1284 */
1285 void
1286 brw_meta_resolve_color(struct brw_context *brw,
1287 struct intel_mipmap_tree *mt);
1288
1289 /*======================================================================
1290 * brw_misc_state.c
1291 */
1292 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1293 uint32_t depth_level,
1294 uint32_t depth_layer,
1295 struct intel_mipmap_tree *stencil_mt,
1296 uint32_t *out_tile_mask_x,
1297 uint32_t *out_tile_mask_y);
1298 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1299 GLbitfield clear_mask);
1300
1301 /* brw_object_purgeable.c */
1302 void brw_init_object_purgeable_functions(struct dd_function_table *functions);
1303
1304 /*======================================================================
1305 * brw_queryobj.c
1306 */
1307 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1308 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1309 void brw_emit_query_begin(struct brw_context *brw);
1310 void brw_emit_query_end(struct brw_context *brw);
1311 void brw_query_counter(struct gl_context *ctx, struct gl_query_object *q);
1312 bool brw_is_query_pipelined(struct brw_query_object *query);
1313
1314 /** gen6_queryobj.c */
1315 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1316 void brw_write_timestamp(struct brw_context *brw, drm_intel_bo *bo, int idx);
1317 void brw_write_depth_count(struct brw_context *brw, drm_intel_bo *bo, int idx);
1318
1319 /** hsw_queryobj.c */
1320 void hsw_init_queryobj_functions(struct dd_function_table *functions);
1321
1322 /** brw_conditional_render.c */
1323 void brw_init_conditional_render_functions(struct dd_function_table *functions);
1324 bool brw_check_conditional_render(struct brw_context *brw);
1325
1326 /** intel_batchbuffer.c */
1327 void brw_load_register_mem(struct brw_context *brw,
1328 uint32_t reg,
1329 drm_intel_bo *bo,
1330 uint32_t read_domains, uint32_t write_domain,
1331 uint32_t offset);
1332 void brw_load_register_mem64(struct brw_context *brw,
1333 uint32_t reg,
1334 drm_intel_bo *bo,
1335 uint32_t read_domains, uint32_t write_domain,
1336 uint32_t offset);
1337 void brw_store_register_mem32(struct brw_context *brw,
1338 drm_intel_bo *bo, uint32_t reg, uint32_t offset);
1339 void brw_store_register_mem64(struct brw_context *brw,
1340 drm_intel_bo *bo, uint32_t reg, uint32_t offset);
1341 void brw_load_register_imm32(struct brw_context *brw,
1342 uint32_t reg, uint32_t imm);
1343 void brw_load_register_imm64(struct brw_context *brw,
1344 uint32_t reg, uint64_t imm);
1345 void brw_load_register_reg(struct brw_context *brw, uint32_t src,
1346 uint32_t dest);
1347 void brw_load_register_reg64(struct brw_context *brw, uint32_t src,
1348 uint32_t dest);
1349 void brw_store_data_imm32(struct brw_context *brw, drm_intel_bo *bo,
1350 uint32_t offset, uint32_t imm);
1351 void brw_store_data_imm64(struct brw_context *brw, drm_intel_bo *bo,
1352 uint32_t offset, uint64_t imm);
1353
1354 /*======================================================================
1355 * brw_state_dump.c
1356 */
1357 void brw_debug_batch(struct brw_context *brw);
1358 void brw_annotate_aub(struct brw_context *brw);
1359
1360 /*======================================================================
1361 * intel_tex_validate.c
1362 */
1363 void brw_validate_textures( struct brw_context *brw );
1364
1365
1366 /*======================================================================
1367 * brw_program.c
1368 */
1369 static inline bool
1370 key_debug(struct brw_context *brw, const char *name, int a, int b)
1371 {
1372 if (a != b) {
1373 perf_debug(" %s %d->%d\n", name, a, b);
1374 return true;
1375 }
1376 return false;
1377 }
1378
1379 void brwInitFragProgFuncs( struct dd_function_table *functions );
1380
1381 /* Per-thread scratch space is a power-of-two multiple of 1KB. */
1382 static inline int
1383 brw_get_scratch_size(int size)
1384 {
1385 return MAX2(1024, util_next_power_of_two(size));
1386 }
1387 void brw_get_scratch_bo(struct brw_context *brw,
1388 drm_intel_bo **scratch_bo, int size);
1389 void brw_alloc_stage_scratch(struct brw_context *brw,
1390 struct brw_stage_state *stage_state,
1391 unsigned per_thread_size,
1392 unsigned thread_count);
1393 void brw_init_shader_time(struct brw_context *brw);
1394 int brw_get_shader_time_index(struct brw_context *brw,
1395 struct gl_program *prog,
1396 enum shader_time_shader_type type,
1397 bool is_glsl_sh);
1398 void brw_collect_and_report_shader_time(struct brw_context *brw);
1399 void brw_destroy_shader_time(struct brw_context *brw);
1400
1401 /* brw_urb.c
1402 */
1403 void brw_upload_urb_fence(struct brw_context *brw);
1404
1405 /* brw_curbe.c
1406 */
1407 void brw_upload_cs_urb_state(struct brw_context *brw);
1408
1409 /* brw_fs_reg_allocate.cpp
1410 */
1411 void brw_fs_alloc_reg_sets(struct brw_compiler *compiler);
1412
1413 /* brw_vec4_reg_allocate.cpp */
1414 void brw_vec4_alloc_reg_set(struct brw_compiler *compiler);
1415
1416 /* brw_disasm.c */
1417 int brw_disassemble_inst(FILE *file, const struct gen_device_info *devinfo,
1418 struct brw_inst *inst, bool is_compacted);
1419
1420 /* brw_vs.c */
1421 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1422
1423 /* brw_draw_upload.c */
1424 unsigned brw_get_vertex_surface_type(struct brw_context *brw,
1425 const struct gl_vertex_array *glarray);
1426
1427 static inline unsigned
1428 brw_get_index_type(GLenum type)
1429 {
1430 assert((type == GL_UNSIGNED_BYTE)
1431 || (type == GL_UNSIGNED_SHORT)
1432 || (type == GL_UNSIGNED_INT));
1433
1434 /* The possible values for type are GL_UNSIGNED_BYTE (0x1401),
1435 * GL_UNSIGNED_SHORT (0x1403), and GL_UNSIGNED_INT (0x1405) which we want
1436 * to map to scale factors of 0, 1, and 2, respectively. These scale
1437 * factors are then left-shfited by 8 to be in the correct position in the
1438 * CMD_INDEX_BUFFER packet.
1439 *
1440 * Subtracting 0x1401 gives 0, 2, and 4. Shifting left by 7 afterwards
1441 * gives 0x00000000, 0x00000100, and 0x00000200. These just happen to be
1442 * the values the need to be written in the CMD_INDEX_BUFFER packet.
1443 */
1444 return (type - 0x1401) << 7;
1445 }
1446
1447 void brw_prepare_vertices(struct brw_context *brw);
1448
1449 /* brw_wm_surface_state.c */
1450 void brw_init_surface_formats(struct brw_context *brw);
1451 void brw_create_constant_surface(struct brw_context *brw,
1452 drm_intel_bo *bo,
1453 uint32_t offset,
1454 uint32_t size,
1455 uint32_t *out_offset);
1456 void brw_create_buffer_surface(struct brw_context *brw,
1457 drm_intel_bo *bo,
1458 uint32_t offset,
1459 uint32_t size,
1460 uint32_t *out_offset);
1461 void brw_update_buffer_texture_surface(struct gl_context *ctx,
1462 unsigned unit,
1463 uint32_t *surf_offset);
1464 void
1465 brw_update_sol_surface(struct brw_context *brw,
1466 struct gl_buffer_object *buffer_obj,
1467 uint32_t *out_offset, unsigned num_vector_components,
1468 unsigned stride_dwords, unsigned offset_dwords);
1469 void brw_upload_ubo_surfaces(struct brw_context *brw,
1470 struct gl_linked_shader *shader,
1471 struct brw_stage_state *stage_state,
1472 struct brw_stage_prog_data *prog_data);
1473 void brw_upload_abo_surfaces(struct brw_context *brw,
1474 const struct gl_program *prog,
1475 struct brw_stage_state *stage_state,
1476 struct brw_stage_prog_data *prog_data);
1477 void brw_upload_image_surfaces(struct brw_context *brw,
1478 struct gl_linked_shader *shader,
1479 const struct gl_program *prog,
1480 struct brw_stage_state *stage_state,
1481 struct brw_stage_prog_data *prog_data);
1482
1483 /* brw_surface_formats.c */
1484 bool brw_render_target_supported(struct brw_context *brw,
1485 struct gl_renderbuffer *rb);
1486 uint32_t brw_depth_format(struct brw_context *brw, mesa_format format);
1487
1488 /* intel_buffer_objects.c */
1489 int brw_bo_map(struct brw_context *brw, drm_intel_bo *bo, int write_enable,
1490 const char *bo_name);
1491 int brw_bo_map_gtt(struct brw_context *brw, drm_intel_bo *bo,
1492 const char *bo_name);
1493
1494 /* intel_extensions.c */
1495 extern void intelInitExtensions(struct gl_context *ctx);
1496
1497 /* intel_state.c */
1498 extern int intel_translate_shadow_compare_func(GLenum func);
1499 extern int intel_translate_compare_func(GLenum func);
1500 extern int intel_translate_stencil_op(GLenum op);
1501 extern int intel_translate_logic_op(GLenum opcode);
1502
1503 /* brw_sync.c */
1504 void brw_init_syncobj_functions(struct dd_function_table *functions);
1505
1506 /* gen6_sol.c */
1507 struct gl_transform_feedback_object *
1508 brw_new_transform_feedback(struct gl_context *ctx, GLuint name);
1509 void
1510 brw_delete_transform_feedback(struct gl_context *ctx,
1511 struct gl_transform_feedback_object *obj);
1512 void
1513 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1514 struct gl_transform_feedback_object *obj);
1515 void
1516 brw_end_transform_feedback(struct gl_context *ctx,
1517 struct gl_transform_feedback_object *obj);
1518 GLsizei
1519 brw_get_transform_feedback_vertex_count(struct gl_context *ctx,
1520 struct gl_transform_feedback_object *obj,
1521 GLuint stream);
1522
1523 /* gen7_sol_state.c */
1524 void
1525 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1526 struct gl_transform_feedback_object *obj);
1527 void
1528 gen7_end_transform_feedback(struct gl_context *ctx,
1529 struct gl_transform_feedback_object *obj);
1530 void
1531 gen7_pause_transform_feedback(struct gl_context *ctx,
1532 struct gl_transform_feedback_object *obj);
1533 void
1534 gen7_resume_transform_feedback(struct gl_context *ctx,
1535 struct gl_transform_feedback_object *obj);
1536
1537 /* hsw_sol.c */
1538 void
1539 hsw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1540 struct gl_transform_feedback_object *obj);
1541 void
1542 hsw_end_transform_feedback(struct gl_context *ctx,
1543 struct gl_transform_feedback_object *obj);
1544 void
1545 hsw_pause_transform_feedback(struct gl_context *ctx,
1546 struct gl_transform_feedback_object *obj);
1547 void
1548 hsw_resume_transform_feedback(struct gl_context *ctx,
1549 struct gl_transform_feedback_object *obj);
1550
1551 /* brw_blorp_blit.cpp */
1552 GLbitfield
1553 brw_blorp_framebuffer(struct brw_context *brw,
1554 struct gl_framebuffer *readFb,
1555 struct gl_framebuffer *drawFb,
1556 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1557 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1558 GLbitfield mask, GLenum filter);
1559
1560 bool
1561 brw_blorp_copytexsubimage(struct brw_context *brw,
1562 struct gl_renderbuffer *src_rb,
1563 struct gl_texture_image *dst_image,
1564 int slice,
1565 int srcX0, int srcY0,
1566 int dstX0, int dstY0,
1567 int width, int height);
1568
1569 /* gen6_multisample_state.c */
1570 unsigned
1571 gen6_determine_sample_mask(struct brw_context *brw);
1572
1573 void
1574 gen6_emit_3dstate_multisample(struct brw_context *brw,
1575 unsigned num_samples);
1576 void
1577 gen6_emit_3dstate_sample_mask(struct brw_context *brw, unsigned mask);
1578 void
1579 gen6_get_sample_position(struct gl_context *ctx,
1580 struct gl_framebuffer *fb,
1581 GLuint index,
1582 GLfloat *result);
1583 void
1584 gen6_set_sample_maps(struct gl_context *ctx);
1585
1586 /* gen8_multisample_state.c */
1587 void gen8_emit_3dstate_multisample(struct brw_context *brw, unsigned num_samp);
1588 void gen8_emit_3dstate_sample_pattern(struct brw_context *brw);
1589
1590 /* gen7_urb.c */
1591 void
1592 gen7_emit_push_constant_state(struct brw_context *brw, unsigned vs_size,
1593 unsigned hs_size, unsigned ds_size,
1594 unsigned gs_size, unsigned fs_size);
1595
1596 void
1597 gen6_upload_urb(struct brw_context *brw, unsigned vs_size,
1598 bool gs_present, unsigned gs_size);
1599 void
1600 gen7_upload_urb(struct brw_context *brw, unsigned vs_size,
1601 bool gs_present, bool tess_present);
1602
1603 /* brw_reset.c */
1604 extern GLenum
1605 brw_get_graphics_reset_status(struct gl_context *ctx);
1606 void
1607 brw_check_for_reset(struct brw_context *brw);
1608
1609 /* brw_compute.c */
1610 extern void
1611 brw_init_compute_functions(struct dd_function_table *functions);
1612
1613 /*======================================================================
1614 * Inline conversion functions. These are better-typed than the
1615 * macros used previously:
1616 */
1617 static inline struct brw_context *
1618 brw_context( struct gl_context *ctx )
1619 {
1620 return (struct brw_context *)ctx;
1621 }
1622
1623 static inline struct brw_program *
1624 brw_program(struct gl_program *p)
1625 {
1626 return (struct brw_program *) p;
1627 }
1628
1629 static inline const struct brw_program *
1630 brw_program_const(const struct gl_program *p)
1631 {
1632 return (const struct brw_program *) p;
1633 }
1634
1635 /**
1636 * Pre-gen6, the register file of the EUs was shared between threads,
1637 * and each thread used some subset allocated on a 16-register block
1638 * granularity. The unit states wanted these block counts.
1639 */
1640 static inline int
1641 brw_register_blocks(int reg_count)
1642 {
1643 return ALIGN(reg_count, 16) / 16 - 1;
1644 }
1645
1646 static inline uint32_t
1647 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1648 uint32_t prog_offset)
1649 {
1650 if (brw->gen >= 5) {
1651 /* Using state base address. */
1652 return prog_offset;
1653 }
1654
1655 drm_intel_bo_emit_reloc(brw->batch.bo,
1656 state_offset,
1657 brw->cache.bo,
1658 prog_offset,
1659 I915_GEM_DOMAIN_INSTRUCTION, 0);
1660
1661 return brw->cache.bo->offset64 + prog_offset;
1662 }
1663
1664 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1665
1666 extern const char * const conditional_modifier[16];
1667 extern const char *const pred_ctrl_align16[16];
1668
1669 static inline bool
1670 brw_depth_writes_enabled(const struct brw_context *brw)
1671 {
1672 const struct gl_context *ctx = &brw->ctx;
1673
1674 /* We consider depth writes disabled if the depth function is GL_EQUAL,
1675 * because it would just overwrite the existing depth value with itself.
1676 *
1677 * These bonus depth writes not only use bandwidth, but they also can
1678 * prevent early depth processing. For example, if the pixel shader
1679 * discards, the hardware must invoke the to determine whether or not
1680 * to do the depth write. If writes are disabled, we may still be able
1681 * to do the depth test before the shader, and skip the shader execution.
1682 *
1683 * The Broadwell 3DSTATE_WM_DEPTH_STENCIL documentation also contains
1684 * a programming note saying to disable depth writes for EQUAL.
1685 */
1686 return ctx->Depth.Test && ctx->Depth.Mask && ctx->Depth.Func != GL_EQUAL;
1687 }
1688
1689 void
1690 brw_emit_depthbuffer(struct brw_context *brw);
1691
1692 void
1693 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1694 struct intel_mipmap_tree *depth_mt,
1695 uint32_t depth_offset, uint32_t depthbuffer_format,
1696 uint32_t depth_surface_type,
1697 struct intel_mipmap_tree *stencil_mt,
1698 bool hiz, bool separate_stencil,
1699 uint32_t width, uint32_t height,
1700 uint32_t tile_x, uint32_t tile_y);
1701
1702 void
1703 gen6_emit_depth_stencil_hiz(struct brw_context *brw,
1704 struct intel_mipmap_tree *depth_mt,
1705 uint32_t depth_offset, uint32_t depthbuffer_format,
1706 uint32_t depth_surface_type,
1707 struct intel_mipmap_tree *stencil_mt,
1708 bool hiz, bool separate_stencil,
1709 uint32_t width, uint32_t height,
1710 uint32_t tile_x, uint32_t tile_y);
1711
1712 void
1713 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1714 struct intel_mipmap_tree *depth_mt,
1715 uint32_t depth_offset, uint32_t depthbuffer_format,
1716 uint32_t depth_surface_type,
1717 struct intel_mipmap_tree *stencil_mt,
1718 bool hiz, bool separate_stencil,
1719 uint32_t width, uint32_t height,
1720 uint32_t tile_x, uint32_t tile_y);
1721 void
1722 gen8_emit_depth_stencil_hiz(struct brw_context *brw,
1723 struct intel_mipmap_tree *depth_mt,
1724 uint32_t depth_offset, uint32_t depthbuffer_format,
1725 uint32_t depth_surface_type,
1726 struct intel_mipmap_tree *stencil_mt,
1727 bool hiz, bool separate_stencil,
1728 uint32_t width, uint32_t height,
1729 uint32_t tile_x, uint32_t tile_y);
1730
1731 void gen8_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
1732 unsigned int level, unsigned int layer, enum blorp_hiz_op op);
1733
1734 uint32_t get_hw_prim_for_gl_prim(int mode);
1735
1736 void
1737 gen6_upload_push_constants(struct brw_context *brw,
1738 const struct gl_program *prog,
1739 const struct brw_stage_prog_data *prog_data,
1740 struct brw_stage_state *stage_state,
1741 enum aub_state_struct_type type);
1742
1743 bool
1744 gen9_use_linear_1d_layout(const struct brw_context *brw,
1745 const struct intel_mipmap_tree *mt);
1746
1747 /* brw_pipe_control.c */
1748 int brw_init_pipe_control(struct brw_context *brw,
1749 const struct gen_device_info *info);
1750 void brw_fini_pipe_control(struct brw_context *brw);
1751
1752 void brw_emit_pipe_control_flush(struct brw_context *brw, uint32_t flags);
1753 void brw_emit_pipe_control_write(struct brw_context *brw, uint32_t flags,
1754 drm_intel_bo *bo, uint32_t offset,
1755 uint32_t imm_lower, uint32_t imm_upper);
1756 void brw_emit_mi_flush(struct brw_context *brw);
1757 void brw_emit_post_sync_nonzero_flush(struct brw_context *brw);
1758 void brw_emit_depth_stall_flushes(struct brw_context *brw);
1759 void gen7_emit_vs_workaround_flush(struct brw_context *brw);
1760 void gen7_emit_cs_stall_flush(struct brw_context *brw);
1761
1762 /* brw_queryformat.c */
1763 void brw_query_internal_format(struct gl_context *ctx, GLenum target,
1764 GLenum internalFormat, GLenum pname,
1765 GLint *params);
1766
1767 #ifdef __cplusplus
1768 }
1769 #endif
1770
1771 #endif