i965: Add functions for comparing two brw_wm/vs_prog_data structs.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* Glossary:
45 *
46 * URB - uniform resource buffer. A mid-sized buffer which is
47 * partitioned between the fixed function units and used for passing
48 * values (vertices, primitives, constants) between them.
49 *
50 * CURBE - constant URB entry. An urb region (entry) used to hold
51 * constant values which the fixed function units can be instructed to
52 * preload into the GRF when spawning a thread.
53 *
54 * VUE - vertex URB entry. An urb entry holding a vertex and usually
55 * a vertex header. The header contains control information and
56 * things like primitive type, Begin/end flags and clip codes.
57 *
58 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
59 * unit holding rasterization and interpolation parameters.
60 *
61 * GRF - general register file. One of several register files
62 * addressable by programmed threads. The inputs (r0, payload, curbe,
63 * urb) of the thread are preloaded to this area before the thread is
64 * spawned. The registers are individually 8 dwords wide and suitable
65 * for general usage. Registers holding thread input values are not
66 * special and may be overwritten.
67 *
68 * MRF - message register file. Threads communicate (and terminate)
69 * by sending messages. Message parameters are placed in contiguous
70 * MRF registers. All program output is via these messages. URB
71 * entries are populated by sending a message to the shared URB
72 * function containing the new data, together with a control word,
73 * often an unmodified copy of R0.
74 *
75 * R0 - GRF register 0. Typically holds control information used when
76 * sending messages to other threads.
77 *
78 * EU or GEN4 EU: The name of the programmable subsystem of the
79 * i965 hardware. Threads are executed by the EU, the registers
80 * described above are part of the EU architecture.
81 *
82 * Fixed function units:
83 *
84 * CS - Command streamer. Notional first unit, little software
85 * interaction. Holds the URB entries used for constant data, ie the
86 * CURBEs.
87 *
88 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
89 * this unit is responsible for pulling vertices out of vertex buffers
90 * in vram and injecting them into the processing pipe as VUEs. If
91 * enabled, it first passes them to a VS thread which is a good place
92 * for the driver to implement any active vertex shader.
93 *
94 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
95 * enabled, incoming strips etc are passed to GS threads in individual
96 * line/triangle/point units. The GS thread may perform arbitary
97 * computation and emit whatever primtives with whatever vertices it
98 * chooses. This makes GS an excellent place to implement GL's
99 * unfilled polygon modes, though of course it is capable of much
100 * more. Additionally, GS is used to translate away primitives not
101 * handled by latter units, including Quads and Lineloops.
102 *
103 * CS - Clipper. Mesa's clipping algorithms are imported to run on
104 * this unit. The fixed function part performs cliptesting against
105 * the 6 fixed clipplanes and makes descisions on whether or not the
106 * incoming primitive needs to be passed to a thread for clipping.
107 * User clip planes are handled via cooperation with the VS thread.
108 *
109 * SF - Strips Fans or Setup: Triangles are prepared for
110 * rasterization. Interpolation coefficients are calculated.
111 * Flatshading and two-side lighting usually performed here.
112 *
113 * WM - Windower. Interpolation of vertex attributes performed here.
114 * Fragment shader implemented here. SIMD aspects of EU taken full
115 * advantage of, as pixels are processed in blocks of 16.
116 *
117 * CC - Color Calculator. No EU threads associated with this unit.
118 * Handles blending and (presumably) depth and stencil testing.
119 */
120
121
122 #define BRW_MAX_CURBE (32*16)
123
124 struct brw_context;
125 struct brw_instruction;
126 struct brw_vs_prog_key;
127 struct brw_wm_prog_key;
128 struct brw_wm_prog_data;
129
130 enum brw_state_id {
131 BRW_STATE_URB_FENCE,
132 BRW_STATE_FRAGMENT_PROGRAM,
133 BRW_STATE_VERTEX_PROGRAM,
134 BRW_STATE_INPUT_DIMENSIONS,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_WM_INPUT_DIMENSIONS,
140 BRW_STATE_PSP,
141 BRW_STATE_SURFACES,
142 BRW_STATE_VS_BINDING_TABLE,
143 BRW_STATE_GS_BINDING_TABLE,
144 BRW_STATE_PS_BINDING_TABLE,
145 BRW_STATE_INDICES,
146 BRW_STATE_VERTICES,
147 BRW_STATE_BATCH,
148 BRW_STATE_NR_WM_SURFACES,
149 BRW_STATE_NR_VS_SURFACES,
150 BRW_STATE_INDEX_BUFFER,
151 BRW_STATE_VS_CONSTBUF,
152 BRW_STATE_PROGRAM_CACHE,
153 BRW_STATE_STATE_BASE_ADDRESS,
154 BRW_STATE_SOL_INDICES,
155 };
156
157 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
158 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
159 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
160 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
161 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
184
185 struct brw_state_flags {
186 /** State update flags signalled by mesa internals */
187 GLuint mesa;
188 /**
189 * State update flags signalled as the result of brw_tracked_state updates
190 */
191 GLuint brw;
192 /** State update flags signalled by brw_state_cache.c searches */
193 GLuint cache;
194 };
195
196 #define AUB_TRACE_TYPE_MASK 0x0000ff00
197 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
198 #define AUB_TRACE_TYPE_BATCH (1 << 8)
199 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
200 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
201 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
202 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
203 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
204 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
205 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
206 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
207 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
208 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
209
210 /**
211 * state_struct_type enum values are encoded with the top 16 bits representing
212 * the type to be delivered to the .aub file, and the bottom 16 bits
213 * representing the subtype. This macro performs the encoding.
214 */
215 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
216
217 enum state_struct_type {
218 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
219 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
220 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
221 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
222 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
223 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
224 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
225 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
226 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
227 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
228 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
229 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
230 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
231
232 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
233 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
234 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
235
236 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
237 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
238 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
239 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
240 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
241 };
242
243 /**
244 * Decode a state_struct_type value to determine the type that should be
245 * stored in the .aub file.
246 */
247 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
248 {
249 return (ss_type & 0xFFFF0000) >> 16;
250 }
251
252 /**
253 * Decode a state_struct_type value to determine the subtype that should be
254 * stored in the .aub file.
255 */
256 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
257 {
258 return ss_type & 0xFFFF;
259 }
260
261 /** Subclass of Mesa vertex program */
262 struct brw_vertex_program {
263 struct gl_vertex_program program;
264 GLuint id;
265 bool use_const_buffer;
266 };
267
268
269 /** Subclass of Mesa fragment program */
270 struct brw_fragment_program {
271 struct gl_fragment_program program;
272 GLuint id; /**< serial no. to identify frag progs, never re-used */
273 };
274
275 struct brw_shader {
276 struct gl_shader base;
277
278 bool compiled_once;
279
280 /** Shader IR transformed for native compile, at link time. */
281 struct exec_list *ir;
282 };
283
284 struct brw_shader_program {
285 struct gl_shader_program base;
286 };
287
288 /* Data about a particular attempt to compile a program. Note that
289 * there can be many of these, each in a different GL state
290 * corresponding to a different brw_wm_prog_key struct, with different
291 * compiled programs.
292 *
293 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
294 * struct!
295 */
296 struct brw_wm_prog_data {
297 GLuint curb_read_length;
298 GLuint urb_read_length;
299
300 GLuint first_curbe_grf;
301 GLuint first_curbe_grf_16;
302 GLuint reg_blocks;
303 GLuint reg_blocks_16;
304 GLuint total_scratch;
305
306 GLuint nr_params; /**< number of float params/constants */
307 GLuint nr_pull_params;
308 bool error;
309 bool dual_src_blend;
310 int dispatch_width;
311 uint32_t prog_offset_16;
312
313 /**
314 * Mask of which interpolation modes are required by the fragment shader.
315 * Used in hardware setup on gen6+.
316 */
317 uint32_t barycentric_interp_modes;
318
319 /* Pointers to tracked values (only valid once
320 * _mesa_load_state_parameters has been called at runtime).
321 *
322 * These must be the last fields of the struct (see
323 * brw_wm_prog_data_compare()).
324 */
325 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
326 const float *pull_param[MAX_UNIFORMS * 4];
327 };
328
329 /**
330 * Enum representing the i965-specific vertex results that don't correspond
331 * exactly to any element of gl_vert_result. The values of this enum are
332 * assigned such that they don't conflict with gl_vert_result.
333 */
334 typedef enum
335 {
336 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
337 BRW_VERT_RESULT_HPOS_DUPLICATE,
338 BRW_VERT_RESULT_PAD,
339 /*
340 * It's actually not a vert_result but just a _mark_ to let sf aware that
341 * he need do something special to handle gl_PointCoord builtin variable
342 * correctly. see compile_sf_prog() for more info.
343 */
344 BRW_VERT_RESULT_PNTC,
345 BRW_VERT_RESULT_MAX
346 } brw_vert_result;
347
348
349 /**
350 * Data structure recording the relationship between the gl_vert_result enum
351 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
352 * single octaword within the VUE (128 bits).
353 *
354 * Note that each BRW register contains 256 bits (2 octawords), so when
355 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
356 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
357 * in a vertex shader), each register corresponds to a single VUE slot, since
358 * it contains data for two separate vertices.
359 */
360 struct brw_vue_map {
361 /**
362 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
363 * not stored in a slot (because they are not written, or because
364 * additional processing is applied before storing them in the VUE), the
365 * value is -1.
366 */
367 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
368
369 /**
370 * Map from VUE slot to gl_vert_result value. For slots that do not
371 * directly correspond to a gl_vert_result, the value comes from
372 * brw_vert_result.
373 *
374 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
375 * simplifies code that uses the value stored in slot_to_vert_result to
376 * create a bit mask).
377 */
378 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
379
380 /**
381 * Total number of VUE slots in use
382 */
383 int num_slots;
384 };
385
386 /**
387 * Convert a VUE slot number into a byte offset within the VUE.
388 */
389 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
390 {
391 return 16*slot;
392 }
393
394 /**
395 * Convert a vert_result into a byte offset within the VUE.
396 */
397 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
398 GLuint vert_result)
399 {
400 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
401 }
402
403
404 struct brw_sf_prog_data {
405 GLuint urb_read_length;
406 GLuint total_grf;
407
408 /* Each vertex may have upto 12 attributes, 4 components each,
409 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
410 * rows.
411 *
412 * Actually we use 4 for each, so call it 12 rows.
413 */
414 GLuint urb_entry_size;
415 };
416
417 struct brw_clip_prog_data {
418 GLuint curb_read_length; /* user planes? */
419 GLuint clip_mode;
420 GLuint urb_read_length;
421 GLuint total_grf;
422 };
423
424 struct brw_gs_prog_data {
425 GLuint urb_read_length;
426 GLuint total_grf;
427
428 /**
429 * Gen6 transform feedback: Amount by which the streaming vertex buffer
430 * indices should be incremented each time the GS is invoked.
431 */
432 unsigned svbi_postincrement_value;
433 };
434
435 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
436 * struct!
437 */
438 struct brw_vs_prog_data {
439 struct brw_vue_map vue_map;
440
441 GLuint curb_read_length;
442 GLuint urb_read_length;
443 GLuint total_grf;
444 GLbitfield64 outputs_written;
445 GLuint nr_params; /**< number of float params/constants */
446 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
447 GLuint total_scratch;
448
449 GLbitfield64 inputs_read;
450
451 /* Used for calculating urb partitions:
452 */
453 GLuint urb_entry_size;
454
455 bool uses_new_param_layout;
456 bool uses_vertexid;
457 bool userclip;
458
459 int num_surfaces;
460
461 /* These pointers must appear last. See brw_vs_prog_data_compare(). */
462 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
463 const float *pull_param[MAX_UNIFORMS * 4];
464 };
465
466
467 /* Size == 0 if output either not written, or always [0,0,0,1]
468 */
469 struct brw_vs_ouput_sizes {
470 GLubyte output_size[VERT_RESULT_MAX];
471 };
472
473
474 /** Number of texture sampler units */
475 #define BRW_MAX_TEX_UNIT 16
476
477 /** Max number of render targets in a shader */
478 #define BRW_MAX_DRAW_BUFFERS 8
479
480 /**
481 * Max number of binding table entries used for stream output.
482 *
483 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
484 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
485 *
486 * On Gen6, the size of transform feedback data is limited not by the number
487 * of components but by the number of binding table entries we set aside. We
488 * use one binding table entry for a float, one entry for a vector, and one
489 * entry per matrix column. Since the only way we can communicate our
490 * transform feedback capabilities to the client is via
491 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
492 * worst case, in which all the varyings are floats, so we use up one binding
493 * table entry per component. Therefore we need to set aside at least 64
494 * binding table entries for use by transform feedback.
495 *
496 * Note: since we don't currently pack varyings, it is currently impossible
497 * for the client to actually use up all of these binding table entries--if
498 * all of their varyings were floats, they would run out of varying slots and
499 * fail to link. But that's a bug, so it seems prudent to go ahead and
500 * allocate the number of binding table entries we will need once the bug is
501 * fixed.
502 */
503 #define BRW_MAX_SOL_BINDINGS 64
504
505 /** Maximum number of actual buffers used for stream output */
506 #define BRW_MAX_SOL_BUFFERS 4
507
508 #define BRW_MAX_WM_UBOS 12
509 #define BRW_MAX_VS_UBOS 12
510
511 /**
512 * Helpers to create Surface Binding Table indexes for draw buffers,
513 * textures, and constant buffers.
514 *
515 * Shader threads access surfaces via numeric handles, rather than directly
516 * using pointers. The binding table maps these numeric handles to the
517 * address of the actual buffer.
518 *
519 * For example, a shader might ask to sample from "surface 7." In this case,
520 * bind[7] would contain a pointer to a texture.
521 *
522 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
523 *
524 * +-------------------------------+
525 * | 0 | Draw buffer 0 |
526 * | . | . |
527 * | : | : |
528 * | 7 | Draw buffer 7 |
529 * |-----|-------------------------|
530 * | 8 | WM Pull Constant Buffer |
531 * |-----|-------------------------|
532 * | 9 | Texture 0 |
533 * | . | . |
534 * | : | : |
535 * | 24 | Texture 15 |
536 * |-----|-------------------------|
537 * | 25 | UBO 0 |
538 * | . | . |
539 * | : | : |
540 * | 36 | UBO 11 |
541 * +-------------------------------+
542 *
543 * Our VS binding tables are programmed as follows:
544 *
545 * +-----+-------------------------+
546 * | 0 | VS Pull Constant Buffer |
547 * +-----+-------------------------+
548 * | 1 | Texture 0 |
549 * | . | . |
550 * | : | : |
551 * | 16 | Texture 15 |
552 * +-----+-------------------------+
553 * | 17 | UBO 0 |
554 * | . | . |
555 * | : | : |
556 * | 28 | UBO 11 |
557 * +-------------------------------+
558 *
559 * Our (gen6) GS binding tables are programmed as follows:
560 *
561 * +-----+-------------------------+
562 * | 0 | SOL Binding 0 |
563 * | . | . |
564 * | : | : |
565 * | 63 | SOL Binding 63 |
566 * +-----+-------------------------+
567 *
568 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
569 * the identity function or things will break. We do want to keep draw buffers
570 * first so we can use headerless render target writes for RT 0.
571 */
572 #define SURF_INDEX_DRAW(d) (d)
573 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
574 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
575 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
576
577 /** Maximum size of the binding table. */
578 #define BRW_MAX_WM_SURFACES SURF_INDEX_WM_UBO(BRW_MAX_WM_UBOS)
579
580 #define SURF_INDEX_VERT_CONST_BUFFER (0)
581 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
582 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
583 #define BRW_MAX_VS_SURFACES SURF_INDEX_VS_UBO(BRW_MAX_VS_UBOS)
584
585 #define SURF_INDEX_SOL_BINDING(t) ((t))
586 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
587
588 enum brw_cache_id {
589 BRW_BLEND_STATE,
590 BRW_DEPTH_STENCIL_STATE,
591 BRW_COLOR_CALC_STATE,
592 BRW_CC_VP,
593 BRW_CC_UNIT,
594 BRW_WM_PROG,
595 BRW_BLORP_BLIT_PROG,
596 BRW_SAMPLER,
597 BRW_WM_UNIT,
598 BRW_SF_PROG,
599 BRW_SF_VP,
600 BRW_SF_UNIT, /* scissor state on gen6 */
601 BRW_VS_UNIT,
602 BRW_VS_PROG,
603 BRW_GS_UNIT,
604 BRW_GS_PROG,
605 BRW_CLIP_VP,
606 BRW_CLIP_UNIT,
607 BRW_CLIP_PROG,
608
609 BRW_MAX_CACHE
610 };
611
612 struct brw_cache_item {
613 /**
614 * Effectively part of the key, cache_id identifies what kind of state
615 * buffer is involved, and also which brw->state.dirty.cache flag should
616 * be set when this cache item is chosen.
617 */
618 enum brw_cache_id cache_id;
619 /** 32-bit hash of the key data */
620 GLuint hash;
621 GLuint key_size; /* for variable-sized keys */
622 GLuint aux_size;
623 const void *key;
624
625 uint32_t offset;
626 uint32_t size;
627
628 struct brw_cache_item *next;
629 };
630
631
632 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
633 int aux_size, const void *key);
634
635 struct brw_cache {
636 struct brw_context *brw;
637
638 struct brw_cache_item **items;
639 drm_intel_bo *bo;
640 GLuint size, n_items;
641
642 uint32_t next_offset;
643 bool bo_used_by_gpu;
644
645 /**
646 * Optional functions used in determining whether the prog_data for a new
647 * cache item matches an existing cache item (in case there's relevant data
648 * outside of the prog_data). If NULL, a plain memcmp is done.
649 */
650 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
651 };
652
653
654 /* Considered adding a member to this struct to document which flags
655 * an update might raise so that ordering of the state atoms can be
656 * checked or derived at runtime. Dropped the idea in favor of having
657 * a debug mode where the state is monitored for flags which are
658 * raised that have already been tested against.
659 */
660 struct brw_tracked_state {
661 struct brw_state_flags dirty;
662 void (*emit)( struct brw_context *brw );
663 };
664
665 /* Flags for brw->state.cache.
666 */
667 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
668 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
669 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
670 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
671 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
672 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
673 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
674 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
675 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
676 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
677 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
678 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
679 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
680 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
681 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
682 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
683 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
684 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
685
686 struct brw_cached_batch_item {
687 struct header *header;
688 GLuint sz;
689 struct brw_cached_batch_item *next;
690 };
691
692
693
694 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
695 * be easier if C allowed arrays of packed elements?
696 */
697 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
698
699 struct brw_vertex_buffer {
700 /** Buffer object containing the uploaded vertex data */
701 drm_intel_bo *bo;
702 uint32_t offset;
703 /** Byte stride between elements in the uploaded array */
704 GLuint stride;
705 GLuint step_rate;
706 };
707 struct brw_vertex_element {
708 const struct gl_client_array *glarray;
709
710 int buffer;
711
712 /** The corresponding Mesa vertex attribute */
713 gl_vert_attrib attrib;
714 /** Size of a complete element */
715 GLuint element_size;
716 /** Offset of the first element within the buffer object */
717 unsigned int offset;
718 };
719
720
721
722 struct brw_vertex_info {
723 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
724 };
725
726 struct brw_query_object {
727 struct gl_query_object Base;
728
729 /** Last query BO associated with this query. */
730 drm_intel_bo *bo;
731 /** First index in bo with query data for this object. */
732 int first_index;
733 /** Last index in bo with query data for this object. */
734 int last_index;
735 };
736
737
738 /**
739 * brw_context is derived from intel_context.
740 */
741 struct brw_context
742 {
743 struct intel_context intel; /**< base class, must be first field */
744 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
745
746 bool emit_state_always;
747 bool has_surface_tile_offset;
748 bool has_compr4;
749 bool has_negative_rhw_bug;
750 bool has_aa_line_parameters;
751 bool has_pln;
752 bool precompile;
753
754 /**
755 * Some versions of Gen hardware don't do centroid interpolation correctly
756 * on unlit pixels, causing incorrect values for derivatives near triangle
757 * edges. Enabling this flag causes the fragment shader to use
758 * non-centroid interpolation for unlit pixels, at the expense of two extra
759 * fragment shader instructions.
760 */
761 bool needs_unlit_centroid_workaround;
762
763 struct {
764 struct brw_state_flags dirty;
765 } state;
766
767 struct brw_cache cache;
768 struct brw_cached_batch_item *cached_batch_items;
769
770 struct {
771 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
772 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
773 struct {
774 uint32_t handle;
775 uint32_t offset;
776 uint32_t stride;
777 uint32_t step_rate;
778 } current_buffers[VERT_ATTRIB_MAX];
779
780 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
781 GLuint nr_enabled;
782 GLuint nr_buffers, nr_current_buffers;
783
784 /* Summary of size and varying of active arrays, so we can check
785 * for changes to this state:
786 */
787 struct brw_vertex_info info;
788 unsigned int min_index, max_index;
789
790 /* Offset from start of vertex buffer so we can avoid redefining
791 * the same VB packed over and over again.
792 */
793 unsigned int start_vertex_bias;
794 } vb;
795
796 struct {
797 /**
798 * Index buffer for this draw_prims call.
799 *
800 * Updates are signaled by BRW_NEW_INDICES.
801 */
802 const struct _mesa_index_buffer *ib;
803
804 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
805 drm_intel_bo *bo;
806 GLuint type;
807
808 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
809 * avoid re-uploading the IB packet over and over if we're actually
810 * referencing the same index buffer.
811 */
812 unsigned int start_vertex_offset;
813 } ib;
814
815 /* Active vertex program:
816 */
817 const struct gl_vertex_program *vertex_program;
818 const struct gl_fragment_program *fragment_program;
819
820 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
821 uint32_t CMD_VF_STATISTICS;
822 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
823 uint32_t CMD_PIPELINE_SELECT;
824
825 /**
826 * Platform specific constants containing the maximum number of threads
827 * for each pipeline stage.
828 */
829 int max_vs_threads;
830 int max_gs_threads;
831 int max_wm_threads;
832
833 /* BRW_NEW_URB_ALLOCATIONS:
834 */
835 struct {
836 GLuint vsize; /* vertex size plus header in urb registers */
837 GLuint csize; /* constant buffer size in urb registers */
838 GLuint sfsize; /* setup data size in urb registers */
839
840 bool constrained;
841
842 GLuint max_vs_entries; /* Maximum number of VS entries */
843 GLuint max_gs_entries; /* Maximum number of GS entries */
844
845 GLuint nr_vs_entries;
846 GLuint nr_gs_entries;
847 GLuint nr_clip_entries;
848 GLuint nr_sf_entries;
849 GLuint nr_cs_entries;
850
851 /* gen6:
852 * The length of each URB entry owned by the VS (or GS), as
853 * a number of 1024-bit (128-byte) rows. Should be >= 1.
854 *
855 * gen7: Same meaning, but in 512-bit (64-byte) rows.
856 */
857 GLuint vs_size;
858 GLuint gs_size;
859
860 GLuint vs_start;
861 GLuint gs_start;
862 GLuint clip_start;
863 GLuint sf_start;
864 GLuint cs_start;
865 GLuint size; /* Hardware URB size, in KB. */
866
867 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
868 * URB space for the GS.
869 */
870 bool gen6_gs_previously_active;
871 } urb;
872
873
874 /* BRW_NEW_CURBE_OFFSETS:
875 */
876 struct {
877 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
878 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
879 GLuint clip_start;
880 GLuint clip_size;
881 GLuint vs_start;
882 GLuint vs_size;
883 GLuint total_size;
884
885 drm_intel_bo *curbe_bo;
886 /** Offset within curbe_bo of space for current curbe entry */
887 GLuint curbe_offset;
888 /** Offset within curbe_bo of space for next curbe entry */
889 GLuint curbe_next_offset;
890
891 /**
892 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
893 * in brw_curbe.c with the same set of constant data to be uploaded,
894 * so we'd rather not upload new constants in that case (it can cause
895 * a pipeline bubble since only up to 4 can be pipelined at a time).
896 */
897 GLfloat *last_buf;
898 /**
899 * Allocation for where to calculate the next set of CURBEs.
900 * It's a hot enough path that malloc/free of that data matters.
901 */
902 GLfloat *next_buf;
903 GLuint last_bufsz;
904 } curbe;
905
906 /** SAMPLER_STATE count and offset */
907 struct {
908 GLuint count;
909 uint32_t offset;
910 } sampler;
911
912 struct {
913 struct brw_vs_prog_data *prog_data;
914 int8_t *constant_map; /* variable array following prog_data */
915
916 drm_intel_bo *scratch_bo;
917 drm_intel_bo *const_bo;
918 /** Offset in the program cache to the VS program */
919 uint32_t prog_offset;
920 uint32_t state_offset;
921
922 uint32_t push_const_offset; /* Offset in the batchbuffer */
923 int push_const_size; /* in 256-bit register increments */
924
925 /** @{ register allocator */
926
927 struct ra_regs *regs;
928
929 /**
930 * Array of the ra classes for the unaligned contiguous register
931 * block sizes used.
932 */
933 int *classes;
934
935 /**
936 * Mapping for register-allocated objects in *regs to the first
937 * GRF for that object.
938 */
939 uint8_t *ra_reg_to_grf;
940 /** @} */
941
942 uint32_t bind_bo_offset;
943 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
944 } vs;
945
946 struct {
947 struct brw_gs_prog_data *prog_data;
948
949 bool prog_active;
950 /** Offset in the program cache to the CLIP program pre-gen6 */
951 uint32_t prog_offset;
952 uint32_t state_offset;
953
954 uint32_t bind_bo_offset;
955 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
956 } gs;
957
958 struct {
959 struct brw_clip_prog_data *prog_data;
960
961 /** Offset in the program cache to the CLIP program pre-gen6 */
962 uint32_t prog_offset;
963
964 /* Offset in the batch to the CLIP state on pre-gen6. */
965 uint32_t state_offset;
966
967 /* As of gen6, this is the offset in the batch to the CLIP VP,
968 * instead of vp_bo.
969 */
970 uint32_t vp_offset;
971 } clip;
972
973
974 struct {
975 struct brw_sf_prog_data *prog_data;
976
977 /** Offset in the program cache to the CLIP program pre-gen6 */
978 uint32_t prog_offset;
979 uint32_t state_offset;
980 uint32_t vp_offset;
981 } sf;
982
983 struct {
984 struct brw_wm_prog_data *prog_data;
985 struct brw_wm_compile *compile_data;
986
987 /** Input sizes, calculated from active vertex program.
988 * One bit per fragment program input attribute.
989 */
990 GLbitfield input_size_masks[4];
991
992 /** offsets in the batch to sampler default colors (texture border color)
993 */
994 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
995
996 GLuint render_surf;
997
998 drm_intel_bo *scratch_bo;
999
1000 /**
1001 * Buffer object used in place of multisampled null render targets on
1002 * Gen6. See brw_update_null_renderbuffer_surface().
1003 */
1004 drm_intel_bo *multisampled_null_render_target_bo;
1005
1006 /** Offset in the program cache to the WM program */
1007 uint32_t prog_offset;
1008
1009 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1010
1011 drm_intel_bo *const_bo; /* pull constant buffer. */
1012 /**
1013 * This is offset in the batch to the push constants on gen6.
1014 *
1015 * Pre-gen6, push constants live in the CURBE.
1016 */
1017 uint32_t push_const_offset;
1018
1019 /** Binding table of pointers to surf_bo entries */
1020 uint32_t bind_bo_offset;
1021 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1022
1023 /** @{ register allocator */
1024
1025 struct ra_regs *regs;
1026
1027 /** Array of the ra classes for the unaligned contiguous
1028 * register block sizes used.
1029 */
1030 int *classes;
1031
1032 /**
1033 * Mapping for register-allocated objects in *regs to the first
1034 * GRF for that object.
1035 */
1036 uint8_t *ra_reg_to_grf;
1037
1038 /**
1039 * ra class for the aligned pairs we use for PLN, which doesn't
1040 * appear in *classes.
1041 */
1042 int aligned_pairs_class;
1043
1044 /** @} */
1045 } wm;
1046
1047
1048 struct {
1049 uint32_t state_offset;
1050 uint32_t blend_state_offset;
1051 uint32_t depth_stencil_state_offset;
1052 uint32_t vp_offset;
1053 } cc;
1054
1055 struct {
1056 struct brw_query_object *obj;
1057 drm_intel_bo *bo;
1058 int index;
1059 bool active;
1060 } query;
1061 /* Used to give every program string a unique id
1062 */
1063 GLuint program_id;
1064
1065 int num_atoms;
1066 const struct brw_tracked_state **atoms;
1067
1068 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1069 struct {
1070 uint32_t offset;
1071 uint32_t size;
1072 enum state_struct_type type;
1073 } *state_batch_list;
1074 int state_batch_count;
1075
1076 struct brw_sol_state {
1077 uint32_t svbi_0_starting_index;
1078 uint32_t svbi_0_max_index;
1079 uint32_t offset_0_batch_start;
1080 uint32_t primitives_generated;
1081 uint32_t primitives_written;
1082 bool counting_primitives_generated;
1083 bool counting_primitives_written;
1084 } sol;
1085
1086 uint32_t render_target_format[MESA_FORMAT_COUNT];
1087 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1088
1089 /* PrimitiveRestart */
1090 struct {
1091 bool in_progress;
1092 bool enable_cut_index;
1093 } prim_restart;
1094
1095 uint32_t num_instances;
1096 };
1097
1098
1099
1100 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1101
1102 struct brw_instruction_info {
1103 char *name;
1104 int nsrc;
1105 int ndst;
1106 bool is_arith;
1107 };
1108 extern const struct brw_instruction_info brw_opcodes[128];
1109
1110 /*======================================================================
1111 * brw_vtbl.c
1112 */
1113 void brwInitVtbl( struct brw_context *brw );
1114
1115 /*======================================================================
1116 * brw_context.c
1117 */
1118 bool brwCreateContext(int api,
1119 const struct gl_config *mesaVis,
1120 __DRIcontext *driContextPriv,
1121 unsigned major_version,
1122 unsigned minor_version,
1123 uint32_t flags,
1124 unsigned *error,
1125 void *sharedContextPrivate);
1126
1127 /*======================================================================
1128 * brw_queryobj.c
1129 */
1130 void brw_init_queryobj_functions(struct dd_function_table *functions);
1131 void brw_prepare_query_begin(struct brw_context *brw);
1132 void brw_emit_query_begin(struct brw_context *brw);
1133 void brw_emit_query_end(struct brw_context *brw);
1134
1135 /*======================================================================
1136 * brw_state_dump.c
1137 */
1138 void brw_debug_batch(struct intel_context *intel);
1139 void brw_annotate_aub(struct intel_context *intel);
1140
1141 /*======================================================================
1142 * brw_tex.c
1143 */
1144 void brw_validate_textures( struct brw_context *brw );
1145
1146
1147 /*======================================================================
1148 * brw_program.c
1149 */
1150 void brwInitFragProgFuncs( struct dd_function_table *functions );
1151
1152 int brw_get_scratch_size(int size);
1153 void brw_get_scratch_bo(struct intel_context *intel,
1154 drm_intel_bo **scratch_bo, int size);
1155
1156
1157 /* brw_urb.c
1158 */
1159 void brw_upload_urb_fence(struct brw_context *brw);
1160
1161 /* brw_curbe.c
1162 */
1163 void brw_upload_cs_urb_state(struct brw_context *brw);
1164
1165 /* brw_disasm.c */
1166 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1167
1168 /* brw_vs.c */
1169 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1170
1171 /* brw_wm_surface_state.c */
1172 void brw_init_surface_formats(struct brw_context *brw);
1173 void
1174 brw_update_sol_surface(struct brw_context *brw,
1175 struct gl_buffer_object *buffer_obj,
1176 uint32_t *out_offset, unsigned num_vector_components,
1177 unsigned stride_dwords, unsigned offset_dwords);
1178 void brw_upload_ubo_surfaces(struct brw_context *brw,
1179 struct gl_shader *shader,
1180 uint32_t *surf_offsets);
1181
1182 /* gen6_sol.c */
1183 void
1184 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1185 struct gl_transform_feedback_object *obj);
1186 void
1187 brw_end_transform_feedback(struct gl_context *ctx,
1188 struct gl_transform_feedback_object *obj);
1189
1190 /* gen7_sol_state.c */
1191 void
1192 gen7_end_transform_feedback(struct gl_context *ctx,
1193 struct gl_transform_feedback_object *obj);
1194
1195 /* brw_blorp_blit.cpp */
1196 GLbitfield
1197 brw_blorp_framebuffer(struct intel_context *intel,
1198 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1199 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1200 GLbitfield mask, GLenum filter);
1201
1202 /* gen6_multisample_state.c */
1203 void
1204 gen6_emit_3dstate_multisample(struct brw_context *brw,
1205 unsigned num_samples);
1206 void
1207 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1208 unsigned num_samples, float coverage,
1209 bool coverage_invert);
1210
1211 /* gen7_urb.c */
1212 void
1213 gen7_allocate_push_constants(struct brw_context *brw);
1214
1215 void
1216 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1217 GLuint vs_size, GLuint vs_start);
1218
1219
1220
1221 /*======================================================================
1222 * Inline conversion functions. These are better-typed than the
1223 * macros used previously:
1224 */
1225 static INLINE struct brw_context *
1226 brw_context( struct gl_context *ctx )
1227 {
1228 return (struct brw_context *)ctx;
1229 }
1230
1231 static INLINE struct brw_vertex_program *
1232 brw_vertex_program(struct gl_vertex_program *p)
1233 {
1234 return (struct brw_vertex_program *) p;
1235 }
1236
1237 static INLINE const struct brw_vertex_program *
1238 brw_vertex_program_const(const struct gl_vertex_program *p)
1239 {
1240 return (const struct brw_vertex_program *) p;
1241 }
1242
1243 static INLINE struct brw_fragment_program *
1244 brw_fragment_program(struct gl_fragment_program *p)
1245 {
1246 return (struct brw_fragment_program *) p;
1247 }
1248
1249 static INLINE const struct brw_fragment_program *
1250 brw_fragment_program_const(const struct gl_fragment_program *p)
1251 {
1252 return (const struct brw_fragment_program *) p;
1253 }
1254
1255 /**
1256 * Pre-gen6, the register file of the EUs was shared between threads,
1257 * and each thread used some subset allocated on a 16-register block
1258 * granularity. The unit states wanted these block counts.
1259 */
1260 static inline int
1261 brw_register_blocks(int reg_count)
1262 {
1263 return ALIGN(reg_count, 16) / 16 - 1;
1264 }
1265
1266 static inline uint32_t
1267 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1268 uint32_t prog_offset)
1269 {
1270 struct intel_context *intel = &brw->intel;
1271
1272 if (intel->gen >= 5) {
1273 /* Using state base address. */
1274 return prog_offset;
1275 }
1276
1277 drm_intel_bo_emit_reloc(intel->batch.bo,
1278 state_offset,
1279 brw->cache.bo,
1280 prog_offset,
1281 I915_GEM_DOMAIN_INSTRUCTION, 0);
1282
1283 return brw->cache.bo->offset + prog_offset;
1284 }
1285
1286 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1287 bool brw_lower_texture_gradients(struct exec_list *instructions);
1288
1289 #ifdef __cplusplus
1290 }
1291 #endif
1292
1293 #endif